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Abstract

This paper is motivated by the recent interest in the use of Bayesian VARs for
forecasting, even in cases where the number of dependent variables is large. In
such cases, factor methods have been traditionally used but recent work using a
particular prior suggests that Bayesian VAR methods can forecast better. In this
paper, we consider a range of alternative priors which have been used with small
VARs, discuss the issues which arise when they are used with medium and large
VARs and examine their forecast performance using a US macroeconomic data
set containing 168 variables. We �nd that Bayesian VARs do tend to forecast
better than factor methods and provide an extensive comparison of the strengths
and weaknesses of various approaches. Our empirical results show the importance
of using forecast metrics which use the entire predictive density, instead of using
only point forecasts.
Keywords: Bayesian, Minnesota prior, stochastic search variable selection,

predictive likelihood
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1 Introduction

Vector autoregressive (VAR) models have a long and successful tradition in the fore-
casting literature (e.g. Doan, Litterman and Sims, 1984 and Litterman, 1986). VARs
are parameter-rich models and shrinkage of various sorts has been found to greatly
improve forecast performance. Bayesian methods have proved popular since the use of
prior information o¤ers a formal way of shrinking forecasts. Almost all of the existing
literature focusses on VARs where the number of dependent variables is small (typically
two or three and rarely more than ten). However, in a recent paper, Banbura, Gian-
none and Reichlin (2010), hereafter BGR, consider larger Bayesian VARs. They work
with what they call a �medium�VAR involving 20 dependent variables and a �large�
VAR with 130 dependent variables. Traditionally, researchers working with so many
macroeconomic variables have used factor methods (e.g. Stock and Watson, 2002,
2006, Forni, Hallin, Lippi and Reichlin, 2003, Koop and Potter, 2004 and Korobilis,
2009). However, BGR �nds that medium and large Bayesian VARs can forecast better
than factor methods (at least in their empirical application). Given that VARs have
other advantages (e.g. in that impulse responses are easier to interpret), this suggests
Bayesian VARs could be a useful addition to the macroeconomic forecaster�s toolbox
even in cases where the research is working with dozens or hundreds of variables.
BGR uses a natural conjugate variant of the Minnesota prior popularized by Doan,

Litterman and Sims, 1984 and Litterman, 1986. The BGR prior shrinks all VAR co-
e¢ cients towards zero except for coe¢ cients on own lags of each dependent variable.
The latter are either set to one (for variables which exhibit substantial persistence) or
zero (for variables which do not). Thus, forecasts are shrunk towards a random walk
for some variables and towards white noise for others. The degree of shrinkage is con-
trolled by a single scalar hyperparameter. This is potentially an attractive and simple
way of doing Bayesian shrinkage in large VARs. However, there are alternative ways
of implementing the Minnesota prior which allow for di¤erent degrees of shrinkage on
coe¢ cients (e.g. coe¢ cients on own lags of a dependent variable can be shrunk to a
lesser extent than coe¢ cients on lags of other dependent variables). Such methods are
more restrictive in their treatment of the error covariance matrix than BGR�s imple-
mentation of the Minnesota prior. Nevertheless it is possible that allowing for di¤erent
degrees of shrinkage provides bene�ts which outweigh the costs of such restrictiveness.
A �rst purpose of this paper is to investigate this issue.
Furthermore, there are alternative ways of doing shrinkage in Bayesian VARs. One

attractive approach is the stochastic search variable selection (SSVS) prior of George,
Sun and Ni (2008). A common property of VARs is that they have a great number of
parameters, but many of these are unimportant and, thus, shrinkage towards zero (or a
constant) is desirable. The SSVS prior allows this to be done in an automatic fashion,
with minimal subjective prior information required by the researcher. One purpose of
this paper is to investigate how SSVS methods (previously used only with small VARs)
work with larger VARs. However, as we shall see, conventional SSVS methods for VARs
(which use a non-conjugate VARs) run past current computational limits when working
with large VARs. Thus, we only use conventional SSVS methods for medium VARs
with up to 20 dependent variables. In order to work with SSVS in larger VARs, we
also consider natural conjugate methods for SSVS is VARs. We show how these are
computationally feasible with larger VARs and present empirical results using up to 40
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dependent variables.
A third purpose of this paper is to develop methods for combining the Minnesota

prior with the SSVS prior. After all, each of them has attractive properties and so it is
possible that a combination of the two will improve forecast performance.
Finally, the Bayesian methods used in this paper produce an entire predictive dis-

tribution and not merely a point forecast. The previous literature (e.g. BGR and Mar-
cellino, Stock and Watson, 2006) typically focusses on point forecasts, using measures
of forecast performance such as mean squared forecast error (MSFE). In this paper,
the list of forecast metrics is expanded to include a measure based on the predictive
likelihood which involve the entire predictive distribution.
The data set used in this paper is an updated version of that used in Stock and

Watson (2008) and is described in the Data Appendix.1 The complete data set include
168 variables and runs from 1959Q1 through 2008Q4. Our forecasting exercise �nds
that Bayesian VARmethods do out-perform factor methods. However, we �nd no single
approach to Bayesian VAR forecasting consistently forecasts best. Roughly speaking,
we �nd that SSVS-based methods work best in cases where relatively low dimensional
VARs are adequate, but approaches based on the Minnesota prior work best when
medium or large VARs are needed. But there are some important exceptions to this
pattern. Furthermore, traditional, simpler implementations of Minnesota priors often
out-perform BGR�s version of the Minnesota prior. Our results highlight the di¤erent
ways in which di¤erent priors achieve the shrinkage and/or parsimony that is important
in achieving good forecast performance with large macroeconomic data sets.

2 The Econometrics of Bayesian VARs

We write the VAR in matrix form as:

Y = XA+ "; (1)

where Y is a T � n matrix with tth row given by y0t where yt is a vector of n dependent
variables, X is a T � K matrix. In our empirical work K = (1 + pn) since each row
of contains p lags of each dependent variable and an intercept. That is, the tth row of
X is given by the vector

�
1; y0t�1; : : : ; y

0
t�p
�
. A is the matrix of coe¢ cients and " is a

T �n matrix with tth row given by "0t. "t are independent N (0;�) errors for t = 1; ::; T .
De�ne � = vec (A) which is a vector of nK elements. The dimensionality of � plays a
key role in the following discussion. Note that a large VAR with quarterly data might
have n = 100 and p = 4 in which case � contains over 40; 000 elements. With monthly
data it would have over 100; 000 elements. For a medium VAR, � might have about
1; 500 elements with quarterly data. �, too, will be parameter rich, containing n(n+1)

2

elements. A typical macroeconomic quarterly data set might have approximately two
hundred observations and, hence, the number of coe¢ cients will far exceed the num-
ber of observations. Bayesian methods combine likelihood function with prior. It is
well-known (e.g. Poirier, 1998) that, even if some parameters are not identi�ed in the
likelihood function, under weak conditions the use of a proper prior will lead to a valid
posterior density and, thus, Bayesian inference is possible. However, prior information

1I would like to thank Mark Watson for providing this data.
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becomes increasingly important as the number of parameters increases relative to sam-
ple size. A theme of this paper is to investigate the role of prior information as it relates
to how shrinkage is done.

2.1 Natural conjugate priors for VARs

For reasons to be made clear in this sub-section, BGR work with a natural conjugate
prior,2 despite the fact that there is a well-known drawback with the use of such priors
with VARs (see, e.g., Kadiyala and Karlsson, 1997). The natural conjugate prior has
the form:

�j� � N (�;�
 V ) (2)

and
��1 � W

�
S�1; �

�
(3)

where �; V ; � and S are prior hyperparameters and W
�
S�1; �

�
denotes the Wishart

distribution with scale S�1 and degrees of freedom �. For future reference, let A be a
K � n matrix de�ned through the relationship � = vec (A).
Note that the traditional Minnesota prior is not the same as this natural conjugate

prior since the former does not treat � as a matrix of unknown parameters, but simply
replaces � with an estimate, b�. In particular, the traditional Minnesota prior assumes
� to be a diagonal matrix with diagonal elements s2i where s

2
i is the standard OLS

estimate of the error variance in an AR(p) model for the ith variable. Sensibly wishing
to allow for correlations between the errors, BGR treats � as an unknown positive
de�nite matrix with S chosen in a manner inspired by the Minnesota prior.
Natural conjugate priors can be interpreted as arising from a �ctitious prior data

set. To be precise, if Y and X are (K + n)�n and (K + n)�K, respectively, then we
can write the prior hyperparameters as �,

A = (X 0X)
�1
X 0Y ;

S = (Y �XA)0 (Y �XA)

and

V = (X 0X)
�1
:

If we stack the prior and actual data as Y = (Y 0; Y 0)
0 and X = (X 0; X 0)

0, it can be
shown that the posterior is:

�j�; Y � N
�
�;�
 V

�
(4)

and
��1jY � W

�
S
�1
; �
�

(5)

where
2Natural conjugate priors are those where the prior, likelihood and posterior come from the same

family of distributions.
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V =
�
X
0
X
��1

; (6)

A =
�
X
0
X
��1

X
0
Y ;

� = vec
�
A
�
,

S =
�
Y �XA

�0 �
Y �XA

�
and

� = T + �:

The general form for the prior �sample�is

Y =

 
V � 1

2A

S
1
2

!
; X =

�
V � 1

2

0n�nK

�
; (7)

where notation such as S
1
2 implies a matrix such that

�
S

1
2

�0
S

1
2 = S and 0a�b is an

a� b matrix of zeros.
BGR show how a prior which coincides with the traditional Minnesota prior (except

that � is treated as unknown and a single scalar � is used for shrinkage instead of the
two scalars used for shrinkage in the traditional implementation) arises if the �ctitious
sample is set as:

