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Foreword 
 

The series of Handbooks in Central Banking form a key part of the activities of the Centre for 
Central Banking Studies (CCBS) at the Bank of England.  The CCBS has been in existence 
since 1990, delivering seminars, workshops and expert advice to central banks all over the 
world.  The Handbooks cover topics that concern the technical and analytical aspect of 
central banking. 
 
The Handbooks are aimed primarily at central bankers, and have proced extremely popular 
and useful reference works for all those looking for materials that provide both a clear 
analytical framework together with the practical application of these ideas. 
 
Most of the CCBS Handbooks are available from our website 
www.bankofengland.co.uk/education/ccbs/handbooks_lectures.htm. Several have been 
translated into Spanish, Russian and Arabic, and these versions are also available on the 
website. 
 
Our aim is to continue to add to the series, covering new areas of interest and also updating 
existing Handbooks to take account of recent developments.  Some of the new Technical 
Handbooks include econometric exercises developed in our workshops, thus making these 
available to a wider audience. 
 
We hope you find the new additions to the series useful, and would welcome any comments 
on the Handbooks and any suggestions for future topics. 
 
We should note that all views expressed are those of the authors and not necessarily those of 
the Bank of England or Monetary Policy Committee members. 
 
 
 

Andrew Blake 
Series Editor 
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Preface 

This aim of this handbook is to introduce key topics in Bayesian econometrics from an 

applied perspective.  

The handbook assumes that readers have a fair grasp of basic classical econometrics ( 

e.g. maximum likelihood estimation). It is recommended that readers familiarise themselves 

with the Matlab© programming language to derive the maximum benefit from this 

handbook. A basic  guide to Matlab© is attached at the end of the Handbook.  

The first chapter of the handbook introduces basic concepts of Bayesian analysis. In 

particular, the chapter focuses on the technique of Gibbs sampling and applies it to a linear 

regression model. The chapter shows how to code this algorithm via several practical 

examples. The second chapter introduces Bayesian vector autoregressions (VARs) and 

discusses how Gibbs sampling can be used for these models. The third chapter shows how 

Gibbs sampling can be applied to popular econometric models such as time‐varying VARS 

and dynamic factor models. The final chapter introduces the Metropolis Hastings algorithm. 

We intend to introduce new topics in revised versions of this handbook on a regular basis. 

The handbook comes with a set of Matlab© codes that can be used to replicate the 

examples in each chapter. The code (provided in code.zip) is organised by chapter. For example, 

the folder ‘Chapter1’ contains all the examples referred to in the first chapter of this 

handbook. 

The views expressed in this handbook are those of the authors, and not necessarily those of 

the Bank of England. The reference material and computer codes are provided without any 

guarantee of accuracy. The authors would appreciate feedback on possible coding errors 

and/or typos. 
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Part 1

A Practical Introduction to Gibbs Sampling





CHAPTER 1

Gibbs Sampling for Linear Regression Models

1. Introduction

This chapter provides an introduction to the technique of estimating linear regression models using Gibbs sam-

pling. While the linear regression model is a particularly simple case, the application of Gibbs sampling in this

scenario follows the same principles as the implementation in a more complicated models (considered in later chap-

ters) and thus serves as a useful starting point. We draw heavily on the seminal treatment of this topic in Kim and

Nelson (1999). A more formal (but equally accessible) reference is Koop (2003).

The reader should aim to become familiar with the following with the help of this chapter

• The prior distribution, the posterior distribution and Bayes Theorem.
• Bayesian treatment of the linear regression model.
• Why Gibbs sampling provides a convenient estimation method.
• Coding the Gibbs sampling algorithm for a linear regression in Matlab

2. A Bayesian approach to estimating a linear regression model

Consider the task of estimating the following regression model

 =  +  (2.1)

 ∼ 
¡
0 2

¢
where  is a  × 1 matrix of the dependent variable,  is a  ×  matrix of the independent variables and

deterministic terms. We are concerned with estimating the  × 1 vector of coefficients  and the variance of the

error term 2

A classical econometrician proceeds by obtaining data on  and  and writes down the likelihood function of

the model


¡
\ 2

¢
=
¡
22

¢−2
exp

µ
−( −)

0
( −)

22

¶
(2.2)

and obtains estimates ̂ and ̂2 by maximising the likelihood. In this simple case these deliver the familiar OLS

estimator for the coefficients ̂ = (
0
)

−1
( 0

) and the (biased) maximum likelihood estimator for the error

variance ̂2 =
0

. For our purpose, the main noteworthy feature of the classical approach is the fact that the

estimates of the parameters of the model are solely based on information contained in data.

Bayesian analysis departs from this approach by allowing the researcher to incorporate her prior beliefs about

the parameters  and 2 into the estimation process. To be exact, the Bayesian econometrician when faced with the

task of estimating equation 2.1 would proceed in the following steps.

Step 1. The researcher forms a prior belief about the parameters to be estimated. This prior belief usually represents

information that the researcher has about  and 2 which is not derived using the data  and  These

prior beliefs may have been formed through past experience or by examining studies (estimating similar

models) using other datasets. (We will discuss the merits of this approach for specific examples in the

chapters below). The key point is that these beliefs are expressed in the form of a probability distribution.

For example, the prior on the coefficients  is expressed as

 () ∼  (0Σ0) (2.3)

where the mean 0 represents the actual beliefs about the elements of 

Example 1. In the case of two explanatory variables, the vector 0 =

µ
1

−1
¶
represents the belief that the first

coefficient equals 1 and the second equals −1 The variance of the prior distribution Σ0 controls how strong this prior
belief is. A large number for Σ0 would imply that the researcher is unsure about the numbers she has chosen for 0
and wants to place only a small weight on them. In contrast, a very small number for Σ0 implies that the researcher

is very sure about the belief expressed in 0In the case of two explanatory variables Σ0 may equal Σ0 =

µ
10 0

0 10

¶
representing a ‘loose prior’ or an uncertain prior belief.

3
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Step 2. The researcher collects data on  and  and write down the likelihood function of the model


¡
\ 2

¢
=
¡
22

¢−2
exp

µ
−( −)

0
( −)

22

¶
This step is identical to the approach of the classical econometrican and represents the information about

the model parameters contained in the data.

Step 3. The researcher updates her prior belief on the model parameters (formed in step 1) based on the information

contained in the data (using the likelihood function in step 2). In other words, the researcher combines the

prior distribution 
¡
 2

¢
and the likelihood function 

¡
\ 2

¢
to obtain the posterior distribution


¡
 2\

¢
.

