
Bayesian Methods for Fat Data

Gary Koop

January 25, 2016

1 Introduction

Big Data has the potential to revolutionize the way we do econometrics. Big
Data comes in two forms: Tall Data where the number of observations is large
and Fat Data where the number of variables is large. In this paper, we de-
scribe various Bayesian treatments relating to Fat Data. Empirical applications
involving Fat Data increasingly arise in many fields in economics, but are par-
ticularly common in macroeconomics. In most countries, government statistical
agencies collect data on a wide range of macroeconomic variables (e.g. measures
of output, capacity, employment and unemployment, prices, wages, housing, in-
ventories and orders, stock prices, interest rates, exchange rates and monetary
aggregates).In the US, the Federal Reserve Bank of St. Louis maintains the
FRED-MD monthly data base for well over 100 macroeconomic variables from
1960 to the present (see McCracken and Ng, 2015). Many other countries have
similar data sets. And, in an increasingly globalized world where economic de-
velopments in one country can affect others, the researcher may wish to work
with data for several countries. Thus, the researcher may have dozens or hun-
dreds of variables she may wish to include, but only a few hundred observations.
This raises problems for conventional methods of econometric inference. In

the presence of Fat Data, simply estimating a model using conventional meth-
ods (e.g. non-informative prior Bayesian methods, least squares or maximum
likelihood) will typically lead to very imprecise inference (e.g. large posterior
variances or wide confidence intervals). In the case where the number of ex-
planatory variables is greater than the number of observations, conventional
methods may simply be infeasible. Intuitively, there is simply not enough infor-
mation in the data to provide precise estimates of the parameters. One solution
to this problem might be to select a more parsimonious model using hypothesis
testing methods. But, this, too, runs into problems. Such an approach ignores
model uncertainty since it assumes the model selected on the basis of hypothesis
tests is the one which generated the data. If we have a regression with K poten-
tial explanatory variables, then there are 2K possible restricted models which
include some sub-set of the K variables. With Fat Data, K is large, treating one
model as if it were “true”and ignoring the huge number of remaining models
is problematic. No model selection procedure is perfect, and the researcher is
always uncertain about certain about any chosen model. We want a statistical
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methodology that reflects this uncertainty. The fact that the selected model has
been chosen using hypothesis testing procedures adds weight to the preceding
criticism due to the pre-test problem. That is, conventional p-values used for
deciding whether to accept or reject a hypothesis are derived assuming a single
hypothesis test has been done. If a sequence of hypothesis tests is done (e.g. an
initial hypothesis test suggests a variable can be omitted and then additional
hypothesis tests are done on a model which omits this variable), then p-values
require adjustment. With 2K potential models and, thus, a huge number of
possible tests, the pre-test problem can be serious in Fat Data problems.
A range of methods (not all of them Bayesian), have been developed for

working with Fat Data to surmount to preceding problems. In this paper,
we discuss some of the major Bayesian approaches. Bayesian approaches have
several advantages which make them particularly suitable for Fat Data problems.
They allow for the incorporation of prior information which, if available, can help
surmount problems caused by an insuffi ciency of data information. As we shall
see, they allow for formal treatment of model uncertainty and, since Bayesian
procedures for model selection are quite different from frequentist hypothesis
testing procedures, do not suffer from the pre-test problem.
We will discuss a range of Bayesian Fat Data methods in the context of the

regression model. But we stress that there are versions of these methods that
can also be used for other macroeconomic models such as VARs. We begin by
reminding the reader of basic Bayesian results for the Normal linear regression
model that the various approaches draw upon. The Normal linear regression
model can be written as:

y = Xβ + ε (1)

where y is an N−vector of dependent variables, X is a T ×K matrix of explana-
tory variables and ε is an N−vector of errors. ε is N

(
0, h−1I

)
where h = σ−2

is the precision of the error.
The natural conjugate prior is given by:

β|h ∼ N(β, h−1V ) (2)

and

h ∼ G(s−2, ν), (3)

where N (., .) denotes the Normal distribution and G(s−2, ν) the Gamma dis-
tribution with mean s−2 and degrees of freedom ν. With the natural conjugate
prior, the posterior will be:

β|h ∼ N(β, h−1V ) (4)

and

h ∼ G(s−2, ν), (5)
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where

V =
(
V −1 +X ′X

)−1
,

β = V
(
V −1β +X ′y

)
,

ν = ν +N

and s−2 is defined implicitly through

νs2 = νs2 +
(
y −Xβ

)′ (
y −Xβ

)
+
(
β − β

)′
V
−1 (

β − β
)
.

An alternative prior is the independent Normal-Gamma prior which is given
by

β ∼ N(β, V ) (6)

and

h ∼ G(s−2, ν). (7)

With this prior, the posterior cannot be written in terms of standard densities,
but the conditional posteriors (which can be used in an MCMC algorithm) are:

β|y, h ∼ N
(
β, V

)
. (8)

and

h|y, β ∼ G(s−2, ν), (9)

where

V =
(
V −1 + hX ′X

)−1
,

β = V
(
V −1β + hX ′y

)
,

ν = N + ν

and

s2 =
(y −Xβ)′ (y −Xβ) + νs2

ν
.

Throughout this paper, we will use a cross-country growth regression data
set to illustrate our methods. This data set is taken from Fernandez, Ley and
Steel (2001). Data sets similar to this have been used in numerous papers which
investigate the determinants of economic growth. It contains data on GDP
growth in N = 72 different countries and 41 explanatory variables (and, thus,
if we include an intercept K = 42). The Fat Data aspect of this application
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arises since there are so many potential explanations for growth, but only a
fixed number of countries. The dependent variable is average per capita GDP
growth for the period 1960-1992. For the sake of brevity, we will not list all of
the explanatory variables in this paper (see Fernandez, Ley and Steel, 2001, for
a detailed description of all the data). Tables below (e.g. Table 1) provides a
list of short form names for all explanatory variables, which should be enough
to provide a rough idea of what each explanatory variable is measuring. Each
explanatory variable has been standardized by subtracting off its mean and
dividing by its standard deviation.