Y =

0@ diag(�1s1;::;�nsn)

�

0(np�n+1)�n
diag (s1; ::; sn)

1A ; X =

0@ Jp 
 diag(s1;::;sn)
�

0np�1
01�np v
0n�np 0n�1

1A ; (8)

where Jp = diag (1; 2; ::; p) ; diag (:) denotes a diagonal matrix. �i = 1 if the i
th variable

is believed to exhibit substantial persistence (i.e. it ensures shrinkage towards a random
walk) and �i = 0 if the i

th variable is believed to exhibit little persistence (i.e. it ensures
shrinkage towards white noise). The middle row of X determines the prior for the
intercept. By choosing v to be very small, a relatively noninformative prior for the
intercept is obtained. The form of Y implies the prior mean for the intercept is zero.
Posterior inference about the VAR coe¢ cients can be carried out using the fact

that the marginal posterior (i.e. after integrating out �) for � is a multivariate t-
distribution. The mean of this t-distribution is �, its degrees of freedom parameter is
� and its covariance matrix is:

var (�jY ) = 1

� � n� 1S 
 V :

The predictive distribution for yT+1 in this model has an analytical form and, in
particular, is multivariate-t with � degrees of freedom. Point forecasts can be based on
the predictive mean:

E (yT+1jY ) =
�
xT+1A

�0
:

The predictive covariance matrix is
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var (yT+1jY ) =
1

� � 2
�
1 + xT+1V x

0
T+1

�
S:

When forecasting more than one period ahead, an analytical formula for the predic-
tive density does not exist. This means that either the direct forecasting method must
be used (which turns the problem into one which only involves one step ahead forecast-
ing) or predictive simulation is required. In this paper, we use the direct method.
The use of the natural conjugate prior leads to one large bene�t: analytical results are

available for Bayesian inference and forecasting, so no posterior simulation is required.
For large Bayesian VARs a second bene�t exists: the � 
 V form for the conditional
posterior covariance matrix of � in (4) enormously simpli�es computation. Note that
with this prior, calculating V involves inverting a K�K matrix (see 6) which, even for
a large VAR (when K is a few hundreds or, at most, a few thousand) is feasible. To
preview one of the crucial econometric issues in the present paper, when working with
non-conjugate priors such as the conventional implementation of SSVS, calculating the
posterior covariance matrix involves inverting an nK �nK matrix (e.g. with quarterly
data it would involve inverting something like a 40; 000� 40; 000 matrix). For medium
VARs (e.g. up to n = 20), Bayesian computation with non-conjugate priors is feasible
(but very slow), with large VARs it is computationally infeasible. It is this consideration
which leads us to investigate the conditionally conjugate implementation of SSVS for
VARs discussed below.
However, the natural conjugate prior has a restrictive property which means it has

been rarely used in practice. This arises from the fact that the prior covariance of the
coe¢ cients in equation i is �iiV where �ii is the (ii)

th element of � (see 2). This implies
that the prior variance of the coe¢ cients in any two equations must be proportional
to one another, a possibly restrictive feature. The traditional Minnesota prior (which
treats � as �xed) has the property that coe¢ cients on own lags (i.e. in equation i these
are lags of the ith dependent variable) have a larger prior variance (i.e. are shrunk less)
than coe¢ cients on other lags (i.e. lags of the dependent variables in other equations).
This feature is not possible using the natural conjugate prior and, accordingly, BGR
applies the same degree of shrinkage to coe¢ cients on own and other lags. In an ideal
world, one may wish to relax such an assumption and this is something we investigate
below. But given computational limitations and the inevitable compromises and trade-
o¤s of empirical work in high-dimensional models, it may be a sensible one to make.
However, it is worth investigating whether having two prior hyperparameters con-

trolling shrinkage (�1 and �2) as in the original Minnesota prior yields forecasting
bene�ts. The cost of this is that we cannot have � being a general positive de�nite
matrix. We do not present details of posterior inference and forecasting with the tra-
ditional Minnesota prior since they are available in many places (see, e.g., Kadiyala
and Karlsson, 1997). However, our empirical section of this paper includes results for
the original Minnesota prior (which assumes � to be diagonal and replaces the diago-
nal elements by OLS estimates based on n individual AR(p) regressions as described
above). We also present results for a modi�cation of this, where the upper-left hand
block of � (corresponding to a reduced set of important variables which are the ones
being forecast) is not assumed to be diagonal. Instead it is replaced by the posterior
mean based on a VAR using this reduced set of important variables. The remainder of
� is diagonal as in the original Minnesota prior. Our reduced set of important variables
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are the ones labelled �Three Main Variables used in all VARs�in the Data Appendix.
This approach allows for correlation between the errors in the most important equa-
tions in the VAR. This may represent a good compromise between the two extremes
of allowing no correlation between any errors (as in the original Minnesota prior) and
the other extreme of allowing for correlation between all of the errors (as in BGR) and
running the risks associated with over-parameterization.

2.2 The Non-conjugate SSVS Prior

The variant of the Minnesota prior used in BGR has many advantages (e.g. the fact
that analytical results exist for posterior and predictive density). However, it does
embody some quite extreme prior assumptions. For instance, the huge [n� (1 + pn)]�
[n� (1 + pn)] prior covariance matrix for � has a prior which is parameterized extremely
tightly in terms of a single scalar � with most elements simply being set to zero. It is
also a data-based prior with s2i being chosen based on preliminary estimation of AR(p)
models for each variable. Furthermore, the prior will take the same form at each point
in time in a recursive forecasting exercise and so coe¢ cients will be shrunk in the same
way at all points in time. This may be inappropriate if the set of relevant predictors for
a dependent variable changes over time, or if the persistence in a dependent variable
changes over time. The SSVS prior is an alternative method of achieving shrinkage in
VARs, but it does so in a di¤erent manner and without so many restrictive assumptions.
And the SSVS prior can adapt by including/excluding di¤erent explanatory variables
as time goes by in a recursive or rolling forecasting exercise.
To explain the main aspect of SSVS, let �j denote the jth element of �. Instead

of simply using a prior such as the Minnesota prior, SSVS speci�es a hierarchical prior
(i.e. a prior expressed in terms of parameters which in turn have a prior of their own)
which is a mixture of two Normal distributions:

�jjj �
�
1� j

�
N
�
�j; �

2
0j

�
+ jN

�
�j; �

2
1j

�
; (9)

where j is a dummy variable. If j equals one then �j is drawn from the second
Normal and if it equals zero then �j is drawn from the �rst Normal. The prior is
hierarchical since j is treated as an unknown parameter which is estimated in a data-
based fashion. The SSVS aspect of this prior arises by choosing the �rst prior variance,
�20j, to be �small�(so that the coe¢ cient is constrained to be virtually equal to �j and
the corresponding explanatory variable is e¤ectively excluded from the model if �j = 0)
and the second prior variance, �21j, to be �large�(implying a relatively noninformative
prior for the corresponding coe¢ cient and the corresponding explanatory variable is
included). Traditional implementations of SSVS set �j = 0 for j = 1; ::; n � (1 + pn)
but it is also possible to set appropriate �j = 1 if the researcher wishes to shrink towards
a random walk. In Section 3 we describe alternative procedures for choosing �20j and
�21j one of which leads to a prior which is a combination of a conventional SSVS prior
with the Minnesota prior.
The SSVS approach can be thought of as automatically selecting a restricted VAR

since it can, in a data-based fashion, set j = 0 and (to all intents and purposes) delete
the corresponding lagged dependent variable form the model. Alternatively, SSVS can
be thought of as a way of doing shrinkage since VAR coe¢ cients can be shrunk to zero.
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But, unlike the Minnesota prior, it chooses which coe¢ cients to shrink to zero in a
data-based fashion.
SSVS can be used to select a single restricted model (e.g. the researcher can select a

restricted VAR which contains only those lagged dependent variables whose coe¢ cients
have Pr

�
j = 1jy

�
> a for some choice of a such as a = 0:5). Alternatively, if the

Markov Chain Monte Carlo (MCMC) algorithm described in the Technical Appendix is
simply run and posterior results for the VAR coe¢ cients calculated using the resulting
MCMC output, the result will be Bayesian model averaging (BMA). The latter strategy
is adopted in our empirical section.
Complete details of the non-conjugate implementation of SSVS are provided in

Section 3 and the Technical Appendix. However, to bring out some basic ideas note
that the non-conjugate SSVS prior for � can be written as

�j � N (�;D) ; (10)

where  = (1; ::; Kn)
0 and D is a diagonal matrix with (j; j)th element given by dj

where

dj =

�
�20j if j = 0
�21j if j = 1

: (11)

For , the SSVS prior posits that each element has a Bernoulli form (independent of
the other elements of ) and, hence, for j = 1; ::; K, we have

Pr
�
j = 1

�
= q

j

Pr
�
j = 0

�
= 1� q

j

: (12)

We set q
j
= 0:5 for all j. This is a natural default choice, implying each coe¢ cient is a

priori equally likely to be included as excluded.
Even if we were to assume aWishart prior for ��1 (which is not done by George, Sun

and Ni, 2009), this SSVS prior is not natural conjugate (conditional on ). Analytical
results (conditional on ) do not exist for this model. Thus, MCMC methods must be
used.
As a digression, note that George, Sun and Ni (2008) also do SSVS on the o¤-

diagonal elements of �. Given � is an n � n matrix, allowing for SSVS shrinkage in
� with VARs is potentially of great use. In our empirical results, when we use a non-
conjugate SSVS prior, we do include SSVS shrinkage for �. However, our conjugate
SSVS prior (see below) requires ��1 to have a Wishart distribution and, thus, does not
allow for SSVS shrinkage for �.
Papers such as George, Sun and Ni (2008), Korobilis (2009) and Jochmann, Koop

and Strachan (2009) have found SSVS to be an excellent way of ensuring shrinkage
and improving forecasting performance in small VARs. However, the conventional
implementation of SSVS faces two computational problems that makes in infeasible in
large VARs and very computationally demanding in medium VARs. First, it involves
an MCMC algorithm which, in the context of a recursive forecasting exercise, must be
repeated many times. Second, the MCMC algorithm requires the calculation of the
conditional posterior covariance matrix for �. This is:

var (�jY;�; ) = [��1 
 (X 0X) +D�1]�1
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and, thus, the inversion of a Kn�Kn matrix must be done for each MCMC draw. For
medium VARs this is slow but feasible, for large VARs it is infeasible. We must look
to some simpli�cations to obtain an SSVS-based method which is suitable for larger
VARs and it is to this we now turn.