More formally, the Bayesian econometrician is interested in the posterior distribution 
¡
 2\

¢
which is

defined by the Bayes Law


¡
 2\

¢
=


¡
\ 2

¢× 
¡
 2

¢
 ( )

(2.4)

Equation 2.4 simply states that the posterior distribution is a product of the likelihood 
¡
\2

¢
and the prior


¡
 2

¢
divided by the density of the data  ( ) (also referred to as the marginal likelihood or the marginal data

density). Note that  ( ) is a scalar and will not have any operational significance as far as estimation is concerned

(although it is crucial for model comparison, a topic we return to). Therefore the Bayes Law can be written as


¡
 2\

¢ ∝ 
¡
\ 2

¢× 
¡
 2

¢
(2.5)

Equation 2.5 states that the posterior distribution is proportional to the likelihood times the prior. In practice, we

will consider equation 2.5 when considering the estimation of the linear regression model.

As an aside note that the Bayes law in equation 2.4 can be easily derived by considering the joint density of the

data  and parameters  
2 

¡
  

2
¢
and observing that ir can be factored in two ways


¡
  

2
¢
=  ()×( 2\) =  (\ 2)×  (2)

That is the joint density 
¡
  

2
¢
is the product of the marginal density of  and the conditional density of

the parameters (2\) Or equivalently the joint density is the product of the conditional density of the data
and the marginal density of the parameters. Rearranging the terms after the first equality leads to equation 2.4.

These steps in Bayesian analysis have a number of noteworthy features. First, the Bayesian econometrician is

interested in the posterior distribution and not the mode of the likelihood function. Second, this approach combines

prior information with the information in the data. In contrast, the classical econometrician focusses on information

contained in the data about the parameters as summarised by the likelihood function.

To motivate the use of Gibbs sampling for estimating (2\) we will consider the derivation of the posterior
distribution in three circumstances. First we consider estimating the posterior distribution of  under the assumption

that 2 is known. Next we consider estimating the posterior distribution of 2 under the assumption that  is known

and finally we consider the general case when both sets of parameters are unknown.

2.1. Case 1: The posterior distribution of  assuming 2 is known. Consider the scenario where the

econometrician wants to estimate  in equation 2.1 but knows the value of 2 already. As discussed above, the

posterior distribution is derived using three steps.

Setting the prior. In the first step the researcher sets the prior distribution for  A normally distributed prior

 () ∼  (0Σ0) for the coefficients is a conjugate prior. That is, when this prior is combined with the likelihood

function this results in a posterior with the same distribution as the prior. Since the form of the posterior is known

when using conjugate priors these are especially convenient from a practical point of view. The prior distribution is

given by the following equation

(2)
−2 |Σ0|−

1
2 exp

£−05 ( −0)
0
Σ−10 ( −0)

¤
(2.6)

∝ exp
£−05 ( −0)

0
Σ−10 ( −0)

¤
The equation in 2.6 simply defines a normal distribution with mean 0 and variance Σ0 Note that for practical

purposes we only need to consider terms in the exponent (second line of equation 2.6) as the first two terms in 2.6³
(2)

−2 |Σ0|−
1
2

´
are constants.

Setting up the likelihood function. In the second step, the researcher collects the data and forms the

likelihood function:


¡
\ 2

¢
=

¡
22

¢−2
exp

µ
−( −)

0
( −)

22

¶
(2.7)

∝ exp

µ
−( −)

0
( −)

22

¶
As 2 is assumed to be known in this example, we can drop the first term in equation 2.7

¡
22

¢−2
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Figure 1. Loose and tight prior for the coefficients. An example

Calculating the posterior distribution. Recall from equation 2.5 that the posterior distribution is propor-

tional to the likelihood times the prior. Therefore to find the posterior distribution for  (conditional on knowing 2)

the researcher multiplies equation 2.6 and 2.7 to obtain


¡
\2 

¢ ∝ exp £−05 ( −0)
0
Σ−10 ( −0)

¤× expµ−( −)
0
( −)

22

¶
(2.8)

Equation 2.8 is simply a product of two normal distributions and the result is also a normal distribution. Hence the

posterior distribution of  conditional on 2 is given by:


¡
\2 

¢
˜ (∗  ∗) (2.9)

As shown in Hamilton (1994) pp 354 and Koop (2003) pp 61 the mean and the variance of this normal distribution

are given by the following expressions

∗ =

µ
Σ−10 +

1

2
 0


¶−1µ
Σ−10 0 +

1

2
 0


¶
(2.10)

 ∗ =

µ
Σ−10 +

1

2
 0


¶−1
Consider the expression for the mean of the conditional posterior distribution∗ =

¡
Σ−10 + 1

2
 0


¢−1 ¡
Σ−10 0 +

1
2
 0

¢
.

Note that the final term  0
 can be re-written as 

0
 where  = (

0
)

−1
 0
. That is

∗ =
µ
Σ−10 +

1

2
 0


¶−1µ
Σ−10 0 +

1

2
 0


¶
(2.11)

The second term of the expression in equation 2.11 shows that the mean of the conditional posterior distribution is

weighted average of the prior mean 0 and the maximum likelihood estimator  with the weights given by the

reciprocal of the variances of the two ( in particular Σ−10 and 1
2
 0
 ). A large number for Σ0 would imply a very

small weight on the prior and hence ∗ would be dominated by the OLS estimate. A very small number for Σ0, on
the other hand, would imply that the conditional posterior mean is dominated by the prior. Note also that if the

prior is removed from the expressions in equation 2.10 (i.e. if one removes 0 and Σ
−1
0 from the expressions) , one

is left with the maximum likelihood estimates.

Example 2. Figure 1 shows a simple example about a prior distribution for a regression model with 1 coefficient
 The X-axis of these figures show a range of values of . The Y-axis plots the value of the normal prior distribution

associated with these values of . The left panel shows a a prior distribution with a mean of 1 and a variance of 10.

As expected, the prior distribution is centered at 1 and the width of the distribution reflects the variance. The right

panel compares this prior distribution with a tighter prior centered around the same mean. In particular, the new

prior distribution (shown as the red line) has a variance of 2 and is much more tightly concentrated around the mean.
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Figure 2. The posterior distribution for the model  = 5 +  ˜(0 1) using different priors

The tope left panel of figure 2 plots the likelihood function for the simple regression model  = + ˜(0 1)  =

5. As expected the likelihood function has its peak at  = 5 The top right panel shows the posterior distribution which

combines the prior distribution in figure 1 ((1 2) shown as the red line) with the likelihood function. Note that as

the posterior combines the prior information (with a mean of 1) and the likelihood function, the posterior distribution

is not exactly centered around 5, but around a value slightly less than 5, reflecting the influence of the prior. Note

that if the prior is tightened significantly and its variance reduced to 001, this has the affect of shifting the posterior

distribution with the mass concentrated around 1 (red line in the bottom left panel). In contrast, a loose prior with a

prior variance of 1000 is concentrated around 5.