2 Bayesian Model Averaging

2.1 BMA Overview

Bayesian model averaging (BMA) is a general Bayesian concept that is used in
a range of empirical contexts, but has proved particularly useful with Fat Data
problems. Instead of aiming to select a single model and presenting estimates or
forecasts based on it, BMA involves taking a weighted average of estimates or
forecasts from all models with weights given by the posterior model probabilities.
The theoretical justification for it can be described very simply. Let Mr for
r = 1, .., R denotes R different models. The Bayesian treats models as random
variables and posterior model probabilities, p(Mr|y), can be defined as being
proportion to a prior model probability, p(Mr) times the marginal likelihood,
p (y|Mr). If φ is a parameter to be estimated (or a function of parameters) or
a variable to be forecast, then the rules of probability imply:

p (φ|y) =
R∑
r=1

p (φ|y,Mr) p (Mr|y) . (10)

Thus, the posterior for φ is the average of its posterior in each individual model
with weights proportional to p (Mr|y). Note that such a strategy allows for a
formal treatment of model uncertainty. That is, unlike model selection pro-
cedures which choose a single model and proceed as though it were true, (10)
explicitly incorporates the fact that we are only p (Mr|y) sure thatMr generated
the data.
How these general ideas are operationalized depends on the particular model

set-up. Here we describe a common strategy for how BMA is used in regression
models with Fat Data.1 Given an unrestricted regression such as (10), we can
define a set of restricted models of interest (often called the model space) as:

y = αιN +Xrβr + ε (11)

where ιN is a N × 1 vector of ones, Xr is a N × kr matrix containing some (or
1Moral-Benito (2015) surveys these methods including extensions to deal with panel data

and endogenous regressors.
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all) columns of X. The N−vector of errors, ε, is assumed to be N
(
0N , h

−1IT
)
.2

Note that we are making the common assumption that every model contains and
intercept. This is a standard assumption, but can easily be relaxed with minor
modifications to the formulae below. Under this assumption, with 2K−1 possible
subsets of X, there are 2K−1 possible choices for Xr and, thus, the number of
models is R = 2K−1. When working with Fat Data R can be enormous. In our
empirical example, R = 241 which raises serious a serious computational hurdle
since estimating every model will be impossible (e.g. if each model could be
estimated in 0.001 seconds, it would take hundreds of years to estimate all of
our models).
We will return to computational issues shortly. But to see how use of BMA

surmounts some of the problems of Fat Data regression, note that many of the
models in our model space will be parsimonious. In practice, one often finds
that BMA attaches most of the weight to these parsimonious models. This is
because marginal likelihoods have a strong reward for parsimony. Estimates
or forecasts obtained by averaging across many parsimonious models can often
be very flexible, able to explain a wide range of behaviours in a way that a
single parsimonious model could not. BMA can be an effective way of achieving
this goal of combining parsimony with flexibility . Some researchers increase
the chances that BMA leads to parsimonious modelling strategies by choosing
the prior model probabilities, p(Mr), so that more prior weight is attached to
models with fewer explanatory variables. In this section, we will not adopt such
a strategy, but it is a simple extension of what we do (see Ley and Steel, 2009).

2.2 BMA Priors

In theory, any prior can be used for each parameter in each model in the model
space. In practice, the size of the model space and associated computational
concerns suggest that we only consider priors which lead to analytical posterior
and predictive results and can be automatically applied to all models. By the
latter statement, we mean priors that do not involve hyperparameters that the
researcher has to select individually for each model. Since non-informative priors
will not lead to valid marginal likelihoods,3 proper priors are required.4

These considerations have led to researchers in this field to use the g-prior.
This is a natural conjugate prior as defined in (2) and (3), and, thus, analytical
posterior and predictive results exist. The g-prior involves particular, automatic
choices for the prior hyperparameters for βr. In particular, the prior mean is

2Formally, we should put r subscripts on each intercept and error precision. However, since
these parameters are common to all models and have the same interpretation in all models
we simply write them as α and h.

3Textbook Bayesian results show that, when comparing models using posterior model prob-
abilities, it is acceptable to use noninformative priors over parameters which are common to all
models (e.g. h). However, informative, proper priors have to be used over all other parameters.

4Alternatively, non-informaive priors plus approximate posterior model probabilities can
be used. For instance, the Bayesian Information Criterion (BIC) can be shown to be asympot-
ically equivalent to the log of the marginal likelihood and, thus, can be used when doing BMA.
Such an approach is sometime called Bayesian Averaging of Classical Estimates (BACE).
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β
r
= 0

and prior covariance matrix is h−1V r where

V r = (gX
′
rXr)

−1
,

and g is a scalar. The prior mean is chosen to shrink the coeffi cient towards zero.
After all, with Fat Data most of the variables are likely irrelevant so shrinking
towards zero is the sensible and parsimonious choice. The form for the prior
covariance matrix was suggested in Zellner (1986) where a detailed justification
for using this as a benchmark choice for prior is given. The basic idea is that
h−1 (X ′rXr)

−1 reflects the amount of information in the data for estimating βr
(i.e. under a non-informative prior, it is the posterior covariance matrix of βr).
By having a prior covariance matrix of h−1 (gX ′rXr)

−1 we are saying that the
information in the prior takes the same form as the data information and g
controls the relative strengths of the prior and data information. If g = 1, the
prior information and data are given equal weight. If g = 0.01 then the prior
information only receives one per cent of the weight as the data information.
Thus, the complicated problem of selecting priors for many parameters in a huge
number of models is reduced to the choice of a single, easy-to-interpret scalar:
g. There are a few commonly-used rules of thumb for choosing g (see Fernandez
and Steel, 2009) or it can be treated as an unknown parameter with its own
prior and estimated from the data.
For the error precision and intercept (which are present in every model), it

is common to use the standard noninformative priors:

p (h) ∝ 1

h
,

and:

p (α) ∝ 1.