2.3 The Conjugate SSVS Prior

Previously, we have discussed the advantages (i.e. analytical results and easy computa-
tion) and disadvantages (i.e. prior variances for coe¢ cients on a particular explanatory
variables in all equations are proportional to one another) of the natural conjugate
prior. If we use a conjugate SSVS prior we have similar advantages and disadvantages.
In this case, the disadvantage manifests itself in the fact that SSVS will include or ex-
clude each explanatory variable from all equations. Unlike with non-conjugate SSVS,
it is not possible for an explanatory variable to be excluded from some equations but
not others. Furthermore, the nature of the conjugate prior means that we cannot do
SSVS on �.
Conjugate prior SSVS methods for the multivariate Normal regression model are

developed in Brown, Vannucci and Fearn (1998) and can be adapted for the VAR. Lete be a vector of dummy variables de�ned in a similar manner as , except e is a K � 1
vector (unlike  which is a Kn � 1 vector). The natural conjugate prior given in (2)
now becomes conditionally conjugate (i.e. it is conjugate conditional on e):

�j�; e � N (�;�
D) (13)

where D is a diagonal matrix with (j; j)
th element given by dj where

dj =

�
�20j if ej = 0
�21j if ej = 1 : (14)

The prior for ��1 remains as given in (3). In our empirical work, we use the same
values for �, � and S as in our implementation of the BGR�s Minnesota prior (see 8).
Thus, our prior can be expressed through a �ctitious prior sample of:

Y =

 
D
� 1
2

 A
diag (s1; ::; sn)

!
; X =

 
D
� 1
2



0n�K

!
; (15)

where A is a matrix of zeros except for the upper left hand block which is diag (�1; ::; �n).
Bayesian inference using the conditionally conjugate SSVS prior is not as simple

as approaches using Minnesota priors due to the addition of e. Conditional on e, the
formulae for the posterior for the natural conjugate prior given in Section 2.1 still hold.
The conjugacy means that p (ejY ) can easily be evaluated (see the Technical Appendix
for the precise formula). However, there are 2K possible con�gurations that e can take.
Unless K is small (which it will not be in our case), exhaustive evaluation of all these
possibilities is computationally infeasible. Accordingly, we adopt a posterior simulation
strategy based on one suggested in Brown, Vannucci and Fearn (1998). Complete details
are provided in the Technical Appendix.
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3 Forecasting

3.1 Data Issues

The list of 168 variables used in this study, running from 1959Q1 through 2008Q4, is
given in the Data Appendix. Following Stock and Watson (2008) and many others, the
variables are all transformed to stationarity (usually by di¤erencing or log di¤erencing)
as described in the Data Appendix. All data are then standardized by subtracting o¤
the mean and dividing by the standard deviation. Note that this means that our prior
means for all coe¢ cients in all approaches are set to zero (instead of setting some prior
means to one so as to shrink towards a random walk as would be appropriate if we were
working with untransformed variables).
The variables are divided into four groups. The variables in BGR�s data set are not

identical to those in ours, so we do not match their setup exactly, but the following
choices are similar to and motivated by their grouping of variables. The �rst group
contains the three main variables we are interested in forecasting. These are a measure
of economic activity (GDP, real GDP), prices (CPI, the consumer price index) and
an interest rate (FFR, the Fed funds rate).3 The second group contains an additional
17 variables which, added to the three main variables leads to the n = 20 variables
used by BGR in their medium VAR. The choice of these variables is partly motivated
the monetary model of Christiano, Eichenbaum and Evans (1999) and partly includes
variables found to be useful for forecasting in other studies. The third group contains
an additional 20 variables (combined with the other groups, this leads to a larger VAR
with n = 40 variables). These 20 variables have sometimes been found to be useful in
forecasting exercises. This group contains most of the remaining aggregate variables in
the data set. The remainder of the 168 variables are in a �nal group. These are mostly
the components making up the aggregate variables already included in the other groups.
We thus have small VARs (with n = 3), medium VARs (n = 20), medium-large

VARs (n = 40) and large VARs (n = 168). Note that BGR found most of the gains in
forecast performance through the use of more variables to have been achieved by using
medium VARs, with large VARs forecasting approximately as well as medium VARs.
All approaches use four lags of the dependent variables (p = 4).

3.2 Forecast Metrics

Our rolling and recursive forecast exercises provide us with the predictive density for
y�+h using data available through time � for h = 1 and 4. For the rolling forecasts,
we use a window of ten years. The predictive density is evaluated for � = � 0; ::; T � h
where � 0 is 1969Q4. We use notation where y�+h is a random variable we are wishing
to forecast (e.g. GDP, CPI or FFR), yo�+h is the observed value of the random variable
y�+h and p (y�+hjData� ) is the predictive density based on information available at time
� .
The most common measure of forecast performance is MSFE where:

3The transformations used on the data means we are forecasting the di¤erence of log GDP, the
second di¤ererence of log CPI and the di¤erence of FFR.
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MSFE =

PT�h
�=�0

�
yo�+h � E (y�+hjData� )

�2
T � h� � 0 + 1

:

However, this only uses the point forecasts and ignores the rest of the predictive dis-
tribution. For this reason, we also use the predictive likelihood to evaluate forecast
performance. Note that a great advantage of predictive likelihoods is that they evalu-
ate the forecasting performance of the entire predictive density. Predictive likelihoods
are motivated and described in many places such as Geweke and Amisano (2009). The
predictive likelihood is the predictive density for y�+h evaluated at the actual outcome
yo�+h. We use the sum of log predictive likelihoods for forecast evaluation:

T�hX
�=�0

log
�
p
�
y�+h = yo�+hjData�

��
:

3.3 Forecasting Approaches

To the three general categories of forecasting methods for Bayesian VARs described
above (i.e. Minnesota prior, Non-conjugate SSVS and Conjugate SSVS) we add the
category of traditional factor models as a benchmark for comparison. Within each
category we have various ways implementations as described in this sub-section.

3.3.1 Minnesota Priors

We consider three variants of the Minnesota prior: the �rst is as in BGR (labelled
�Minn. Prior as in BGR�in the tables below). The second is the traditional Minnesota
prior (labelled �Minn. Prior � diagonal�). The third is the traditional Minnesota prior
except that the upper left 3 � 3 block of � is not assumed to be diagonal (labelled
�Minn. Prior � not diagonal�). Details of how these are implemented were given in
Section 2.1
The Minnesota prior of BGR requires the selection of a single shrinkage parameter,

�. We choose this in the same manner as BGR. To be precise, an initial set of data is
set aside as a training sample (we use all data through 1969Q4 for this purpose). Using
this entire training sample we estimate the VARs and then use them for forecasting
within this training sample. In medium, medium-large and large VARs, � is chosen so
as to yield a �t in this training sample as close as possible to the small VAR for the
three main variables being forecast. For the small VAR no shrinkage is done (�!1).
Fit is de�ned as:

Fit�n =
1

3

3X
i=1

MSFE (i; �; n)

MSFE (i; 0; 3)

where MSFE (i; �; n) is the MSFE of variable i using shrinkage parameter � in a VAR
with n variables. Note that MSFE (i; 0; 3) is simply the MSFE produced by the prior
in the small VAR which is used to normalize the measure. For the VAR with n variables
we choose � to minimize:

jFit�n � Fit13j :
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Grid search methods are used to solve this minimization problem.
For the other two variants of the Minnesota prior we adopt a similar strategy of

matching �t with a small VAR in a training sampler. However, here we have two
shrinkage parameters (�1 which controls shrinkage of coe¢ cients on own lags and �2
which controls shrinkage of coe¢ cients on other lags) and do a two-dimensional grid
search to minimize the di¤erence in �t between the VAR with n variables and the small
VAR with no shrinkage.