2.2. Case 2: The posterior distribution of 2 assuming  is known. In the second example we consider

the estimation of 2 in equation 2.1 assuming that the value of  is known. The derivation of the (conditional)

posterior distribution of 2 proceeds in exactly the same three steps

Setting the prior. The normal distribution allows for negative numbers and is therefore not appropriate as a

prior distribution for 2 A conjugate prior for 2 is the inverse Gamma distribution or equivalently a conjugate prior

for 12 is the Gamma distribution.

Definition 1. (Gamma Distribution): Suppose we have  iid numbers from the normal distribution 

˜

µ
0
1



¶
If we calculate the sum of squares of  =

P
=1 

2
 , then  is distributed as a Gamma distribution with  degrees

of freedom and a scale parameter 

˜Γ

µ


2



2

¶
(2.12)

The probability density function for the Gamma distribution has a simple form and is given by

 ( ) ∝

2
−1 exp

µ−

2

¶
(2.13)

where the mean of the distribution is defined as  ( ) = 



Setting the prior (continued). We set a Gamma prior for 12. That is 
¡
12

¢
∼ Γ

¡
0
2
 0
2

¢
where 0

denotes the prior degrees of freedom and 0 denotes the prior scale parameter. As discussed below, the choice of

0 and 0 affects the mean and the variance of the prior. The prior density, therefore, has the following form (see

equation 2.13.)

1

2

0
2
−1
exp

µ−0
22

¶
(2.14)
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Figure 3. The inverse Gamma distribution for different degrees of freedom and scale parameters.

Setting up the likelihood function. In the second step, the researcher collects the data and forms the

likelihood function:


¡
\ 2

¢
=

¡
22

¢−2
exp

µ
−( −)

0
( −)

22

¶
(2.15)

∝ ¡
2
¢−2

exp

µ
−( −)

0
( −)

22

¶
As 2 is assumed to be unknown in this example, we cannot drop the entire first term in equation 2.15.

Calculating the posterior distribution. To calculate the posterior distribution of 12 (conditional on )

we multiply the prior distribution in equation 2.14 and the likelihood function 2.15 to obtain



µ
1

2
\ 

¶
∝ 1

2

0
2
−1
exp

µ−0
22

¶
× 2−


2 exp

µ
− 1

22
( −)

0
( −)

¶
→

1

2

0
2
−1−

2

exp

µ
− 1

22

£
0 + ( −)

0
( −)

¤¶
→

1

2

1
2
−1
exp

µ
− 1

22

¶
(2.16)

The resulting conditional posterior distribution for 12 in equation 2.16 can immediately be recognised as a Gamma

distribution with degrees of freedom 1 =
0+
2

and 1 =
0+(−)

0(−)

2
. Note that the conditional posterior

distribution for 2 is inverse Gamma with degrees of freedom 1 and scale parameter 1

Consider the mean of the conditional posterior distribution (given by 1
1
)

0 + 

0 + ( −)
0
( −)

(2.17)

It is interesting to note that without the prior parameters 0 and 0, equation 2.17 simply defines the reciprocal of

the maximum likelihood estimator of 2

Example 4. The left panel of figure 3 plots the inverse Gamma distribution with the degrees of freedom held fixed
at 1 = 1, but for scale parameter 1 = 1 2 4 Note that as the scale parameter increases, the distribution becomes

skewed to the right and the mean increases. This suggests that an inverse Gamma prior with a larger scale parameter

incorporates a prior belief of a larger value for 2 The right panel of the figure plots the inverse Gamma distribution

for 1 = 1, but for degrees of freedom 1 = 1 2 4. As the degrees of freedom increase, the inverse Gamma distribution

is more tightly centered around the mean. This suggests that a higher value for the degrees of freedom implies a tighter

set of prior beliefs.
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2.3. Case 3: The posterior distribution of 2 and . We now turn to the empirically relevant case when

both the coefficient vector  and the variance 12 (in equation 2.1) is unknown. We proceed in exactly the same

three steps

Setting the prior. We set the joint prior density for



µ


1

2

¶
= 

µ
1

2

¶
× 

µ
\ 1

2

¶
(2.18)

where 
¡
\ 1

2

¢
˜(0 

2Σ0) and 
¡
1
2

¢
˜Γ
¡
0
2
 0
2

¢
 That is: 

¡
1
2

¢
= 1

2

0
2
−1
exp

¡−0
22

¢
as in section 2.2 and


¡
\ 1

2

¢
= (2)

−2
¯̄
2Σ0

¯̄− 1
2 exp

h
−05 ( −0)

0 ¡
2Σ0

¢−1
( −0)

i
. Note that the prior for  is set conditional

on 2 This prior is referred to as the natural conjugate prior for the linear regression model. A natural conjugate

prior is a conjugate prior which has the same functional form as the likelihood.

Setting up the likelihood function. As above, the likelihood function is given by


¡
\ 2

¢
=
¡
22

¢−2
exp

µ
−( −)

0
( −)

22

¶
(2.19)

Calculating the posterior distribution. The joint posterior distribution of  and the variance 12 is

obtained by combining 2.18 and 2.19



µ
1

2
 \

¶
∝ 

µ


1

2

¶
× 

¡
\ 2

¢
(2.20)

Note that equation 2.20 is a joint posterior distribution involving 1
2
and . Its form is more complicated than

the conditional distributions for  and 1
2
shown in sections 2.1 and 2.2. To proceed further in terms of inference,

the researcher has to ‘isolate’ the component of the posterior relevant to  or 1
2
 For example, to conduct inference

about , the researcher has to derive the marginal posterior distribution for  Similarly, inference on 1
2
is based

on the marginal posterior distribution for 1
2
 The marginal posterior for  is defined as

 (\) =
∞Z
0



µ
1

2
 \

¶

1

2
(2.21)

while the marginal posterior for 1
2
is given by



µ
1

2
\
¶
=

∞Z
0



µ
1

2
 \

¶
 (2.22)

In the case of this simple linear regression model under the natural conjugate prior, analytical results for these

integrals are available. As shown in Hamilton (1994) pp 357, the marginal posterior distribution for  is a multi-

variate T distribution, while the marginal posterior for 1
2
is a Gamma distribution. An intuitive description of these

analytical results can also be found in Koop (2003) Chapter 2.

However, for the linear regression model with other prior distributions (for example where the prior for the

coefficients is set independently from the prior for the variance) analytical derivation of the joint posterior and then

the marginal posterior distribution is not possible. Similarly, in more complex models with a larger set of unknown

parameters (i.e. models that may be more useful for inference and forecasting) these analytical results may be difficult

to obtain. This may happen if the form of the joint posterior is unknown or is too complex for analytical integration.

Readers should pause at this point and reflect on two key messages from the three cases considered above:

Example 3.• As shown by Case 1 and Case 2, conditional posterior distributions are relatively easy to
derive and work with.

• In contrast, as shown by Case 3, derivation of the marginal posterior distribution (from a joint posterior

distribution) requires analytical integration which may prove difficult in complex models.