2.3 BMA Posterior

The g-prior is a natural conjugate prior and, thus, the posterior will take the
form given in (4) and (5). A textbook result for the natural conjugate prior
is that the marginal posterior for regression coeffi cients have a multivariate-t
distribution. Using this and integrating out α, the posterior mean for βr can
be shown to be:

E (βr|y,Mr) ≡ βr = V rX
′
ry,

with posterior covariance matrix:

var (βr|y,Mr) =
νs2r
ν − 2V r
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and ν = N − 1 degrees of freedom where

V r = [(1 + g)X
′
rXr]

−1

and

s2r =

1
g+1y

′PXry +
g
g+1 (y − yιN )

′
(y − yιN )

ν
,

where:

PXr =M1 −Xr (X
′
rXr)

−1
X ′r,

where

M1 = IN −
ιN ι
′
N

N
.

Using the g-prior, the marginal likelihood for model r is:

p (y|Mr) ∝
(

g

g + 1

) kr
2
[

1

g + 1
y′PXry +

g

g + 1
(y − yιN )′ (y − yιN )

]−N−1
2

.

(12)

2.4 BMA Computation

The preceding sub-section provides the posterior and marginal likelihood for
each model in our model space. These are the ingredients necessary to do
BMA. If the number of models is small, each model can be estimated and its
marginal likelihood calculated using the preceding formulae. However, with Fat
Data, this is typically impossible. In such cases simulation methods are used.
Just as Bayesians use simulation methods (e.g. Gibbs sampling or Metropolis-
Hastings algorithms) to learn about the posterior for the parameters, methods
can be designed for simulating from the model space to learn about the posterior
model probabilities used by BMA. A popular algorithm for simulating from the
model space is called Markov Chain Monte Carlo Model Composition, or MC3,
and was first developed in Madigan and York (1995). It is a Metropolis-Hastings
algorithm for the model space.
MC3 produces a number of draws of models which we denote by M (s) for

s = 1, .., S. At the sth replication, one of Mr for r = 1, .., R is drawn and we
call it M (s). Just as with any MCMC algorithm, we can average results (e.g.
parameter estimates or forecasts) over the draws. These averages will converge
to the true BMA posterior or predictive estimates as S →∞. For instance, if
φ is a parameter of interest, then

φ̂ =
1

S

S∑
s=1

E
(
φ|y,M (s)

)
(13)
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will converge to E (φ|y). Similarly, the frequencies with which models are drawn
can be used to calculate Bayes factors. For instance, if the MC3 algorithm draws
the modelMi A times and the modelMj B times, then the ratio A

B will converge
to the Bayes factor comparing Mi to Mj . In practice, an initial set of burn-
in draws should be discarded and standard MCMC diagnostics can be used to
select S to ensure the desired level of accuracy. For BMA, a common practice is
to choose a set of models (e.g. the 100 models most often drawn by MC3) and
calculate posterior model probabilities in two ways: analytically (using equation
12) and based on the frequencies they are drawn. If the correlation between
these two sets of model probabilities is very high, then enough draws have been
taken. If not, more are required.
The MC3 algorithm developed by Madigan and York (1995) is similar to

a Random walk Metropolis-Hastings algorithm in that it generates candidate
draws that are a step away from the current draw. That is, a candidate model,
M∗, is proposed which is drawn randomly (with equal probability) from the set
of models including: i) the current model,M (s−1), ii) all models which delete one
explanatory variable fromM (s−1), and iii) all models which add one explanatory
variable to M (s−1). Candidate models are accepted with probability:

α
(
M (s−1),M∗

)
= min

[
p(y|M∗)p(M∗)

p(y|M (s−1))p(M (s−1))
, 1

]
.

p(y|M (s−1)) and p(y|M∗) can be calculated using (12). If a candidate draw,
M∗, is accepted then M (s) =M∗, else M (s) =M (s−1).

2.5 BMA: Application

In this sub-section we use the BMA methods just described on the cross-country
growth regression data set. Fernandez, Ley and Steel (2001) recommend setting
g = 1

K2 and we also make this choice. The MC3 algorithm takes 2, 200, 000
draws and discards the first 200, 000 as burn-in replications.
Table 1 presents the main results of our BMA exercise. In addition to pre-

senting posterior means and standard deviations of each regression coeffi cient,
the output of the MC3 algorithm can be used in various ways to present evi-
dence on which models are supported by the data. For instance, the elements
in the column of Table 1 labelled “Prob.”can be interpreted as the probability
that the corresponding explanatory variable should be included. It is calculated
as the proportion of models drawn by the MC3 algorithm which contain the
corresponding explanatory variable. Informally, this is a useful diagnostic for
deciding whether an individual explanatory variable does have an important role
in explaining economic growth. It can be seen that several variables (i.e. Life
expectancy, GDP level in 1960, Equipment investment and Fraction Confucian)
do have an important role in explaining economic growth. Regardless of which
other explanatory variables are included, these variables almost always exhibit
strong explanatory power. However, for the remainder of the explanatory vari-
ables there is some uncertainty as to whether they have important roles to play
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in explaining economic growth. And, for many of the explanatory variables,
there is strong evidence that they should not be included.
The next two columns of Table 1 contain posterior means and standard

deviations for each regression coeffi cient, averaged across models. Remember
that models where a particular explanatory variable is excluded are interpreted
as implying a zero value for its coeffi cient. Hence, the average in (13) involves
some terms where E

[
βj |y,M (s)

]
is calculated and others where the value of zero

is used (i.e. for models which do not include xj the value βj = 0 is included in
the average). With the exception of the few variables with high BMA posterior
probability, most of the posterior means are small relative to their standard
deviations. Thus, BMA is indicating a high degree of uncertainty about which
factors explain economic growth and the posterior standard deviations reflect
this model uncertainty.
The final two columns in Table 1 present results from the single model with

highest marginal likelihood. Such a strategy can be called Bayesian Model Se-
lection (BMS). It can be seen that BMS and BMA results are mostly similar
to one another. The model selected by BMS is the one containing explanatory
variables which BMA is attaching most weight to. However, the BMS poste-
rior standard deviations are smaller. This is due to the fact that BMS ignores
model uncertainty: it selects a single model and then proceeds assuming it is the
model which generated the data. Since BMS posterior standard deviations only
reflect parameter uncertainty (i.e. the uncertainty associated with estimating a
parameter in a given model) whereas BMA posterior standard deviation reflect
both parameter and model uncertainty, the latter tend to be larger than the
former.
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Table 1: Point Estimates and Standard Devs of Regression Coeffi cients
(Mean and standard deviations multiplied by 100)

BMA BMS
Explanatory Variable Prob. Mean. St. Dev. Mean St. Dev.