3.3.2 The SSVS Priors

We implement the non-conjugate SSVS prior approach in two ways. First, we use
the �default semi-automatic approach� to prior elicitation suggested by George, Sun
and Ni (2008). This involves setting �0j = c0

pdvar(�j) and �1j = c1
pdvar(�j) wheredvar(�j) is an estimate of the variance of the coe¢ cient in an unrestricted VAR. In

our case,dvar(�j) is the posterior variance of �j obtained from the corresponding VAR
using BGR�s prior. The pre-selected constants c0 and c1 must have c0 � c1 and we set
c0 = 0:1 and c1 = 10. Note that this means the semi-automatic prior is a data-based
prior. This is labelled �SSVS Non-conj. semi-automatic�in the tables below.
An alternative would be to use the approach just described but choosedvar(�j) in

a manner which did not involve the data. A natural choice suggests itself: setdvar(�j)
to be the prior variance from BGR�s Minnesota prior. We do this, setting c0 = 0:1 and
c1 = 1. The results is a prior which has the attractive property that it combines the
Minnesota prior with the SSVS prior. That is, if j = 1 for j = 1; ::; K, we obtain a
prior which is identical to the one used by BGR. But if j = 0 for some j, then this
prior allows for additional shrinkage beyond that used in the Minnesota prior. And it
decides in a data-based fashion whether this extra shrinkage is warranted or not. This
is labelled �SSVS Non-conj. plus Minn. Prior�in the tables below.
For the conjugate SSVS prior we use the same two approaches: one a semi-default

automatic approach and one which combines the SSVS prior with the Minnesota prior.
All details are as above with one exception. Remember that the conjugate SSVS
prior either includes or excludes each variable in every equation (rather than includ-
ing/excluding individual coe¢ cients like the non-conjugate SSVS prior). Hence, we
set the dvar(�j) term to be the maximum value for this variance which occurs in any
equation. Results for these priors are labelled �SSVS Conjugate semi-automatic�and
�SSVS Conjugate plus Minn. Prior�in the tables below.
For the reasons discussed in Section 2.2, it is computationally infeasible to use the

non-conjugate SSVS priors with large or even medium-large VARs and, accordingly, we
only present results for VARs with n = 3 and 20. With the conjugate SSVS priors, we
present results for VARs with n = 3; 20 and 40, but �nd n = 168 to be computationally
infeasible and do not present results for the latter case.

3.3.3 Factor Methods

As a benchmark to compare our Bayesian VAR approaches, we use factor methods
implemented in a standard way. To the small tri-variate VAR we add lags of factors,
where the latter are constructed using principal components based on the remaining
165 variables. We include three factors and implement variants where we include one

12



and four lags of these factors, respectively. These are labelled �Factor Model p = 1�
and �Factor Model p = 4�, respectively, in the tables below.

3.4 Results

Tables 1 through 12 present the results for all our forecasting exercises. The 12 tables
arise from our forecasting three variables at two forecasting horizons using recursive
and rolling methods. Table 13 provides a summary, listing the single approach which
performs best for each of these 12 cases. The upper half of Table 13 uses MSFEs to
decide what is �best�while the lower half uses sums of log predictive likelihoods.
There is no one single strong story arising from our empirical results saying, e.g.,

that one single forecasting method predominates. Our di¤erent approaches balance the
tension between including more information and ensuring more/di¤erent shrinkage in
di¤erent ways. We cannot say theoretically that one way is better than another, what
works will is an empirical matter. In practice we �nd some approaches doing well in
some cases, but not necessarily in others. Nevertheless, a few interesting stories emerge.
Note �rst that factor methods never lead to the best forecast performance. In all

cases, most of our ways of implementing VARs lead to better (and often much better)
forecast performance. This con�rms the �ndings made by BGR using a di¤erent data
set. At a minimum, we have established that working with high-dimensional Bayesian
VARs is an alternative worth considering when working with large panels of data.
The results indicate, though, that there is no single approach to VAR forecasting

that is predominant. If we take our 12 cases and note that forecast performance can
either be evaluated using MSFEs or sums of log predictive likelihoods, we have 24
forecasting �races�. In these races, SSVS approaches have 13 �wins� and Minnesota
prior approaches win 11 times, a very even split. In terms of VAR dimensionality, large,
medium-large and medium VARs each win �ve times and small VARs win nine times,
also a fairly even split. In short, virtually every one of our VAR approaches does well
for some variable, forecast horizon or forecasting metric.
Despite the fact that small VARs often forecast well, often we do �nd that moving

away from small VARs does lead to improved forecast performance. That is, reading
across any row in Tables 1 through 12 we typically �nd that the MSFEs or sums of
log predictive likelihoods decrease. However, it is worth noting that in most cases,
these decreases are small or non-existent when we move beyond n = 20. This also
is consistent with BGRs �nding that most of the gains found in VAR forecasting are
obtained by using 20 variables and that adding more variables beyond this often yields
only slight improvements (or even deterioration) in forecast performance.
However, there are many exceptions to the pattern noted in the preceding paragraph.

These exceptions almost invariably occur with the SSVS priors and h = 4. With the
Minnesota priors it is virtually always the case that moving from n = 3 to n = 20
improves forecast performance (and often these improvements are considerable). But
with h = 4, it is often the case that small VARs with SSVS priors yield the best
forecasting performance. This �nding, no doubt, re�ects the di¢ culty of forecasting at
longer horizons using the direct method where parsimony is of most particular value.
But it also re�ects a general pattern in our �ndings where SSVS methods forecast better
than Minnesota priors in small VARs, but that this pattern is not always continued
with medium and medium-large VARs.
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When we compare the various implementations of Minnesota priors, we �nd that
BGR�s speci�cation often works well. However, in terms of MSFEs, it is often the case
that one of the alternative implementations forecasts slightly better. These alternatives
are characterized by di¤erent degrees of shrinkage for the coe¢ cients on own lags than
on other lags, and it does seem that this often improves forecast performance. Our
version of the original Minnesota prior which allows for the upper left 3� 3 block of �
to be unrestricted often forecasts quite well. In terms of MSFEs, it appears that the
advantages of having a completely unrestricted � (as in BGR) are relatively small. In
terms of sums of log predictive likelihoods, it appears that allowing for an unrestricted
� can occasionally lead to very poor forecast performance. As an example, consider
recursively forecasting CPI for h = 1. In terms of MSFEs, the best forecasting method
uses a variant of the original Minnesota prior with a 20-variate VAR. The MSFE is
0:2664. If we consider large VARs with n = 168, the MSFEs are only slightly higher
(0:2834 for the original Minnesota prior and 0:3309 for BGR�s prior). However, with
these large VARs the sum of log predictive likelihoods is vastly di¤erent between the
original Minnesota prior (�184:78) and BGR�s prior (�322:27). To shed more light
on this case, Figures 1 and 2 plots the cumulative sum of log predictive likelihoods
and cumulative sum of squared forecast errors, respectively, for these two priors. The
cumulative sum of squared forecast errors for these two approaches track each other
fairly closely, with the exception of the early 1980s. However, the cumulative sum of log
predictive likelihoods are much more di¤erent, with the two lines diverging substantially
in the period 1975-1985 and again at the end of the sample. This shows that the point
forecasts of these two approaches are similar to one another. However, other features
of the predictive density are quite di¤erent. In this case, what is happening is that
BGR�s approach tends to yield an unnecessarily disperse predictive distribution due to
its need to estimate so many more parameters (i.e. in the BGR approach � contains
n(n+1)
2

parameters to be estimated, whereas the original Minnesota prior only has n
parameters in � and these are replaced by simple estimates). Even if the mean of
the predictive density provides a good point forecast, an unnecessarily large predictive
standard deviation mean that the predictive likelihood evaluated at the outcome will
be lower than a predictive without such a large standard deviation. When looking at
large VARs (particularly using BGR�s prior), we often �nd this pattern of good MSFEs
but poor sums of log predictive likelihoods. A related �nding is that small VARs tend
to forecast particularly well when we use sums of log predictive likelihoods to evaluate
forecast performance, but there is less evidence of this when using MSFEs. By focussing
solely on MSFEs, the researcher would miss important empirical �ndings such as these.
When we compare various implementations of the SSVS priors, few strong patterns

emerge. The non-conjugate SSVS prior often forecasts slightly better than the conju-
gate variant. Using the Minnesota prior to calibrate the prior for the SSVS approach
often improves forecast performance. But there are many exceptions to both of these
statements.
If we compare recursive to rolling forecasts, we do not �nd any substantial and

consistent di¤erences in forecast performance if we looks at MSFEs. In terms of sums
of log predictive likelihoods, more di¤erences appear. However these di¤erences are not
consistent in the sense that we cannot say recursive methods are always better than
rolling, or vice versa.
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Table 1: GDP Forecasting for h = 1
MSFEs as Proportion of Random walk MSFEs
Sums of log predictive likelihoods in parentheses

n = 3 n = 20 n = 40 n = 168
Minn. Prior
as in BGR

0:6504
(�206:37)

0:5552
(�192:29)

0:5084
(�186:60)

0:5225
(�223:78)

Minn. Prior
� diagonal

0:7065
(�211:85)

0:5774
(�204:84)

0:6381
(�205:52)

0:5631
(�202:39)

Minn. Prior
� not diagonal

0:7065
(�205:97)

0:5489
(�195:40)

0:5402
(�193:49)

0:5305
(�192:81)

SSVS Conjugate
semi-automatic

0:6338
(�200:66)

0:6776
(�199:90)

0:6983
(�197:66) n.a.

SSVS Conjugate
plus Minn. Prior

0:6062
(�198:77)

0:5577
(�192:53)

0:5368
(�192:44) n.a.

SSVS Non-conj.
semi-automatic

0:6061
(�198:40)

0:6407
(�205:12) n.a. n.a.

SSVS Non-conj.
plus Minn. Prior

0:6975
(�204:71)

0:6466
(�203:92) n.a. n.a.