This need for analytical integration to calculate the marginal posterior distribution was the main stumbling block

of Bayesian analysis making it difficult for applied researchers.

3. Gibbs Sampling for the linear regression model

It was the development of simulation method such as Gibbs sampling which greatly simplified the integration

step discussed above and made it possible to easily extend Bayesian analysis to a variety of econometric models.

Definition 2. Gibbs sampling is a numerical method that uses draws from conditional distributions to ap-

proximate joint and marginal distributions.

As discussed in case 3 above, researchers are interested in marginal posterior distributions which may be difficult

to derive analytically. In contrast, the conditional posterior distribution of each set of parameters is readily available.

According to definition 2, one can approximate the marginal posterior distribution by sampling from the conditional

distributions.
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We describe this algorithm in detail below, first in a general setting and then applied specifically to the linear

regression model. Most importantly, we then describe how to code the algorithm for linear regression models. Note

that all the files referred to below are saved in the sub-folder called chapter 1 in the main folder called code.

3.1. Gibbs Sampling a general description. Suppose we have a joint distribution of  variables

(1 2) (3.1)

This may, for example, be a joint posterior distribution.

and we are interested in obtaining the marginal distributions

()  = 1 (3.2)

The standard way to do this is to integrate the joint distribution in 3.1. However, as discussed above, this integration

may be difficult or infeasible in some cases. It may be that the exact form of 3.1 is unknown or is to complicated for

direct analytical integration.

Assume that the form of the conditional distributions (\)  6=  is known. A Gibbs sampling algorithm

with the following steps can be used to approximate the marginal distributions.

(1) Set starting values for 1
01 

0


where the superscript 0 denotes the starting values.

(2) Sample 11 from the distribution of 1 conditional on current values of 2


¡
11\02 0

¢
(3) Sample 12 from the distribution of 2 conditional on current values of 1 3


¡
12\11 030

¢
·
·
·
k. Sample 1 from the distribution of  conditional on current values of 1 2−1


¡
1\11 121−1

¢
to complete 1 iteration of the Gibbs sampling algorithm.

As the number of Gibbs iterations increases to infinity, the samples or draws from the conditional distributions

converge to the joint and marginal distributions of  at an exponential rate (for a proof of convergence see Casella and

George (1992)). Therefore after a large enough number of iterations, the marginal distributions can be approximated

by the empirical distribution of 

In other words, one repeats the Gibbs iterations times (ie a number of iterations large enough for convergence)

and saves the last  draws of  (for eg  = 1000). This implies that the researcher is left with  values for 1.

The histogram for 1 (or any other estimate of the empirical density) is an approximation for the marginal

density of 1

Thus an estimate of the mean of the marginal posterior distribution for  is simply the sample mean of the 

retained draws

1



X
=1



where the superscript  indexes the (retained) Gibbs iterations. Similarly, the estimate of the variance of the marginal

posterior distribution is given by

How many Gibbs iterations are required for convergence? We will deal with this question in detail in section

section 3.7 below.

One crucial thing to note is that the implementation of the Gibbs sampling algorithm requires the researcher to

know the form of the conditional distributions (\). In addition, it must be possible to take random draws from

these conditional distributions.

3.2. Gibbs Sampling for a linear regression. We now proceed to our first practical example involving a

linear regression model. We first describe the application of the Gibbs sampling algorithm to the regression. This is

followed immediately by a line by line description of Matlab code needed to implement the algorithm.

Consider the estimation of the following AR(2) model via Gibbs sampling

 = +1−1 +2−2 +  ˜(0 
2) (3.3)

where  is annual CPI inflation for the US over the period 1948Q1 to 2010Q3. Let  = {1 −11 −2} denote
the RHS variables in equation 3.3 and  = {1 2} the coefficient vector. Our aim is to approximate the marginal
posterior distribution of 1 2 and 2 As discussed above it is difficult to derive these marginal distributions

analytically. Note, however, that we readily derived the posterior distribution of  = {1 2} conditional on 2
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(see section 2.1) and the posterior distribution of 2 conditional on  = {1 2} (see section 2.2) Estimation of
this model proceeds in the following steps

Step 1 Set priors and starting values. We set a normal prior for the coefficients 

()˜

⎛⎜⎜⎝
⎛⎝ 0

0
1

0
2

⎞⎠ 

0

⎛⎝ Σ 0 0

0 Σ1 0

0 0 Σ2

⎞⎠
Σ0

⎞⎟⎟⎠ (3.4)

In other words, we specify the prior means for each coefficient in  (denoted as 0 in 3.4) and the prior

variance Σ0 For this example (with three coefficients) 0 is a 3 × 1 vector, while Σ0 is 3 × 3 matrix with
each diagonal element specifying the prior variance of the corresponding element of 0

We set an inverse Gamma prior for 2 and set the prior degrees of freedom 0 and the prior scale matrix 0 (see

equation 3.5). We will therefore work with the inverse Gamma distribution in the Gibbs sampler below. Note that

this is equivalent to working with Gamma distribution and 12


¡
2
¢
˜Γ−1

µ
0

2

0

2

¶
(3.5)

To initialise the Gibbs sampler we need a starting value for either 2 or . In this example we will assume that the

starting value for 2 = 2 where 
2
 is the OLS estimate of 

2 In linear models (such as linear regressions and

Vector Autoregressions) the choice of starting values has, in our experience, little impact on the final results given

that the number of Gibbs iterations is large enough.

Step 2 Given a value for 2 we sample from the conditional posterior distribution of  As discussed in section 2.1,

this is a normal distribution with a known mean and variance given


¡
\2 

¢
˜ (∗  ∗) (3.6)

where

∗
(3×1)

=

µ
Σ−10 +

1

2
 0


¶−1µ
Σ−10 0 +

1

2
 0


¶
(3.7)

 ∗
(3×3)

=

µ
Σ−10 +

1

2
 0


¶−1
Note that we have all the ingredients to calculate ∗ and  ∗ which in this example are 3 × 1 and 3 × 3
matrices respectively. We now need a sample from the normal distribution with mean∗ and variance  ∗.
For this we can use the following algorithm.

Algorithm 1. To sample a ×1vector denoted by  from the ( ) distribution, first generate ×1 numbers
from the standard normal distribution (call these 0. Note that all computer packages will provide a routine to do

this). These standard normal numbers can then be transformed such that the mean is equal to  and variance equals

 using the following transformation

 = + 0 × 12

Thus one adds the mean and multiplies 0 by the square root of the variance.

Step 2 (continued) The procedure in algorithm 1 suggests that once we have calculated∗ and  ∗, the draw for  is obtained

as

1

(3×1)
= ∗
(3×1)

+

"
̄

(1×3)
× ( ∗)12

(3×3)

#0
(3.8)

where ̄ is a 1× 3 vector from the standard normal distribution. Note that the superscript 1 in 1 denotes

the first Gibbs iteration.