Primary School Enrolment 0.207 0.104 0.234 0.048 0.018
Life expectancy 0.933 0.961 0.392 0.090 0.020
GDP level in 1960 0.999 −1.425 0.278 −1.463 0.193

Fraction GDP in Mining 0.459 0.147 0.181 0.322 0.108
Degree of Capitalism 0.457 0.151 0.183 0.387 0.094

No. Years Open Economy 0.513 0.260 0.283 0.557 0.138
% Pop. Speaking English 0.069 −0.011 0.047 — —
% Pop. Speak. For. Lang. 0.068 0.012 0.059 — —
Exchange Rate Distortions 0.082 −0.017 0.070 — —
Equipment Investment 0.923 0.552 0.236 0.548 0.128

Non-equipment Investment 0.434 0.136 0.174 0.347 0.099
St. Dev. of Black Mkt. Prem. 0.048 −0.006 0.037 — —

Outward Orientation 0.037 −0.003 0.029 — —
Black Market Premium 0.179 −0.040 0.097 — —

Area 0.030 −0.001 0.021 — —
Latin America 0.215 −0.082 0.191 — —

Sub-Saharan Africa 0.738 −0.473 0.347 −0.543 0.124
Higher Education Enrolment 0.046 −0.008 0.056 — —
Public Education Share 0.032 −0.001 0.024 — —
Revolutions and Coups 0.031 −0.001 0.023 — —

War 0.075 −0.014 0.062 — —
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Table 1 (continued): Posteror Estimates and Standard Devs of Regression Coeffi cients
Bayesian Model Averaging Single Best Model

Explanatory Variable Prob. Mean St. Dev. Mean St. Dev.
Political Rights 0.094 −0.028 0.107 — —
Civil Liberties 0.131 −0.050 0.015 −0.284 0.176
Latitude 0.041 0.001 0.052 — —
Age 0.085 −0.015 0.058 — —

British Colony 0.041 −0.003 0.032 — —
Fraction Buddhist 0.196 0.047 0.109 — —
Fraction Catholic 0.128 −0.011 0.121 — —
Fraction Confucian 0.990 0.493 0.127 0.503 0.090

Ethnolinguistic Fractionalization 0.060 0.010 0.056 — —
French Colony 0.049 0.007 0.040 — —
Fraction Hindu 0.126 −0.035 0.120 — —
Fraction Jewish 0.037 −0.002 0.028 — —
Fraction Muslim 0.640 0.025 0.023 0.295 0.093
Primary Exports 0.100 −0.029 0.105 −0.352 0.136
Fraction Protestant 0.455 −0.143 0.178 −0.277 0.098

Rule of Law 0.489 0.244 0.279 0.563 0.134
Spanish Colony 0.058 0.010 0.068 — —

Population Growth 0.037 0.005 0.048 — —
Ratio Workers to Population 0.045 −0.005 0.043 — —

Size of Labor Force 0.075 0.018 0.097 — —

The MC3 algorithm allows for the calculation of posterior model probabil-
ities by simply counting the proportion of draws taken from each model. For
the top ten models, the column of Table 2 labelled “p (Mr|y) MC3 estimate”
contains posterior model probabilities calculated in this way. The column la-
belled “p (Mr|y) Analytical”contains the exact values for the same ten models
calculated using (12). It can be seen that the posterior model probability is
widely scattered across models with no single model dominating. In fact, the
top ten models account for only a little more than 4% of the total posterior
model probability. Table 2 indicates there is a great deal of model uncertainty.
In fact, BMS is choosing a model with posterior model probability of less than
one percent.
The numbers in tables such as this allow for an assessment of the conver-

gence of the MC3 algorithm. The analytical and numerical posterior model
probabilities are slightly different from one another. These differences are small
enough for present purposes and we can be confident that the numbers in Table
1 are approximately correct.
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Table 2: Posterior Model
Probabilities for Top 10 Models

p (Mr|y)
Analytical

p (Mr|y)
MC3 estimate

1 0.0087 0.0089
2 0.0076 0.0077
3 0.0051 0.0050
4 0.0034 0.0035
5 0.0031 0.0032
6 0.0029 0.0029
7 0.0027 0.0025
8 0.0027 0.0027
9 0.0027 0.0026
10 0.0024 0.0022

In this section, we began with a regression with a large number of explana-
tory variables (41) relative to the number of observations (72) and shown how
BMA or BMS can be used to obtain more parsimonious specifications. BMA
does this by attaching weight to a large number of more parsimonious models.
In fact, the average number of explanatory variables in a regression drawn by
MC3 is 11.4 which is much less than 41. BMS does this by directly selecting a
more parsimonious model with 15 explanatory variables. In these algorithms we
used a relatively non-informative prior (i.e. the g-prior contains less information
than one data point). However, there are other Bayesian methods for Fat Data
which directly use more informative priors or allow for the estimation of the
degree of information in the prior (i.e. analogous to estimating g) and it is to
these we now turn.