Factor Model
p = 1

n.a. n.a. n.a.
0:6441
(�195:10)

Factor Model
p = 4

n.a. n.a. n.a.
0:7657
(�207:67)

Table 2: CPI Forecasting for h = 1
MSFEs as Proportion of Random walk MSFEs
Sums of log predictive likelihoods in parentheses

n = 3 n = 20 n = 40 n = 168
Minn. Prior
as in BGR

0:3471
(�201:23)

0:3029
(�195:90)

0:3172
(�210:09)

0:3309
(�322:27)

Minn. Prior
� diagonal

0:3317
(�190:85)

0:2756
(�182:18)

0:3252
(�200:55)

0:2834
(�184:78)

Minn. Prior
� not diagonal

0:3317
(�203:95)

0:2664
(�184:06)

0:2718
(�188:27)

0:3019
(�197:45)

SSVS Conjugate
semi-automatic

0:3138
(�187:82)

0:2724
(�191:15)

0:3061
(�197:66) n.a.

SSVS Conjugate
plus Minn. Prior

0:3086
(�186:70)

0:3088
(�197:64)

0:3601
(�222:30) n.a.

SSVS Non-conj.
semi-automatic

0:3197
(�193:92)

0:3161
(�196:47) n.a. n.a.

SSVS Non-conj.
plus Minn. Prior

0:3252
(�191:45)

0:2910
(�187:58) n.a. n.a.

Factor Model
p = 1

n.a. n.a. n.a.
0:3133
(�191:83)

Factor Model
p = 4

n.a. n.a. n.a.
0:3281
(�209:58)
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Table 3: FFR Forecasting for h = 1
MSFEs as Proportion of Random walk MSFEs
Sums of log predictive likelihoods in parentheses

n = 3 n = 20 n = 40 n = 168
Minn. Prior
as in BGR

0:6192
(�238:40)

0:5136
(�229:14)

0:5084
(�243:71)

0:5224
(�266:66)

Minn. Prior
� diagonal

0:8351
(�247:02)

0:5355
(�238:79)

0:6218
(�263:05)

0:5532
(�239:84)

Minn. Prior
� not diagonal

0:8351
(�267:29)

0:5164
(�249:09)

0:5530
(�249:49)

0:5223
(�258:28)

SSVS Conjugate
semi-automatic

0:7944
(�247:25)

0:6329
(�245:25)

0:5936
(�256:02) n.a.

SSVS Conjugate
plus Minn. Prior

0:7554
(�243:16)

0:5134
(�228:54)

0:5354
(�251:98) n.a.

SSVS Non-conj.
semi-automatic

0:8439
(�252:43)

0:5790
(�237:16) n.a. n.a.

SSVS Non-conj.
plus Minn. Prior

0:7436
(�252:68)

0:5431
(�228:86) n.a. n.a.

Factor Model
p = 1

n.a. n.a. n.a.
0:7360
(�232:66)

Factor Model
p = 4

n.a. n.a. n.a.
0:7466
(�237:99)

Table 4: GDP Forecasting for h = 4
MSFEs as Proportion of Random walk MSFEs
Sums of log predictive likelihoods in parentheses

n = 3 n = 20 n = 40 n = 168
Minn. Prior
as in BGR

0:7437
(�220:57)

0:6094
(�214:71)

0:5717
(�214:38)

0:5420
(�277:46)

Minn. Prior
� diagonal

0:7437
(�219:25)

0:6100
(�214:02)

0:5728
(�210:99)

0:5656
(�210:06)

Minn. Prior
� not diagonal

0:7437
(�220:58)

0:6214
(�213:28)

0:5831
(�209:50)

0:5780
(�209:37)

SSVS Conjugate
semi-automatic

0:6129
(�211:36)

0:6473
(�212:35)

0:8881
(�239:87) n.a.

SSVS Conjugate
plus Minn. Prior

0:8404
(�222:91)

0:8357
(�219:64)

0:6387
(�222:50) n.a.

SSVS Non-conj.
semi-automatic

0:6147
(�207:80)

0:7535
(�293:21) n.a. n.a.

SSVS Non-conj.
plus Minn. Prior

0:8438
(�221:57)

0:6670
(�219:01) n.a. n.a.

Factor Model
p = 1

n.a. n.a. n.a.
0:7662
(�223:24)

Factor Model
p = 4

n.a. n.a. n.a.
0:9396
(�240:50)
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Table 5: CPI Forecasting for h = 4
MSFEs as Proportion of Random walk MSFEs
Sums of log predictive likelihoods in parentheses

n = 3 n = 20 n = 40 n = 168
Minn. Prior
as in BGR

0:5254
(�209:51)

0:5217
(�219:35)

0:5246
(�235:65)

0:5044
(�262:55)

Minn. Prior
� diagonal

0:5254
(�216:43)

0:5191
(�217:60)

0:5207
(�218:45)

0:5124
(�216:64)

Minn. Prior
� not diagonal

0:5254
(�214:64)

0:5203
(�216:07)

0:5214
(�217:57)

0:5197
(�217:14)

SSVS Conjugate
semi-automatic

0:4990
(�211:36)

0:6042
(�225:02)

0:6847
(�253:84) n.a.

SSVS Conjugate
plus Minn. Prior

0:4759
(�199:86)

0:7031
(�246:64)

0:4853
(�220:44) n.a.

SSVS Non-conj.
semi-automatic

0:5010
(�208:26)

0:7723
(�226:36) n.a. n.a.

SSVS Non-conj.
plus Minn. Prior

0:4683
(�194:39)

0:4883
(�201:62) n.a. n.a.

Factor Model
p = 1

n.a. n.a. n.a.
0:5608
(�214:72)

Factor Model
p = 4

n.a. n.a. n.a.
0:6258
(�228:84)

Table 6: FFR Forecasting for h = 4
MSFEs as Proportion of Random walk MSFEs
Sums of log predictive likelihoods in parentheses

n = 3 n = 20 n = 40 n = 168
Minn. Prior
as in BGR

0:6679
(�243:31)

0:5868
(�249:63)

0:5670
(�264:80)

0:5717
(�319:40)

Minn. Prior
� diagonal

0:6679
(�281:95)

0:6075
(�278:11)

0:5946
(�273:70)

0:6379
(�281:92)

Minn. Prior
� not diagonal

0:6679
(�246:90)

0:5882
(�244:77)

0:5894
(�240:50)

0:6362
(�245:34)

SSVS Conjugate
semi-automatic

0:5508
(�236:00)

0:5873
(�249:46)

0:7408
(�273:60) n.a.

SSVS Conjugate
plus Minn. Prior

0:6259
(�235:57)

0:6716
(�258:47)

0:5370
(�255:89) n.a.

SSVS Non-conj.
semi-automatic

0:5265
(�231:16)

0:8811
(�268:06) n.a. n.a.

SSVS Non-conj.
plus Minn. Prior

0:6184
(�228:80)

0:5282
(�233:67) n.a. n.a.

Factor Model
p = 1

n.a. n.a. n.a.
0:7027
(�244:52)

Factor Model
p = 4

n.a. n.a. n.a.
0:7185
(�249:04)
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Table 7: Rolling GDP Forecasting for h = 1
MSFEs as Proportion of Random walk MSFEs
Sums of log predictive likelihoods in parentheses

n = 3 n = 20 n = 40 n = 168
Minn. Prior
as in BGR

0:8927
(�227:38)

0:5842
(�190:51)

0:5304
(�202:32)

0:5639
(�460:63)

Minn. Prior
� diagonal

0:8927
(�231:88)

0:6112
(�194:04)

0:5845
(�193:66)

0:6064
(�192:87)

Minn. Prior
� not diagonal

0:8927
(�234:99)

0:6092
(�192:12)

0:5856
(�191:01)

0:5669
(�187:08)

SSVS Conjugate
semi-automatic

0:6762
(�202:91)

0:8061
(�209:44)

0:6267
(�212:25) n.a.

SSVS Conjugate
plus Minn. Prior

0:8866
(�226:76)

0:5916
(�191:41)

0:5287
(�202:09) n.a.

SSVS Non-conj.
semi-automatic

0:7046
(�201:60)

0:8780
(�234:25) n.a. n.a.

SSVS Non-conj.
plus Minn. Prior

0:8797
(�221:53)

0:6766
(�197:85) n.a. n.a.

Factor Model
p = 1

n.a. n.a. n.a.
1:0291
(�239:63)

Factor Model
p = 4

n.a. n.a. n.a.
3:1015
(�375:01)
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Table 8: Rolling CPI Forecasting for h = 1
MSFEs as Proportion of Random walk MSFEs
Sums of log predictive likelihoods in parentheses

n = 3 n = 20 n = 40 n = 168
Minn. Prior
as in BGR

0:4452
(�217:17)

0:3414
(�209:19)

0:3584
(�243:04)

0:3709
(�559:89)

Minn. Prior
� diagonal

0:4452
(�217:43)

0:3048
(�193:00)

0:2979
(�192:04)

0:3099
(�195:38)

Minn. Prior
� not diagonal

0:4452
(�234:08)

0:3068
(�202:38)

0:3038
(�202:50)

0:3503
(�217:58)

SSVS Conjugate
semi-automatic

0:3843
(�207:34)

0:3808
(�231:81)

0:3886
(�261:44) n.a.

SSVS Conjugate
plus Minn. Prior

0:4415
(�216:36)

0:3516
(�212:11)

0:3650
(�245:59) n.a.

SSVS Non-conj.
semi-automatic

0:3668
(�191:97)

0:4674
(�235:98) n.a. n.a.

SSVS Non-conj.
plus Minn. Prior

0:4344
(�198:53)

0:3402
(�195:22) n.a. n.a.