Step 3 Given the draw 1, we draw 2 form its conditional posterior distribution. As shown in section 2.2 the

conditional posterior distribution for 2 is inverse Gamma


¡
2\ 

¢
˜Γ−1

µ
1

2

1

2

¶
(3.9)

where

1 = 0 +  (3.10)

1 = 0 +
¡
 −1

¢0 ¡
 −1

¢
A crucial thing to note about the posterior scale parameter of this distribution 1 is the fact that the second

term (
¡
 −1

¢0 ¡
 −1

¢
) is calculated using the previous draw of the coefficient vector (in this case

1). To draw from the inverse Gamma distribution in equation 3.9 we first calculate the parameters in

equation 3.10 and then use the following algorithm to draw
¡
2
¢1
from the inverse Gamma distribution

(note that
¡
2
¢
denotes the  Gibbs draw) .
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Algorithm 2. To sample a scalar  from the Inverse Gamma distribution with degrees of freedom 
2
and scale

parameter 
2
i.e. Γ−1(

2
 
2
): Generate  numbers form the standard normal distribution 0˜(0 1) Then

 =


000

is a draw from the Γ−1(
2
 
2
) distribution.

Step 4 Repeat steps 2 and 3  times to obtain 1 and
¡
2
¢1

¡
2
¢
. The last  values of  and 2 from

these iterations is used to form the empirical distribution of these parameters. Note that this empirical

distribution is an approximation to the marginal posterior distribution. Note also that the first  − 

iterations which are discarded are referred to as burn-in iterations. These are the number of iterations

required for the Gibbs sampler to converge.

Its worth noting that it makes no difference which order steps 2 and 3 are repeated. For example one could start

the Gibbs sampler by drawing 2 conditional on starting values for  (rather than the other way around as we have

done here)

3.2.1. Inference using output from the Gibbs sampler. The Gibbs sampler applied to the linear regression model

produces a sequence of draws from the approximate marginal posterior distribution of  and 2 The mean of these

draws is an approximation to the posterior mean and provides a point estimate of of  and 2 The percentiles

calculated from these draws can be used to produce posterior density intervals. For example, the 5 and the 95

percentiles approximate the 10% highest posterior density intervals (HPDI) or 10% credible sets which can be used

for simple hypothesis testing. For example, if the highest posterior density interval for  does not contain zero, this

is evidence that the hypothesis that  = 0 can be rejected.

More formal methods for model comparison involve the marginal likelihood  ( ) mentioned in section 2. The

marginal likelihood is defined as

 ( ) =

Z

¡
 \ 2¢  ¡2¢ Ξ

where Ξ =  2 In other words, the marginal likelihood represents the posterior distribution with the parameters

integrated out. Consider two models 1 and 2. Model 1 is preferred if 1
( )  2

( ) or the Bayes factor
1

( )

2
( )

is larger than 1. In comparison to HPDIs, inference based on marginal likelihoods or Bayes factors is more

complicated from a computational and statistical point of view. First, while an analytical expression for  ( ) is

available for the linear regression model under the natural conjugate prior, numerical methods are generally required

to calculate the integral in the expression for  ( ) above. In the appendix to this chapter, we provide an example

of how Gibbs sampling can be used to compute the marginal likelihood for the linear regression model. Second,

model comparison using marginal likelihoods requires the researchers to use proper priors (i.e. prior distributions

that integrate to 1). In addition, using non-informative priors may lead to problems when interpreting Bayes Factors.

An excellent description of these issues can be found in Koop (2003) pp 38.

3.3. Gibbs Sampling for a linear regression in Matlab (example1.m). We now go through the Matlab

code needed for implementing the algorithm described in the section above. Note that the aim is to estimate the

following AR(2) model via Gibbs sampling.

 = +1−1 +2−2 +  ˜(0 
2) (3.11)

where  is annual CPI inflation for the US over the period 1948Q1 to 2010Q3 and  = {1 2}. The code
presented below is marked with comments for convenience. The same code without comments accompanies this

monograph and is arranged by chapter. The code for the example we consider in this section is called example1.m

and is saved in the folder

Consider the code for this example presented in 4 and 5. Line 2 of the code adds functions that are needed as

utilities—eg for taking lags or differences. We will not discuss these further. On line 5, we load data for US inflation

from an excel file. Line 7 creates the regressors, a constant and two lags of inflation (using the function lag0 in the

folder functions). Line 11 specifies the total number of time series observations after removing the missing values

generated after taking lags. Line 14 sets prior mean for the regression coefficients.⎛⎝ 0

0
1

0
2

⎞⎠ =

⎛⎝ 0

0

0

⎞⎠
The prior mean for each coefficient is set to zero in this example. The prior variance is set to an identity matrix on

line 15 in this example. ⎛⎝ Σ 0 0

0 Σ1 0

0 0 Σ2

⎞⎠ =

⎛⎝ 1 0 0

0 1 0

0 0 1

⎞⎠
Line 17 sets the prior degrees of freedom for the inverse Gamma distribution while line sets 0 the prior scale

parameter. Line 20 sets the starting value of , while line 21 sets the starting value for 2 Line 22 specifies the total
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Figure 4. Example 1: Matlab code

number of Gibbs iterations, while line 23 specifies the number to discard (in this example we save 1000 iterations for

inference). out1 and out2 on line 24 and 25 are empty matrices that will save the draws of  and 2 respectively. Line

26 starts the main loop that carries out the Gibbs iterations. On line 28, we begin the first step of the Gibbs algorithm

and calculate the mean of the conditional posterior distribution of  (∗ =
¡
Σ−10 + 1

2
 0


¢−1 ¡
Σ−10 0 +

1
2
 0

¢
)

and on line 29 we calculate the variance of this conditional posterior distribution. Line 32 draws from the normal

distribution with this mean and variance. Note that it is standard to restrict the draw of the AR coefficients to be

stable. This is why line 31 has a while loop which keeps on drawing from the coefficients from the normal distribution

if the draws are unstable. Stability is checked on line 33 by computing the eigenvalues of the coefficient matrix written
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Figure 5. Example 1: Matlab Code (continued)
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Figure 6. Results using example1.m

Posterior Mean Standard Deviation 5th and 95th percentiles

 02494 00799 (01104 03765)

1 13867 00557 (12922 14806)

2 −04600 00550 (−05532−03709)
Table 1. Results using example1.m

in first order companion form. That is the AR(2) model is re-written as (this is the companion form)µ

−1

¶
=

µ


0

¶
+

µ
1 2
1 0

¶µ
−1
−2

¶
+

µ

0

¶
Then the AR model is stable if the eigenvalues of

µ
1 2
1 0

¶
are less than or equal to 1 in absolute value. Note

that this check for stability is not required for the Gibbs sampling algorithm but usually added by researchers for

practical convenience. Line 41 computes the residuals using the last draw of the coefficients. Line 43 computes the

posterior degrees of freedom for the inverse Gamma distribution 1 = 0 +  Line 44 computes the posterior scale

parameter 1 = 0 +
¡
 −1

¢0 ¡
 −1

¢
 Line 46 to 48 draw from the inverse Gamma distribution using

algorithm 2. Lines 49 to 51 save the draws of  and 2 once the number of iterations exceed the burn-in period.