3 Variable Selection and Shrinkage Using Hier-
archical Priors

3.1 Overview

In general, any sort prior information can be used with Fat Data to overcome
the problems causes by an insuffi ciency of data information. In the regression
model, this usually amounts to making suitable choices for β and V in (2) or
(6). If such prior information is available, it is desirable to use it. But, given
that β and V contain, in total, K +K × (K + 1) /2 free parameters, the prior
elicitation task can be daunting if K is large. This has led to several simpler
priors being proposed which reduce the prior elicitation problem to a much
more simple one. The g-prior of the preceding section was one example of such
an approach. The ridge regression prior, which sets β = 0 and V = τI for
a scalar τ is another. Posterior analysis using either of these priors can be
done in a simple manner using (4) and (5) or (8) and (9) and prior elicitation
involves only the elicitation of the scalars g or τ . And, if the researcher does not
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wish to subjectively choose g or τ , they can be estimated from the data. If a
natural conjugate prior is used, then the marginal likelihood has the analytical
form given in (12). The researcher can specify a grid of values for g or τ (e.g.
g = [0.0001, 0.001, 0.01, 0.1, 1.0]), evaluate the marginal likelihood for each value
in the grid and choose the value for g that yields the highest marginal likelihood
(averaged over all MC3 draws). In this way, we can let the data choose the
optimal degree of shrinkage.
Such a strategy may sound like it violates a basic tenet of Bayesian econo-

metrics: that the prior should not depend on the data. However, if we interpret
the model in a different fashion, it does not. If g or τ are interpreted as unknown
parameters having a Uniform prior over the points in the selected grid, then the
strategy outlined in the preceding paragraph can be seen to be equivalent to a
valid Bayesian analysis involving the estimation of the parameter g (or τ). This
is a simple example of a hierarchical prior: where the prior for a parameter (e.g.
β) is written in terms of a hyperparameter (e.g. g) which in turn has its own
prior (e.g. the Uniform distribution over the selected grid of values for g). Hier-
archical priors are widely used in Bayesian econometrics for a range of purposes.
In this section, we will discuss how hierarchical priors can be used to deal with
Fat Data regression models for achieving prior shrinkage or doing variable se-
lection or doing BMA. There are a rapidly growing variety of such methods and
we cannot hope to cover them all in a short paper. Accordingly, we will cover
two of the most popular methods: Stochastic search variable selection (SSVS)
and the Least Absolute Shrinkage and Selection Operator (LASSO). The reader
learning about more approaches is referred to Korobilis (2013) which discusses
a range of hierarchical priors which allow for shrinkage of regression coeffi cients.

3.2 SSVS

3.2.1 SSVS: Theory

We describe an approach to SSVS given in George and McCulloch (1993).5 It
uses a Normal linear regression model with independent Normal-Gamma prior
described in (6) and (7) with one alteration to the Normal prior for the regression
coeffi cients. In (6) this prior is simply Normal with a mean and variance chosen
by the researcher. The SSVS prior assumes this to be hierarchical. To explain
the basic idea of SSVS, suppose we have a simple regression model where β is
a scalar. Its SSVS prior is given by:

β|γ ∼ (1− γ)N
(
0, τ20

)
+ γN

(
0, τ21

)
(14)

where γ = 0 or 1. Thus, if γ = 0, the prior for β has variance τ20, while if γ = 1,
the prior for β has variance τ21. Since the prior variance controls the amount
of prior shrinkage, if τ0 is small and τ1 is large then (14) can either produce
an extremely tight prior shrinking β to near zero (if γ = 0), or a relatively
non-informative prior which does little shrinkage (if γ = 1). γ is treated as

5The monograph Chipman, George and McCulloch (2001) provides more detail about the
practical implementation of SSVS plus describes some related methods.
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an unknown parameter and estimated in a data- based fashion. Thus, the
data choose whether to select a variable or omit it (in the sense of shrinking
its coeffi cient to be very near zero).6 The prior for β is hierarchical since it
depends on the parameter γ which has its own prior. A Gibbs sampler can
be set up which takes draw of γ and, conditional on these, standard posterior
results for the independent Normal-Gamma prior given in (8) and (9) can be
used to provide draws of β and h. The remainder of this sub-section provides
details for how this is done in the regression model with K explanatory variables
where β is no longer a scalar.
We will work with a regression model with independent Normal-Gamma

prior given in (6) and (7). The SSVS prior relates to the regression coeffi cients
and not h, so we will not discuss (7) other than to say its hyperparameters
can be anything. In practice a non-informative prior is often used for h. The
prior mean for the regression coeffi cients is β = 0 so as to shrink coeffi cients
towards zero although other choices could be made without altering the basic
theoretical insights of this section. The key aspect of the SSVS is the prior
covariance matrix which is set to be:

V = DD

where D is a diagonal matrix7 with elements

di =

{
τ0i if γi = 0
τ1i if γi = 1

for i = 1, ..,K. Note that we now have γi ∈ {0, 1} for i = 1, ..,K indicating
whether each variable is included in the regression or not. We also have K small
and large prior variances, τ20i and τ

2
1i, respectively. These must be selected by

the researcher.
How can we select large and small prior variances? We want τ20i to be small

enough so that virtually all of the prior probability is attached to the region
where βi, which is the marginal effect of the i

th explanatory variable on the
dependent variable, is negligible (i.e. it is to all intents and purposes zero). In
some cases, the researcher may have enough knowledge about the application at
hand to select τ20i in this way. An approximate rule of thumb is that 95% of the
probability of a distribution lies within two standard deviations from its mean.
In the present case, this means 95% of the prior probability lies in the interval
−2τ0i ≤ βi ≤ 2τ0i. This may be enough for the researcher to choose τ0i, but
not always. For instance, the value τ0i = 0.01 expresses a prior belief that βi is
less than 0.02 in absolute value. Is βi = 0.02 a “small”value or not? The answer
to this is data dependent (e.g. depends on empirical application at hand and
the units the dependent and explanatory variables are measured in). In light of

6Some researchers even use so-called “spike and slab”priors where the first element in the
prior is a spike at zero (or τ20 = 0) and the coeffi cient is shrunk to precisely zero if γ = 0. See
Kuo and Mallick (1997).