Factor Model
p = 1

n.a. n.a. n.a.
0:5591
(�234:66)

Factor Model
p = 4

n.a. n.a. n.a.
1:3334
(�434:43)

Table 9: Rolling FFR Forecasting for h = 1
MSFEs as Proportion of Random walk MSFEs
Sums of log predictive likelihoods in parentheses

n = 3 n = 20 n = 40 n = 168
Minn. Prior
as in BGR

1:1119
(�218:83)

0:5071
(�177:41)

0:5183
(�197:27)

0:5468
(�460:62)

Minn. Prior
� diagonal

1:1119
(�221:50)

0:5228
(�181:74)

0:5460
(�181:91)

0:5516
(�186:36)

Minn. Prior
� not diagonal

1:1119
(�231:86)

0:5260
(�185:88)

0:5414
(�185:11)

0:5410
(�198:86)

SSVS Conjugate
semi-automatic

0:7415
(�190:00)

0:6324
(�175:82)

0:5933
(�209:07) n.a.

SSVS Conjugate
plus Minn. Prior

1:1070
(�218:19)

0:5069
(�179:18)

0:5255
(�201:34) n.a.

SSVS Non-conj.
semi-automatic

0:8035
(�191:48)

0:7348
(�213:03) n.a. n.a.

SSVS Non-conj.
plus Minn. Prior

1:1119
(�210:90)

0:5239
(�177:18) n.a. n.a.

Factor Model
p = 1

n.a. n.a. n.a.
1:2240
(�238:92)

Factor Model
p = 4

n.a. n.a. n.a.
2:8652
(�413:58)
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Table 10: Rolling GDP Forecasting for h = 4
MSFEs as Proportion of Random walk MSFEs
Sums of log predictive likelihoods in parentheses

n = 3 n = 20 n = 40 n = 168
Minn. Prior
as in BGR

1:1324
(�220:57)

0:5852
(�217:08)

0:5284
(�234:78)

0:5297
(�501:82)

Minn. Prior
� diagonal

1:1324
(�254:81)

0:5869
(�211:06)

0:5404
(�205:59)

0:6019
(�210:19)

Minn. Prior
� not diagonal

1:1324
(�261:78)

0:5780
(�210:55)

0:5434
(�206:41)

0:5272
(�202:72)

SSVS Conjugate
semi-automatic

0:6254
(�207:70)

1:2338
(�282:63)

0:9471
(�298:69) n.a.

SSVS Conjugate
plus Minn. Prior

1:3746
(�260:57)

0:6308
(�230:23)

0:5918
(�246:17) n.a.

SSVS Non-conj.
semi-automatic

0:7815
(�213:42)

1:5985
(�294:11) n.a. n.a.

SSVS Non-conj.
plus Minn. Prior

1:3520
(�250:28)

0:63457
(�209:89) n.a. n.a.

Factor Model
p = 1

n.a. n.a. n.a.
1:3232
(�272:32)

Factor Model
p = 4

n.a. n.a. n.a.
7:0598
(�576:28)

Table 11: Rolling CPI Forecasting for h = 4
MSFEs as Proportion of Random walk MSFEs
Sums of log predictive likelihoods in parentheses

n = 3 n = 20 n = 40 n = 168
Minn. Prior
as in BGR

0:7059
(�251:46)

0:5484
(�227:69)

0:5596
(�267:09)

0:5144
(�609:92)

Minn. Prior
� diagonal

0:7059
(�259:49)

0:5499
(�232:37)

0:5641
(�236:86)

0:5552
(�236:04)

Minn. Prior
� not diagonal

0:7059
(�243:84)

0:5825
(�222:21)

0:5544
(�227:63)

0:5089
(�219:32)

SSVS Conjugate
semi-automatic

0:5190
(�201:80)

0:9892
(�284:27)

0:9127
(�295:55) n.a.

SSVS Conjugate
plus Minn. Prior

0:6936
(�226:87)

0:5371
(�221:23)

0:5256
(�244:04) n.a.

SSVS Non-conj.
semi-automatic

0:5740
(�209:79)

1:2194
(�266:18) n.a. n.a.

SSVS Non-conj.
plus Minn. Prior

0:6761
(�214:78)

0:5097
(�201:30) n.a. n.a.

Factor Model
p = 1

n.a. n.a. n.a.
0:8195
(�252:24)

Factor Model
p = 4

n.a. n.a. n.a.
2:1861
(�436:09)
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Table 12: Rolling FFR Forecasting for h = 4
MSFEs as Proportion of Random walk MSFEs
Sums of log predictive likelihoods in parentheses

n = 3 n = 20 n = 40 n = 168
Minn. Prior
as in BGR

0:9833
(�255:70)

0:5847
(�213:38)

0:5621
(�237:84)

0:5770
(�551:63)

Minn. Prior
� diagonal

0:9833
(�324:87)

0:5882
(�246:61)

0:6049
(�238:02)

0:7154
(�258:66)

Minn. Prior
� not diagonal

0:9833
(�269:62)

0:5825
(�212:12)

0:6026
(�206:50)

0:5757
(�213:01)

SSVS Conjugate
semi-automatic

0:5851
(�207:19)

1:3205
(�273:83)

1:1668
(�275:46) n.a.

SSVS Conjugate
plus Minn. Prior

0:9152
(�241:89)

0:6059
(�213:50)

0:5674
(�228:79) n.a.

SSVS Non-conj.
semi-automatic

0:5516
(�197:78)

1:6380
(�268:75) n.a. n.a.

SSVS Non-conj.
plus Minn. Prior

0:9083
(�228:57)

0:5830
(�198:07) n.a. n.a.

Factor Model
p = 1

n.a. n.a. n.a.
1:2547
(�273:95)

Factor Model
p = 4

n.a. n.a. n.a.
3:7353
(�514:91)

Table 13: Summary of Best Forecasting Models
Method GDP CPI FFR
Using MSFE to Measure Forecast Performance

h = 1, rec.
Minn. Prior
as in BGR, n = 40

Minn. Prior � not
diag., n = 20

Minn. Prior as in
BGR, n = 40

h = 4, rec.
Minn. Prior
as in BGR, n = 168

SSVS Non-conj plus
Minn. Prior, n = 3

SSVS Non-conj.
semi-auto., n = 3

h = 1, roll.
SSVS Conj. plus
Minn. Prior, n = 40

Minn. Prior
� diagonal, n = 40

SSVS Conj. plus
Minn. Prior, n = 20

h = 4, roll.
Minn. Prior, � not
diagonal, n = 168

Minn. Prior � not
diagonal, n = 168

SSVS Non-conj.
semi-auto., n = 3

Using Pred. Likes. to Measure Forecast Performance

h = 1, rec.
Minn. Prior as in
BGR, n = 40

Minn. Prior
� diag., n = 20

SSVS Conj. plus
Minn. Prior, n = 20

h = 4, rec.
SSVS Non-conj.
semi-auto., n = 3

SSVS Non-conj plus
Minn. Prior, n = 3

SSVS Non-conj plus
Minn. Prior, n = 3

h = 1, roll.
Minn. Prior � not
diagonal, n = 168

SSVS Non-conj.
semi-auto., n = 3

SSVS Conjugate
semi-auto., n = 20

h = 4, roll.
Minn. Prior � not
diagonal, n = 168

SSVS Conjugate
semi-auto., n = 3

SSVS Non-conj.
semi-auto., n = 3
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Figure 1

Figure 2

4 Conclusions

The literature contains a variety of priors which have been used with small VARs. In this
paper, we have discussed the issues which arise when we attempt to use these priors with
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medium and large VARs. These issues are both computational and theoretical. The
computational issues arise since priors which are not conjugate (or are only conditionally
conjugate) typically require the use of posterior simulation methods. Non-conjugate
priors typically have properties which are, in theory, more attractive. However, the
researcher runs into computational problems which can be substantial (in the case of
VARs with 20-40 dependent variables) or prohibitive (in the case of VARs with 50
or more dependent variables). The theoretical issues arise since the various priors
shrink forecasts to di¤erent degrees and in di¤erent ways. A careful balancing of these
computational and theoretical concerns is crucial to any sensible empirical analysis.
This paper provides theoretical and empirical evidence relating to how this balancing
might be done.
In particular, this paper presents several priors which have the potential for being

useful for VAR forecasting. We focus on the classes of Minnesota and SSVS priors.
The properties of these priors are discussed with emphasis on the issues which arise
when moving from small to medium to large VARs. Our empirical exercise suggests
that Bayesian VARs do tend to forecast better than factor methods. But there is no
single prior which consistently leads to the best forecasting performance.
There is no theoretical reason for saying that one prior should be a better than

another. Our di¤erent priors are similar in spirit, but do shrinkage in di¤erent ways.
And it is risky to generalize based on the results from one empirical study (albeit one
with an important and commonly-used data set). With these quali�cations in mind,
our empirical results do o¤er some useful insights on which priors might work well in
certain cases (but not in others) and suggest that the use of a wide variety of priors
is potentially desirable. In this paper, we have not done forecast averaging (e.g. using
Bayesian model averaging where all models have the same likelihood function and di¤er
only in their prior), but our results suggest that such an approach might be useful in
dealing with the wide range of possible prior choices, the manner in which they do
shrinkage and the uncertainty over which prior leads to the best forecast performance.
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Appendix A: Technical Details
MCMC Algorithm for the VAR with Non-conjugate SSVS Prior
Posterior computation in the VAR with SSVS prior can be carried out using the