Running this file produces the histograms shown in figure 6 (see lines 54 to 70 in example1.m—these histograms are

drawn using the retained draws in out1 and out2). These histograms are the Gibbs sampling estimate of the marginal

posterior distribution of the coefficients and the variance. Note that the mean of the posterior distribution is easily

calculated as the sample mean of these saved draws. Similarly, the sample standard deviation and percentiles provide

measures of uncertainty. Researchers usually report the posterior mean, the standard deviation and the 5th and 95th

percentiles of the posterior distribution. Example1.m produces the following moments for the coefficients (see table

1).

Note that the percentiles of the distribution are a useful measure of uncertainty. These represent HPDIs, or the

posterior belief that the parameter lies within a range (see Canova (2007) page 337 and Koop (2003) pp 43). Suppose

that the lower bound for  was less than 0. Then this would indicate that one cannot exclude the possibility that

the posterior mean for  is equal to zero.

3.4. Gibbs Sampling for a linear regression in Matlab and forecasting (example2.m). The file ex-

ample2.m considers the same model as in the previous subsection. However, we know use the AR model to forecast

inflation and build the distribution of the forecast. This example shows that one can easily obtain the distribution of

functions of the regression coefficients. Note that the forecast from an AR(2) model is easily obtained via simulation.

In other words, given a value for the current and lagged data and the regression coefficients, the 1 period ahead

forecast is

̂+1 = +1 +2−1 + (∗) (3.12)
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Figure 7. Example 2: Matlab code

where ∗ is a scalar drawn from the standard normal distribution. Similarly, the 2 period ahead forecast is

̂+2 = +1̂+1 +2 + (
∗) (3.13)

and so forth. Note that we incorporate future shock uncertainty by adding the term ∗ i.e. a draw from the normal

distribution with mean 0 and variance 2

The code shown in figures 7 and 8 is identical to example 1 until line 54. Once past the burn in stage, we not

only save the draws from the conditional distributions of the coefficients and the variance, but we use these draws to

compute a two year ahead forecast for inflation. Line 55 intialises an empty matrix yhat which will save the forecast.
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Figure 8. Example 2: Matlab code (continued)

Line 56 fills the first two values of yhat as actual values of inflation in the last two periods of the sample. Line 58

to 60 carries out the recursion shown in equations 3.12 and 3.13 for 12 periods. Line 62 saves actual inflation and

the forecast in a matrix out3. The crucial thing to note is that this done for each Gibbs iteration after the burn-in

period. Therefore in the end we have a set of 1000 forecasts. This represents an estimate of the posterior density.

On line 92 we calculate the percentiles of the 1000 forecasts. The result gives us a fan chart for the inflation forecast

shown in figure 9.

3.5. Gibbs Sampling for a linear regression with serial correlation. We now proceed to our second

main example involving the linear regression model. We illustrate the power of the Gibbs sampler by considering
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Figure 9. The distribution of the forecast of inflation using example2.m

the model in 3.3 but allowing for first order serial correlation in the residuals. We first describe the application of

the Gibbs sampling algorithm to the regression. This is followed immediately by a line by line description of Matlab

code needed to implement the algorithm. This algorithm was first developed in Chib (1993).

Consider the estimation of the following AR(2) model via Gibbs sampling

 = +1−1 +2−2 +  (3.14)

 = −1 +   ∼ (0 2)

where  is annual CPI inflation for the US over the period 1948Q1 to 2010Q3. Let  = {1 −11 −2} denote
the RHS variables in equation 3.3 and  = {1 2} the coefficient vector. Our aim is to approximate the marginal
posterior distribution of 1 2 and 2 and 

The key to seeting up the Gibbs sampler for this model is to make the following two observations

• Suppose we knew the value of . Then the model in equation 3.14 can be transformed to remove the serial
correlation. In particular we can re-write the model as

( − −1)
 ∗

=  (1− ) +1(−1 − −2)
 ∗−1

+2(−2 − −3)
 ∗−2

+ ( − −1)


(3.15)

That is we subtract the lag of each variable times the serial correlation coefficient . Note that the trans-

formed error term −−1 is serially uncorrelated. Therefore after this transformation we are back to the
linear regression framework we saw in the first example (see section 3.2). In other words, after removing

the serial correlation, the conditional distribution of the coefficients and of the error variance is exactly as

described for the standard linear regression model in section 3.2.

• Suppose we know 1 and 2 Then we can compute  =  − ( + 1−1 + 2−2) and treat the
equation  = −1 +   ∼ (0 2) as a linear regression model in . Again, this is just a standard

linear regression model with an iid error term and the standard formulas for the conditional distribution of

the regression coefficient  and the error variance 2 applies.

These two observations clearly suggest that to estimate this model, the Gibbs sampler needs three steps (instead

of two in the previous example). We draw 1 and 2 conditional on knowing 2 and  after transforming the

model to remove serial correlation (as in equation 3.15). Conditional on 1 and 2 and 2 we draw  Finally,

conditional on 1,2 and  we draw 2 The steps are as follows

Step 1 Set priors and starting values. We set a normal prior for the coefficients 

()˜

⎛⎜⎜⎝
⎛⎝ 0

0
1

0
2

⎞⎠ 

0

⎛⎝ Σ 0 0

0 Σ1 0

0 0 Σ2

⎞⎠
Σ0

⎞⎟⎟⎠ (3.16)
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In other words, we specify the prior means for each coefficient in  (denoted as 0 in 3.4) and the prior

variance Σ0 For this example (with three coefficients) 0 is a 3 × 1 vector, while Σ0 is 3 × 3 matrix with
each diagonal element specifying the prior variance of the corresponding element of 0

We set a normal prior for the serial correlation coefficient 

()˜
¡
0Σ

¢
(3.17)

We set an inverse Gamma prior for 2 and set the prior degrees of freedom 0 and the prior scale matrix 0 (see

equation 3.18).