7Some researchers work with V = DRD where R is a prior correlation matrix. This is a
straightforward extension of the formulae presented here.
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such concerns, a practice recommended by many in the field is to choose τ20i and
τ21i in a data-based fashion using an initial estimation procedure. For instance,
George, Sun and Ni (2008) recommend what they call a default semi-automatic
approach which proceeds as follows: First, use ordinary least squares methods
in a regression involving all the explanatory variables to produce σ̂i which is
the standard error of βi. Second, set τ0i =

1
c × σ̂i and τ1i = c × σ̂i for some

large value for c (e.g. c = 10 or 100). George and McCulloch (1993) provide
more motivation and explanation for why this is a sensible thing to do. But
the basic idea is that σ̂i provides a rough estimate of the standard deviation of
βi so that the answer to the question: “how do we choose a small value for the
prior variance for βi?”is “we choose one which is small relative to its standard
deviation”. Typically, one finds that only a rough estimate of what “small”and
“large”prior variances are is enough for SSVS to work well. Thus, the default
semi-automatic approach is often used in practice.8 But more sophisticated
approaches are possible. For instance, one could estimate c by choosing the
value which maximized the marginal likelihood.
The final aspect of prior choice relates to the vector of variable selection

indicator variables, γ = (γ1, .., γK)
′. A common approach is to assume each

element of γ has a prior of the form:

Pr (γi = 1) = q
i

Pr (γi = 0) = 1− qi
. (15)

A natural default choice is q
j
= 0.5 for all j, implying each coeffi cient is a priori

equally likely to be included as excluded.
Bayesian estimation of the Normal linear regression model using this SSVS

prior is done using Gibbs sampling. As noted previously, conditional on γ, we
know the form of the prior covariance matrix, V = DD, and can simply use
it plugged into the posterior formulae given in (8) and (9). This provides us
with the posterior conditionals, p (β|y, h, γ) and p (h|y, β, γ), used in the Gibbs
sampler. All that is required to complete the Gibbs sampler is a method for
drawing γ. It can be shown that the conditional posterior distribution necessary
to do this is:

Pr (γi = 1|y, γ) = qi,

Pr (γi = 0|y, γ) = 1− qj ,
(16)

where

qj =

1

τ1j
exp

(
−

γ2j
2τ21j

)
q
j

1

τ1j
exp

(
−

γ2j
2τ21j

)
q
j
+

1

τ0j
exp

(
−

γ2j
2τ20j

)(
1− q

j

) .
8Note, however, that it can only be used if K < N since it requires OLS estimation which

is not possible if the number of explanatory variables exceeds sample size. If K ≥ N , the
researcher may wish to use an informative prior Bayesian approach (e.g. using the ridge
regression prior described previously) to obtain this initial estimate.
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Thus, Bayesian inference in the regression model using SSVS proceeds by
adding a block for drawing γ to a standard Gibbs sampler for the Normal linear
regression model with independent Normal-Gamma prior. The output of this
posterior simulator can be used in two ways. The most common way is to simply
run the Gibbs sampler and average results in the standard way (e.g. take the
average of the draws of βi as the posterior mean of βi). Note that, since some
draws of γi will be zero and others one, some draws of βi will be shrunk to
be virtually zero and others will not be. Since we are averaging over draws
with βi = 0 and draws with βi being non-zero, this strategy is similar in spirit
to BMA. That is, it is averaging over restricted and unrestricted models in a
similar fashion as BMA.
Another strategy is to use SSVS to select explanatory variables. This is sim-

ilar to BMS. A common strategy is to calculate Pr (γi = 1|y) using the Gibbs
sampler and then select variables with Pr (γi = 1|y) > d where d is some thresh-
old for inclusion (e.g. d = 1

2 ). The researcher can then use some standard esti-
mation procedure for the Normal linear regression model using only the selected
variables.

3.2.2 SSVS: Application

In this sub-section we illustrate use of SSVS methods in our cross-country growth
data set. Table 3 presents posterior results using the default semi-automatic
prior elicitation approach with c = 10. The regression includes an intercept for
which we use a relatively non-informative prior. Results are based on 110, 000
draws of which the first 10, 000 are discarded as the burn-in. The final two
columns of Table 3, labelled Single Best Model, adopt a strategy where we set
γi = 1 if Pr (γi = 1|y) > 1

2 and set γi = 0 otherwise. We then plug the implied
values of τ20i or τ

2
1i into V and use the MCMC algorithm for the Normal linear

regression model with independent Normal-Gamma prior to estimate the model.
This is very similar to the variable selection strategy described at the end of the
preceding sub-section, but differs in that it shrinks the coeffi cients on variables
which are not selected to be very close to zero instead of being precisely zero.
We do this to illustrate how effective SSVS is at shrinking coeffi cients.
A comparison of the SSVS results in Table 3 with the BMA results in Table

1 reveals a high degree of similarity. These two very different approaches are
yielding very similar estimates and standard deviations for β. An empirical
researcher reporting these results would come to virtually the same conclusion
regardless of whether she was using BMA or SSVS. If we compare variable
selection results (i.e. compare the BMS columns in Table 1 to the Single Best
Model columns in Table 3), we also find a high degree of similarity. We obtain
the same finding that variable selection, since it ignores model uncertainty, leads
to estimates which are usually larger in absolute value and are more precise (i.e.
posterior standard deviations are smaller). The variables selected by SSVS are
mostly the same as those selected by BMS, although there are a few differences.
Our implementation of SSVS is selecting 11 variables which is slightly more
parsimonious than the 14 selected by BMS.
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Table 3: Point Estimates and Standard Devs of Regression Coeffi cients
(Mean and standard deviations multiplied by 100)

SSVS Single Best Model
Explanatory Variable Pr (γ = 1|y) Mean St. Dev. Mean St. Dev.