MCMC algorithm described in George, Sun and Ni (2008). We use notation where �
denotes all the parameters in the VAR with non-conjugate SSVS prior and �(�a) denotes
all the parameters except for a. For the notation used in this appendix, please refer to
Section 2.2.
For the VAR coe¢ cients we have

�jY; �(��) � N(�; V �); (16)

where

V � = [�
�1 
 (X 0X) +D�1]�1;

� = V �

�
D�1�+ vec(X 0Y ��1)

�
:

The conditional posterior for  has j being independent (for all j) Bernoulli random
variables:

Pr
h
j = 1jY; �(�j)

i
= qj;

Pr
h
j = 0jY; �(�j)

i
= 1� qj;

(17)

where

qj =

1

�1j
exp

�
�
�2j
2�21j

�
q
j

1

�1j
exp

�
�
�2j
2�21j

�
q
j
+
1

�0j
exp

�
�
�2j
2�20j

��
1� q

j

� :
For the error covariance matrix, we begin with the following decomposition:

��1 = 		0; (18)

where 	 is upper-triangular. We use a Gamma prior for the square of each of the
diagonal elements of 	 and the SSVS mixture of normals prior for each element above
the diagonal. Note that this implies that the diagonal elements of 	 are always included
in the model, ensuring a positive de�nite error covariance matrix.
Let the non-zero elements of 	 be labelled as  ij and de�ne  = ( 11; ::;  nn)

0,
�j = ( 1j; ::;  j�1;j)

0 for j = 2; ::; n and � = (�02; ::; �
0
n)
0. For the diagonal elements of 	,

we assume prior independence from each other and:

 2jj � G
�
aj; bj

�
; (19)

where G
�
aj; bj

�
denotes the Gamma distribution with mean aj=bj and variance aj=b

2
j .

Since all are variables have been normalized to have mean zero and standard deviation
one, reasonable but relatively noninformative choices are aj = 1:0 and bj = 1:0. Our
empirical results are robust to moderately large changes in these prior hyperparameters.
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The hierarchical prior for the o¤-diagonal elements of 	 takes the same mixture of
normals form as �. In particular, the SSVS prior has

�jj!j � N (0; Fj) ; (20)

where !j = (!1j; ::; !j�1;j)
0 is a vector of unknown parameters with typical element

!ij 2 f0; 1g, and Fj = diag (f1j; ::; fj�1;j) where

fij =

�
�20ij if !ij = 0
�21ij if !ij = 1

; (21)

for j = 2; ::; n and i = 1; ::; j � 1. Reasonable small and large prior hyperparameter
values are �0ij = 0:1 and �1ij = 1:0.
For ! = (!02; ::; !

0
n)
0, the SSVS prior posits that each element has a Bernoulli form

(independent of the other elements of !) and, hence, we have

Pr (!ij = 1) = q
ij
,

Pr (!ij = 0) = 1� q
ij
.

(22)

We make the default choice of q
ij
= 0:5 for all j and i so that, a priori, each

parameter is equally likely to be included or excluded.
The conditional posterior for  can be obtained by noting that the conditional

posterior for  2jj (for j = 1; : : : ; n) are independent of one another with

 2jjjY; �(� jj) � G

�
aj +

T

2
; bj

�
; (23)

where

bj =

(
b1 +

v11
2
, if j = 1,

b1 +
1
2

n
vjj � v0j

�
Vj�1 + (Fj)

�1��1 vjo, if j = 2; : : : ; n:
The preceding equation uses notation where

V = (Y �XA)0 (Y �XA)

has elements vij, vj = (v1j; : : : ; vj�1;j)
0 and Vj is the upper left j � j block of V .

The conditional posterior of � can be written in terms of the conditional posteriors
of �j (for j = 2; : : : ; n) being independent of one another with:

�jjY; �(��j) � N
�
�j; V j

�
; (24)

where
V j =

�
Vj�1 + F�1j

�
and

�j = � jjV jvj:

Finally, the conditional posterior for ! has !ij being independent (for all ij) Bernoulli
random variables:
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Pr
�
!ij = 1jY; �(�!ij)

�
= qij;

Pr
�
!ij = 0jY; �(�!ij)

�
= 1� qij;

(25)

where

qij =

1

�1ij
exp

 
�
 2ij
2�21ij

!
q
ij

1

�1ij
exp

 
�
 2ij
2�21ij

!
q
ij
+

1

�0ij
exp

 
�
 2ij
2�20ij

!�
1� q

ij

� :
In summary, an MCMC algorithm for the VAR with non-conjugate SSVS prior

involves sequentially drawing from (16), (17), (23), (24) and (25).
Posterior Simulation Algorithm for the VAR with Conjugate SSVS

Prior
The formula for posterior and predictive densities for the VAR with natural con-

jugate prior are given in Section 2.1 of the paper. For the VAR with conjugate SSVS
prior, they can be interpreted as holding, conditional on e. Thus, all that is required is
p (ejY ). Using standard formula for the marginal likelihood for the multivariate Normal
regression model and a noninformative prior for e we obtain:

p (ejY ) / �jDj
���V �1

�����n
2 ��S���T+n+��1

2

We use the posterior simulation algorithm described on page 634 of Brown, Vannucci
and Fearn (1998) to draw from e.
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Appendix B: Data
The data set used in this paper is an updated version of that used in Stock and

Watson (2008) and the reader is referred to that paper for more details about the data.
The raw data runs from 1959Q1 through 2008Q4. Variables which are originally at a
monthly frequency are transformed to a quarterly by averaging over the three months
in a quarter. Except for �nancial variables, variables are seasonally adjusted. All
variables are transformed to stationarity as in Stock and Watson (2008). The following
table provides a brief description of each variable along with a transformation code.
This code is: 1 = no transformation, 2 = �rst di¤erence, 3 = second di¤erence, 4 = log,
5 = �rst di¤erence of logged variables, 6 = second di¤erence of logged variables.

Table B1: Three Main Variables used in All VARs
Short Name Mnemonic Code Description
RGDP GDP251 5 Real GDP, Quantity Index (2000=100)
CPI CPIAUCSL 6 CPI All Items
FFR FYFF 2 Interest rate: Federal funds (e¤ective) (% per annum)