¡
2
¢
˜Γ−1

µ
0

2

0

2

¶
(3.18)

To initialise the Gibbs sampler we need a starting value for 2 and . In this example we will assume that the starting

value for 2 = 2 where 
2
 is the OLS estimate of 

2 We assume that the starting value for  = 0

Step 2 Given a value for 2 and  we sample from the conditional posterior distribution of  As discussed above,

this is done by first transforming the dependent and independent variables in the model to remove serial

correlation. Once this is done we are back to the standard linear regression framework. We create the

following transformed variables

 ∗ =  − −1
∗ =  − −1

where ∗ represent the right hand side variables in our AR model. The conditional distribution of the

regression coefficients is then given as


¡
\2  

¢
˜ (∗  ∗) (3.19)

where

∗
(3×1)

=

µ
Σ−10 +

1

2
∗0 

∗


¶−1µ
Σ−10 0 +

1

2
∗0 

∗


¶
(3.20)

 ∗
(3×3)

=

µ
Σ−10 +

1

2
∗0 ∗

¶−1
Note that the mean and variance in equation 3.20 is identical to the expressions in equation 3.7. We have

simply replaced the dependent and independent variables with our transformed data.

Step 3 Conditional on 2 and  we sample from the conditional distribution of  Given the previous draw of

 we can calculate the model residuals  =  − ( + 1−1 + 2−2) and treat the equation  =

−1 +   ∼ (0 2) as an AR(1) model in  Therefore, the conditional distribution for  is simply a

normal distribution with the mean and variance derived in section 2.1. That is, the conditional distribution

is


¡
\2  

¢
˜ (∗ ∗) (3.21)

where

∗
(1×1)

=

µ
Σ−1 +

1

2
0

¶−1µ
Σ−1 0 +

1

2
0

¶
(3.22)

∗
(1×1)

=

µ
Σ−1 +

1

2
0

¶−1
where  =  and  = −1 With a value for ∗ and ∗ in hand, we simply draw  from the normal

distribution with this mean and variance

1

(1×1)
= ∗
(1×1)

+

"
̄

(1×1)
× (∗)12

(1×1)

#
where ̄ is a draw from the standard normal distribution.

Step 4 Given a draw for  and  we draw 2 form its conditional posterior distribution. As shown in section 2.2

the conditional posterior distribution for 2 is inverse Gamma


¡
2\ 

¢
˜Γ−1

µ
1

2

1

2

¶
(3.23)

where

1 = 0 +  (3.24)

1 = 0 +
¡
 ∗ −1∗

¢0 ¡
 ∗ −1∗

¢
Note that the term (

¡
 ∗ −1∗

¢0 ¡
 ∗ −1∗

¢
) is calculated using the  residuals  ∗ − 1∗ (where

1 is the previous draw of the coefficient vector).
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Figure 10. Example 3: Matlab code

Step 5 Repeat steps 2 and 4  times to obtain 1 , 1and
¡
2
¢1

¡
2
¢
. The last  values of  

and 2 from these iterations is used to form the empirical distribution of these parameters. This example

shows that we reduce a relatively complicated model into three steps, each of which are simple and based

on the linear regression framework. As seen in later chapters, Gibbs sampling will operate in exactly the

same way in more complicated models—i.e. by breaking the problem down into smaller simpler steps.

3.6. Gibbs Sampling for a linear regression with serial correlation in Matlab (example3.m). The

matlab code for this example is a simple extension of example1.m and shown in figures 10, 11 and 12. Note that the
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Figure 11. Example 3: Matlab code (continued)

underlying data is exactly as before. This is loaded and lags etc created using the commands from lines 5 to 11. Lines

14 and 15 set the prior mean and variance for  for lines 17 and lines 18 sets the prior scale parameter and degrees

of freedom for the inverse Gamma prior for 2 Lines 20 and 21 set the mean and variance for the normal prior for

, i.e. ()˜
¡
0Σ

¢
Lines 23 to 25 set starting values for the parameters. The first step of the Gibbs sampling

algorithm starts on line 34 and 35 where we create  ∗ =  − −1∗ =  − −1, the data transformed to
remove serial correlation. Lines 38 and 39 calculate the mean and the variance of the conditional distribution of 

using this tranformed data. As in the previous example, lines 40 to 48 draw  from its conditional distribution, but

ensure that the draw is stable. Line 50 calculates the (serially correlated) residuals  = − (+1−1 +2−2)
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Figure 12. Example 3: Matlab code (continued)

using the previous draw of 1 and 2 and lines 50 and 51 create  =  and  = −1. Line 54 calculates the

mean of the conditional distribution of  ∗
(1×1)

=
¡
Σ−1 + 1

2
0

¢−1 ¡
Σ−1 0 + 1

2
0

¢
while line 55 calculates the

variance of the conditional distribution ∗
(1×1)

=
¡
Σ−1 + 1

2
0

¢−1
 Line 59 draws  from the normal distribution

using 1

(1×1)
= ∗

(1×1)
+

"
̄

(1×1)
× (∗)12

(1×1)

#
and the while loop ensures that  is less than or equal to 1 in absolute value.

Line 67 calculates the serially uncorrelated residuals  ∗ −1∗ . These are used on lines 69 to 74 to draw 2 from
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Figure 13. The distribution of the inflation forecast using example3.m.
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Figure 14. Sequence of retained Gibbs draws for the AR(2) model with serial correlation using 500 iterations

the inverse Gamma distribution. After the burn-in stage, the code computes the forecast from this AR(2) model with

serial correlation. Line 82 projects forward the equation for the error term i.e. + = +−1 + ∗ where ∗ is a
standard normal shock. Line 83 calculates the projected value of inflation given + This is done for each retained

draw of the Gibbs sampler with the results (along with actual data) stored in the matrix out1 (line 87). The resulting

distribution of the forecast is seen in 13.

3.7. Convergence of the Gibbs sampler. A question we have ignored so far is: How many draws of the

Gibbs sampling algorithm do we need before we can be confident that the draws from the conditional posterior

distributions have converged to the marginal posterior distribution? Generally researchers proceed in two steps

• Choose a minimum number of draws  and run the Gibbs sampler

• Check if the algorithm has converged (using the procedures introduced below). If there is insufficient

evidence for convergence, increase  and try again.
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Figure 15. Recursive means of the retained Gibbs draws for the AR(2) model with serial correlation
using 500 iterations
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Figure 16. Autocorrelation of the retained Gibbs draws for the AR(2) model with serial correlation
using 500 iterations

The simplest way to check convergence is to examine the sequence of retained draws. If the Gibbs sampler has

converged to the target distibution, then the retained draws should fluctuate randomly around a stationary mean

and not display any trend. This visual inspection is usually easier if one plots the recursive mean of the retained

draws. If the Gibbs sampler has converged, then the recursive mean should show little fluctuation. A related method

to examine convergence is plot the autocorrelation of the retained draws. If convergence has occurred, the sequence

of draws should display little autocorrelation (i.e. they should be fluctuating randomly around a stationary mean).