Primary School Enrolment 0.256 0.111 0.204 2× 10−5 0.002
Life expectancy 0.956 0.991 0.365 1.124 0.236
GDP level in 1960 1.000 −1.410 0.286 −1.299 0.202

Fraction GDP in Mining 0.664 0.204 0.179 0.258 0.107
Degree of Capitalism 0.575 0.170 0.176 0.240 0.108

No. Years Open Economy 0.553 0.248 0.267 0.459 0.141
% Pop. Speaking English 0.171 −0.024 0.071 −2× 10−5 0.001
% Pop. Speak. For. Lang. 0.174 0.024 0.086 7× 10−6 0.001
Exchange Rate Distortions 0.215 −0.038 0.103 −3× 10−5 0.001
Equipment Investment 0.917 0.486 0.230 0.538 0.141

Non-equipment Investment 0.584 0.171 0.175 0.282 0.109
St. Dev. of Black Mkt. Prem. 0.138 −0.012 0.054 −2× 10−5 0.001

Outward Orientation 0.129 −0.013 0.055 −7× 10−6 0.001
Black Market Premium 0.340 −0.068 0.116 −1× 10−5 0.001

Area 0.080 −0.001 0.035 3× 10−6 0.001
Latin America 0.285 −0.105 0.205 −6× 10−5 0.003

Sub-Saharan Africa 0.699 −0.447 0.362 −0.378 0.135
Higher Education Enrolment 0.120 −0.022 0.100 −9× 10−6 0.002
Public Education Share 0.119 0.005 0.047 1× 10−6 0.001
Revolutions and Coups 0.110 0.002 0.047 −9× 10−6 0.001

War 0.204 −0.034 0.094 −2× 10−5 0.001
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Table 3 (continued): Posteror Estimates and Standard Devs of Regression Coeffi cients
SSVS Single Best Model

Explanatory Variable Pr (γ = 1|y) Mean St. Dev. Mean St. Dev.
Political Rights 0.130 −0.033 0.121 −1× 10−4 0.004
Civil Liberties 0.187 −0.070 0.181 −2× 10−4 0.004
Latitude 0.104 0.006 0.086 3× 10−5 0.002
Age 0.237 −0.041 0.093 −2× 10−5 0.001

British Colony 0.084 −0.005 0.051 −5× 10−5 0.002
Fraction Buddhist 0.324 0.076 0.132 3× 10−5 0.001
Fraction Catholic 0.216 −0.023 0.158 −2× 10−5 0.002
Fraction Confucian 0.972 0.483 0.154 0.542 0.098

Ethnolinguistic Fractionalization 0.141 0.023 0.085 1× 10−5 0.002
French Colony 0.138 0.017 0.067 3× 10−5 0.001
Fraction Hindu 0.193 −0.068 0.184 −5× 10−6 0.003
Fraction Jewish 0.135 −0.008 0.052 −1× 10−5 0.001
Fraction Muslim 0.624 0.255 0.241 0.318 0.101
Primary Exports 0.243 −0.073 0.164 −7× 10−5 0.002
Fraction Protestant 0.603 −0.189 0.187 −0.276 0.107

Rule of Law 0.485 0.215 0.264 8× 10−5 0.002
Spanish Colony 0.129 0.024 0.109 −2× 10−5 0.002

Population Growth 0.116 0.017 0.096 3× 10−6 0.002
Ratio Workers to Population 0.132 −0.013 0.071 2× 10−5 0.001

Size of Labor Force 0.141 0.046 0.167 9× 10−5 0.003

3.3 LASSO

3.3.1 Theory

The LASSO was developed as a frequentist shrinkage and variable selection
method for Fat Data regression models in Tibsharani (1996). Whereas OLS es-
timates minimize the sum of squared residuals, LASSO estimates add a penalty
term which depends on the magnitude of the regression coeffi cients. The LASSO
minimizes:

(y −Xβ)′ (y −Xβ) + λ
k∑
j=1

∣∣βj∣∣
where λ is a shrinkage parameter.
It turns out that LASSO estimates can be given a Bayesian interpretation:

they are equivalent to Bayesian posterior modes if independent Laplace priors
are placed on the regression coeffi cients. For our purposes, we will not work with
the Laplace distribution directly due to the following useful result: the Laplace
distribution can be written as a scale mixture of Normals (i.e. a mixture of
Normal distributions with different variances). A Laplace prior for a regression

18



coeffi cient can be written as:

βi ∼ N
(
0, h−1τ2i

)
, (17)

τ2i ∼ Exp

(
λ2

2

)
for i = 1, ..,K where Exp (.) denotes the exponential distribution.9 The fact
that, conditional on τ2j , we have a Normal prior for the regression coeffi cients can
be exploited in the MCMC algorithm. That is, conditional on τ = (τ1, .., τK)

′,
only minor adaptations to (8) and (9) are required to obtain posterior condi-
tionals for β and h. Adding a new block to the MCMC algorithm for drawing
τ is all that is required. We can write the LASSO prior covariance matrix as

V = h−1DD

where D is a diagonal matrix with diagonal elements di = τ i for i = 1, ..,K.
In one sense, the LASSO is just a different Normal hierarchical prior for

the regression coeffi cients. That is, the SSVS prior is a mixture of two Normal
distributions with different variances, the LASSO prior is a scale mixture of
Normal distributions. It can be shown (see Park and Casella, 2008) that the
LASSO prior should be better at shrinking coeffi cients with only weak explana-
tory power towards zero. Since many of the coeffi cients in Tables 1 and Tables
3 do appear to have only weak explanatory power, this property of the LASSO
is potentially useful. This is a point we will investigate in our empirical work
using the LASSO.
To complete the model a prior is required for the shrinkage parameter, λ

and the error variance, h. For the former, the following is a convenient choice:

λ2 ∼ G
(
µ
λ
, νλ

)
.

For the latter, it is common to assume a non-informative prior, p (h) ∝ 1
h , and

the formulae below make this choice.
For the regression coeffi cients and error precision, the MCMC algorithm

draws from the posterior conditionals p (β|y, h, τ) and p (h|y, β, τ) using formulae
which require only slight alterations to the standard results for the Normal linear
regression model given in (8) and (9). In particular, β|y, h, τ is N

(
β, V

)
where

β =
(
X ′X + (DD)

−1
)−1

X ′y

and

V = h−1
(
X ′X + (DD)

−1
)−1

.