Table B2: Remaining Variables used in VARs with 20 or more Variables
Short Name Mnemonic Code Description
Com: spot price (real) PSCCOMR 5 Real spot market price index: all commodities
Reserves nonbor FMRNBA 3 Depository inst reserves: nonborrowed (mil$)
Reserves tot FMRRA 6 Depository inst reserves: total (mil$)
M2 FM2 6 Money stock: M2 (bil$)
Cons GDP252 5 Real Personal Cons. Exp., Quantity Index
IP: total IPS10 5 Industrial production index: total
Capacity Util UTL11 1 Capacity utilization: manufacturing (SIC)
U: all LHUR 2 Unemp. rate: All workers, 16 and over (%)
HStarts: Total HSFR 4 Housing starts: Total (thousands)
PPI: �n gds PWFSA 6 Producer price index: �nished goods
PCED GDP273 6 Personal Consumption Exp.: price index
Real AHE: goods CES275R 5 Real avg hrly earnings, non-farm prod. workers
M1 FM1 6 Money stock: M1 (bil$)
S&P: indust FSPIN 5 S&P�s common stock price index: industrials
10 yr T-bond FYGT10 2 Interest rate: US treasury const. mat., 10-yr
Ex rate: avg EXRUS 5 US e¤ective exchange rate: index number
Emp: total CES002 5 Employees, nonfarm: total private
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Table B3: Remaining Variables used in VARs with 40 or more Variables
Short Name Mnemonic Code Description
SPREAD SFYGT10 1 Spread btwn 10 year and 3 month T-bill rates
Consumer expect HHSNTN 2 Univ of Mich index of consumer expectations
PMI PMI 1 Purchasing managers�index
NAPM vendor del PMDEL 1 NAPM vendor deliveries index (%)
NAPM com price PMCP 1 NAPM commodity price index (%)
GPDInv GDP256 5 Real gross private domestic investment
Labor Prod LBOUT 5 Output per hr: all persons, business sec
NAPM Invent PMNV 1 NAPM inventories index (%)
Exports GDP263 5 Real exports
Imports GDP264 5 Real imports
Gov GDP265 5 Real govt cons expenditures & gross investment
Emp. Hours LBMNU 5 Hrs of all persons: nonfarm business sector
NAPM new ordrs PMNO 1 NAPM new orders index (%)
Cons credit CCINRV 6 Consumer credit outstanding: nonrevolving
BUSLOANS BUSLOANS 6 Comm. and industrial loans at all comm. banks
NAPM prodn PMP 1 NAPM production index (%)
PCED-SERV-HOUS GDP276_1 6 Housing price index
SalestoDomPurc GDP270 5 Real �nal sales to domestic purchasers
Cons-Dur GDP253 5 Real personal cons expenditures: Durable goods
Help wanted indx LHEL 2 Index of help-wanted ads in newspapers
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Table B4: Remaining Variables used only in VARs with 168 Variables
Short Name Mnemonic Code Description
Cons-NonDur GDP254 5 Real personal consumption exp: nondur goods
Cons-Serv GDP255 5 Real personal consumption exp: services
FixedInv GDP257 5 Real gross priv domestic inv: �xed inv
NonResInv GDP258 5 Real gross priv domestic inv: nonresidential
NonResInv-Struct GDP259 5 Real gross priv domestic inv: nonres structures
NonResInv-Bequip GDP260 5 Real gross priv domestic inv: nonres equip
Res.Inv GDP261 5 Real gross priv domestic inv: residential
Gov Fed GDP266 5 Real gov cons exp & gross inv: federal
Gov State/Loc GDP267 5 Real gov cons exp & gross inv: state and local
FinalSales GDP268 5 Real �nal sales of domestic product
DomPurchases GDP269 5 Real gross domestic purchases
RGNP GDP271 5 Real gross national product
PGDP GDP272 6 Gross domestic product, price index
PCED-Dur GDP274 6 Personal cons exp: durable goods, price index
PCED-Ndur GDP275 6 Personal cons exp: nondur goods, price index
PCED-Serv GDP276 6 Personal cons exp: services, price index
PGPDI GDP277 6 Gross private domestic investment, price index
PFixedInv GDP278 6 Gross priv dom inv: �xed inv, price index
PNonResInv GDP279 6 Gross priv dom inv: nonresidential, price index
PNonResStruc GDP280 6 Gross priv dom inv: nonres structures, price index
PNonResEqu GDP281 6 Gross priv dom inv: nonres equipment, price index
PResInv GDP282 6 Gross priv dom inv: residential, price index
Pexp GDP284 6 Exports, price index
Pimp GDP285 6 Imports, price index
Pgov GDP286 6 Government cons exp & gross inv, price index
Pgov_Fed GDP287 6 Gov cons exp & gross inv: federal, price index
Pgov_stat/loc GDP288 6 Gov cons exp & gross inv: state&local, price index
P_FinSale GDP289 6 Final sales of domestic product, price index
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Table B4 (continued): Remaining Variables used only in VARs with 168 Variables
Short Name Mnemonic Code Description
P_Purch GDP290 6 Gross domestic purchases, price index
P_SalesPurc GDP291 6 Final sales to domestic purchasers, price index
PGNP GDP292 6 Gross national product, price index
Real Comp/Hour LBPUR7 5 Real comp per hour: employees, nonfarm business
Unit Labor Cost LBLCPU 5 Unit labor cost: nonfarm business sector
PCED-DUR-MOTORVEH GDP274_1 6 Motor vehicles and parts, price index
PCED-DUR-HHEQUIP GDP274_2 6 Furniture and household equipment, price index
PCED-DUR-OTH GDP274_3 6 Other durables, price index
PCED-NDUR-FOOD GDP275_1 6 Food, price index
PCED-NDUR-CLTH GDP275_2 6 Clothing and shoes, price index
PCED-NDUR-ENERGY GDP275_3 6 Gas, fuel oil, and other energy goods, price index
PCED-NDUR-OTH GDP275_4 6 Other nondurables, price index
PCED-SERV-HOUSOP GDP276_2 6 Household operation, price index
PCED-SERV-H0-ELGAS GDP276_3 6 Electricity and gas, price index
PCED-SERV-HO-OTH GDP276_4 6 Other household operation, price index
PCED-SERV-TRAN GDP276_5 6 Transportation, price index
PCED-SERV-MED GDP276_6 6 Medical care, price index
PCED-SERV-REC GDP276_7 6 Recreation, price index
PCED-SERV-OTH GDP276_8 6 Other services, price index
PEXP-GOODS GDP284_1 6 Exports of goods, price index
PEXP-SERV GDP284_2 6 Exports of services, price index
PIMP-GOODS GDP285_1 6 Imports of goods, price index
PIMP-SERV GDP285_2 6 Imports of services, price index
IP: products IPS11 5 Industrial production index: products total
IP: �nal prod IPS299 5 Industrial production index: �nal products
IP: cons gds IPS12 5 Industrial production index: consumer goods
IP: cons dble IPS13 5 Industrial production index: consumer durable
IP:cons nondble IPS18 5 Industrial production index: consumer nondur
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Table B4 (continued): Remaining Variables used only in VARs with 168 Variables
Short Name Mnemonic Code Description
IP: bus eqpt IPS25 5 Industrial production index: business equipment
IP: matls IPS32 5 Industrial production index: materials
IP: dble mats IPS34 5 Industrial production index: dur goods materials
IP:nondble mats IPS38 5 Industrial production index: nondur goods materials
IP: mfg IPS43 5 Industrial production index: manufacturing
IP: res util IPS307 5 Industrial production index: residential utilities
IP: fuels IPS306 5 Industrial production index: fuels
AHE: goods CES275 6 Avg hrly earnings, prod wrkrs, nonfarm-goods prod
AHE: const CES277 6 Avg hrly earnings, prod wrkrs, nonfarm-construction
AHE: mfg CES278 6 Avg hrly earnings, prod wrkrs, nonfarm-manufacturing
Real AHE: const CES277R 5 Real avg hrly earnings, prod wrkrs, nonfarm-const
Real AHE: mfg CES278R 5 Real avg hrly earnings, prod wrkrs, nonfarm-manuf
Emp: gds prod CES003 5 Employees, nonfarm: goods-producing
Emp: mining CES006 5 Employees, nonfarm: mining
Emp: const CES011 5 Employees, nonfarm: construction
Emp: mfg CES015 5 Employees, nonfarm: manufacturing
Emp: dble gds CES017 5 Employees, nonfarm: durable goods
Emp: nondbles CES033 5 Employees, nonfarm: nondurable goods
Emp: services CES046 5 Employees, nonfarm: service providing
Emp: TTU CES048 5 Employees, nonfarm: trade, transport and utilities
Emp: wholesale CES049 5 Employees, nonfarm: wholesale trade
Emp: retail CES053 5 Employees, nonfarm: retail trade
Emp: FIRE CES088 5 Employees, nonfarm: �nancial activities
Emp: Govt CES140 5 Employees, nonfarm: government
Help wanted/emp LHELX 2 Ratio: Help-wanted ads to number unemployed
Emp CPS total LHEM 5 Civilian labor force employed, total
Emp CPS nonag LHHAG 5 Civilian labor force employed, nonagric ind.
U: mean duration LHU680 2 Average unemployment duration (weeks)
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Table B4 (continued): Remaining Variables used only in VARs with 168 Variables
Short Name Mnemonic Code Description
U < 5 wks LHU5 5 Unemp by duration, persons unemp less than 5 wks
U 5-14 wks LHU14 5 Unemp by duration, persons unemp btwn 5 and 14 wks
U 15+ wks LHU15 5 Unemp by duration, persons unemp 15 wks or more
U 15-26 wks LHU26 5 Unemp by duration, persons unemp btwn 15 and 26 wks
U 27+ wks LHU27 5 Unemp by duration, persons unemp 27 wks or more
Avg hrs CES151 1 Avg wkly hours, prod wrks, nonfarm goods-producing
Overtime: mfg CES155 2 Avg weekly overtime hrs, prod wrkrs, nonfarm, manuf
HAuth HSBR 4 Housing authorized: total new private housing units
HStarts: NE HSNE 4 Housing starts: Northeast
HStarts: MW HSMW 4 Housing starts: Midwest
HStarts: South HSSOU 4 Housing starts: South
HStarts: West HSWST 4 Housing starts: West
3 mo T-bill FYGM3 2 Interest rate: US T-bills, sec mkt, 3-month
6 mo T-bill FYGM6 2 Interest rate: US T-bills, sec mkt, 6-month
1 yr T-bond FYGT1 2 Interest rate: US T-bills const maturities 1-yr
5 yr T-bond FYGT5 2 Interest rate: US T-bills const maturities 5-yr
10 yr T-bond FYGT10 2 Interest rate: US T-bills const maturities 10-yr
Aaabond FYAAAC 2 Bond yield: Moody�s AAA corporate
Baabond FYBAAC 2 Bond yield: Moody�s BAA corporate
Spread6m3m SFYGM6 1 Spread: 6 month minus 3 month T-bill
Spread1y3m SYGT1 1 Spread: 1 year minus 3 month T-bill
Spreadaaa10y SFYAAAC 1 Spread: AAA corporate minus 10 yr T-bill
Spreadbaa10y SFYBAAC 1 Spread: BAA corporate minus 10 yr T-bill
MZM MZMSL 6 MZM FRB St. Louis
MB FMFBA 6 Monetary base, adj for res requirement changes
CPI-Core CPILFESL 6 CPI less food and energy
PCE-Core PCEPILFE 6 PCE price index less food and energy
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Table B4 (continued): Remaining Variables used only in VARs with 168 Variables
Short Name Mnemonic Code Description
PPI: cons gds PWFCSA 6 Producer price index: �nished consumer goods
PPI: int mat�ls PWIMSA 6 Producer price index: interm mat supplies & components
PPI: crude PWCMSA 6 Producer price index: crude materials
Real PPI: crude mat�ls PWCMSAR 5 Real prod price index: crude mat (PWSMSA/PCEPILFE)
Commod: spot price PSCCOM 6 Spot market price index: all commodities
PPI CrudeOil PW561 6 Producer price index: crude petroleum
OilPrice (Real) PW561R 5 PPI crude (relative to core PCE) (PW561/PCEPILFE)
Ex rate: Switz EXRSW 5 Swiss francs per US$
Ex rate: Japan EXRJAN 5 Japanese yen per US$
Ex rate: UK EXRUK 5 Cents per pound
Ex rate: Can EXRCAN 5 Canadian $ per US$
S&P 500 FSPCOM 5 S&P�s common stock price index: composite
S&P div yield FSDXP 2 S&P�s composite common stock: dividend yield
S&P PE ratio FSPXE 2 S&P�s composite common stock: price-earnings ratio
DJIA FSDJ 5 Dow Jones industrial average common stock price
Orders (ConsGoods) MOCMQ 5 New orders (net): consumer goods and materials
Orders (NDCapGoods) MSONDQ 5 New orders: nondefense capital goods
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