9The reader may wonder why the prior variance is σ2τ2j as opposed to being simply τ
2
j .

It can be shown that using the latter can potentially lead to a posterior with more than one
mode.
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Next we have h|y, β, τ being G(s−2, ν) where

ν = N +K

and

s2 =
(y −Xβ)′ (y −Xβ) + β′ (DD)−1 β

ν
.

The new blocks in the MCMC algorithm relating to the LASSO are for
τ and λ. In practice, it is easier to draw from 1

τ2i
for i = 1, ..,K as these

posterior conditionals can be shown to be independent of one another and each
has an inverse Gaussian distribution. The latter distribution, which we denote
by IG(., .), is rarely used in econometrics. However, standard algorithms exist
for taking random draws from the inverse Gaussian and so it is straightforward

to include it in an MCMC algorithm. In the present context, p
(
1
τ2i
|y, β, h, λ

)
is IG(ci, di) with

ci =

√
λ2

hβ2i

and
d = λ2.

Finally, it is easy to draw from p
(
λ2|y, τ

)
since this is a G(µλ, νλ) distribu-

tion with
νλ = νλ + 2K

and

λ =
νλ + 2K

2
∑K

i=1
τ2i +

νλ
µ
λ

.

Thus, Bayesian inference using the LASSO prior can be done using MCMC
methods which involve a straightforward extension of textbook results for the
Normal linear regression model. What we have described in this section is the
basic LASSO. There are several other variants of the LASSO that are popular
(e.g. the elastic net LASSO). The interested reader is refer Korobilis (2013)
for more examples. But the property they have in common is that they can be
written in terms of a hierarchical prior which is a mixture of Normal distribu-
tions. Hence, MCMC methods very similar to those for the standard LASSO
can be used.

3.3.2 LASSO: Application

We continue our empirical analysis of the cross-country growth data set using
LASSO methods. For the prior hyperparameters, we use the relatively nonin-
formative choices of µ

λ
= 0.05 and νλ = 1. The MCMC algorithm is run for

10, 000 burn in draws followed by 100, 000 included draws. Table 4 contains
posterior means and standard deviations of the regression coeffi cients along
with the posterior means of the shrinkage parameters, τ i for i = 1, ..,K. To
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help gauge the estimated degree of shrinkage in the LASSO prior, remember
that the prior standard deviation for a regression coeffi cient is στ i and we find
E (σ|y) = 0.0071. The posterior mean for τ i is given in the table.

Results using the LASSO are similar to those produced using SSVS or BMA.
If we use a rule of thumb where posterior means which are two posterior standard
deviations from zero are selected as indicating important explanatory variables,
then the LASSO is selecting nine explanatory variables. These variables are also
selected by SSVS and BMS. It can also be seen that the LASSO is doing a very
good job at shrinking unimportant variables in the sense that their coeffi cients
tend to be very small.

Table 4: Posterior Results for Regression Coeffi cients with LASSO Prior
(Means and standard deviations of regression coeffs multiplied by 100)
Explanatory Variable E (τ i|y) Posterior Mean St. Dev.

Primary School Enrolment 0.293 0.237 0.215
Life expectancy 0.932 1.218 0.182
GDP level in 1960 0.901 −1.144 0.109

Fraction GDP in Mining 0.429 0.303 0.058
Degree of Capitalism 0.158 0.094 0.110

No. Years Open Economy 0.578 0.509 0.084
% Pop. Speaking English 4× 10−4 −6× 10−5 0.003
% Pop. Speak. For. Lang. 0.122 0.069 0.093
Exchange Rate Distortions 6× 10−4 −1× 10−4 0.004
Equipment Investment 0.581 0.511 0.081

Non-equipment Investment 0.190 0.118 0.124
St. Dev. of Black Mkt. Prem. 5× 10−4 −9× 10−5 0.003

Outward Orientation 5× 10−4 −9× 10−4 0.004
Black Market Premium 6× 10−4 −9× 10−5 0.004

Area 3× 10−4 4× 10−5 0.001
Latin America 0.005 0.002 0.017

Sub-Saharan Africa 3× 10−4 −1× 10−5 0.002
Higher Education Enrolment 6× 10−4 −1× 104 0.005
Public Education Share 3× 10−4 2× 10−5 0.001
Revolutions and Coups 0.001 3× 10−4 0.047

War 5× 10−4 1× 10−4 0.002
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Table 4 (cont.): Posterior Results for Regression Coeffi cients with LASSO Prior
(Means and standard deviations of regression coeffs multiplied by 100)

Explanatory Variable E (τ i|y) Posterior Mean St. Dev.
Political Rights 5× 10−4 3× 10−5 0.002
Civil Liberties 3× 10−4 5× 10−5 0.002
Latitude 7× 10−4 2× 10−4 0.003
Age 3× 10−4 1× 10−5 0.001

British Colony 4× 10−4 2× 10−5 0.001
Fraction Buddhist 0.436 0.314 0.077
Fraction Catholic 0.373 0.253 0.130
Fraction Confucian 0.645 0.617 0.062

Ethnolinguistic Fractionalization 0.001 4× 10−4 0.004
French Colony 0.075 0.039 0.071
Fraction Hindu 8× 10−4 2× 10−4 0.004
Fraction Jewish 6× 10−4 1× 10−4 0.002
Fraction Muslim 0.671 0.662 0.087
Primary Exports 6× 10−4 −6× 10−5 0.004
Fraction Protestant 0.002 −9× 10−4 0.013

Rule of Law 0.002 8× 10−4 0.009
Spanish Colony 0.007 0.003 0.021

Population Growth 0.002 5× 10−4 0.007
Ratio Workers to Population 0.001 1× 10−4 0.002

Size of Labor Force 0.349 0.217 0.057
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