In order to illustrate these ideas, we plot the sequence of retained draws, the recursive means of those draws

and the autocorrelation functions of the retained draws for the parameters of the model examined in section 3.6. In

particular, we estimate the AR(2) model with serial correlation using 500 Gibbs iterations (using the file example3.m)

and retain all of these draws. Figures 14, 15 and 16 examine the convergence of the model. Figures 14 and 15 clearly

show that the Gibbs draws are not stationary with the recursive mean for 1 2 and  showing a large change
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Figure 17. Sequence of retained Gibbs draws for the AR(2) model with serial correlation using
25000 iterations
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Figure 18. Recursive means of retained Gibbs draws for the AR(2) model with serial correlation
using 25000 iterations

after 300 iterations (but 2 appears to have converged with the draws fluctuating around a stationary mean). This

also shows up in the autocorrelation functions, with the autocorrelation high for 1 2 and  These figures can

be produced using the file example4.m. These results would indicate that a higher number of Gibbs iterations are

required. Figures 17, 18 and 19 plot the same objects when 25000 Gibbs iterations are used (with 24000 as the

number of burn-in iterations). The sequence of retained draws and the recursive means appear substantially more

stable. The autocorrelations for 1 2 and  decay much faster in figure 19.

These graphical methods to assess convergence are widely used in applied work. A more formal test of convergence

has been proposed by Geweke (1991). The intuition behind this test is related to the idea behind the recursive mean

plot: If the Gibbs sampler has converged then the mean over different sub-samples of the retained draws should be

similar. Geweke (1991) suggests the following procedure:
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Figure 19. Autocorrelation of retained Gibbs draws for the AR(2) model with serial correlation
using 25000 iterations

(1) Divide the retained Gibbs draws of the model parameters  into two subsamples 1 2 where Geweke

(1991) recommends 1 = 012 = 05 where N denotes the total number of retained draws.

(2) Compute averages 1 =
P1

=1

1
and 2 =

P
=2+1


2

(3) Compute the asymptotic variance
1(0)

1
and

2(0)

2
where  () is the spectral density at frequency 

Note that this estimate of the variance takes into account the possibility that the Gibbs sequence may be

autocorrelated. For a description of spectral analysis see Hamilton (1994) and Canova (2007).

(4) Then the test statistic

 =
1 −2q
1(0)

1
+

2(0)

2

(3.25)

is asymptotically distributed as  (0 1). Large values of this test statistic indicate a significant difference

in the mean across the retained draws and suggests that one should increase the number of initial Gibbs

iterations (i.e. increase the number of burn-in draws).

Geweke (1991) suggests a related statistic to judge the efficiency of the Gibbs sampler and to gauge the total

number of Gibbs iterations to be used. The intuition behind this measure of relative numerical efficiency (RNE) is

as follows. Suppose one could take iid draws of  ∈ {1 2} directly from the posterior. Then the variance of

the posterior mean  () =
1


P
  is given by

  ( ()) =
1

2
 (1) +

1

2
 (2) + 

1

2
 ( )

=   () 

However, in practice one uses the Gibbs sampler to approximate draws from the posterior. These Gibbs draws are

likely to be autocorrelated and a measure of their variance which takes this into account is  (0)  . Thus a measure

of the RNE is

 =
\  ()

 (0)
(3.26)

where \  () is the sample variance of the Gibbs draws 1 2 . If the Gibbs sampler has converged then

 should be close to 1 as the variance of the iid draws \  () should be similar to the measure of the variance

that takes any possible autocorrelation into account.

The file example5.m illustrates the calculation of the statistics in equation 3.25 and 3.26.

4. Further Reading

• An intuitive description of the Gibbs sampling algorithm for the linear regression model can be found in

Kim and Nelson (1999) Chapter 7. Gauss codes for the examples in Kim and Nelson (1999) are available

at http://www.econ.washington.edu/user/cnelson/markov/prgmlist.htm.
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• A more formal treatment of the linear regression model from a Bayesian perspective can be found in Koop

(2003), Chapters 2, 3 and 4.

• The appendix in Zellner (1971) provides a detailed description of the Inverse Gamma and Gamma distrib-
utions. See Bauwens et al. (1999) for a detailed description of algorithms to draw from these distributions.

5. Appendix: Calculating the marginal likelihood for the linear regression model using the Gibbs

sampler.

Consider the following linear regression model

 =  +  ˜(0 
2)

The prior distributions are assumed to be

 ()˜(0Σ0)


¡
2
¢
˜(0 0)

The posterior distribution of the model parameters Φ =  2 is defined via the Bayes rule

 (Φ\ ) =  ( \Φ)×  (Φ)

 ( )
(5.1)

where  ( \Φ) = ¡
22

¢−
2 exp

¡− 1
22

( −)
0
( −)

¢
is the likelihood function,  (Φ) is the joint prior

distribution while  ( ) is the marginal likelihood that we want to compute. Chib (1995) suggests computing the

marginal likelihood by re-arranging equation 5.1. Note that in logs we can re-write equation 5.1 as

ln ( ) = ln ( \Φ) + ln (Φ)− ln (Φ\ ) (5.2)

Note that equation 5.2 can be evaluated at any value of the parameters Φ to calculate ln ( ). In practice a

high density point Φ∗ such as the posterior mean or posterior mode is used.
The first two terms on the right hand side of equation 9.3 are easy to evaluate at Φ∗ The first term is the log

likelihood function. The second term is the joint prior which is the product of a normal density for the coefficients

and an inverse Gamma density for the variance (see example below). Evaluating the third term ln (Φ∗\ ) is more
complicated as the posterior distribution is generally not known in closed form. Chib (1995) shows how this term

can be evaluated using the output from the Gibbs sampling algorithm used to approximate the posterior distribution

for Φ Recall that  (Φ∗\ ) = 
¡
∗ 2∗

¢
where have dropped the conditioning on y on the right hand side for

simplicity. The marginal, conditional decomposition of this distribution is


¡
∗ 2∗

¢
= 

¡
∗\2∗¢×

¡
2∗
¢

(5.3)

The first term 
¡
∗\2∗¢ is the conditional posterior distribution for the regression coefficients. Recall that this a

normal distribution with mean and variance given by

∗ =

µ
Σ−10 +

1

2∗
 0


¶−1µ
Σ−10 0 +

1

2∗
 0


¶
 ∗ =

µ
Σ−10 +

1

2∗
 0


¶−1
and therefore can be easily evaluated at ∗ and 2∗

The second term in equation 5.3 
¡
2∗
¢
can be evaluated using the weak law of large numbers (see Koop (2003)

Appendix B). That is


¡
2∗
¢ ≈ 1



X
=1


¡
2∗\

¢
where  denotes  = 1 2 draws of the Gibbs sampler. Note that the conditional distribution is simply the

Inverse Gamma distribution derived for section 2.2 above.

The marginal likelihood is then given by

ln ( ) = ln ( \Φ) + ln (Φ)− ln ¡∗\2∗¢− ln ¡2∗¢ (5.4)

As an example we consider the following linear regression model based on 100 artificial observations

 = 1 + 05 +   () = 02

where ˜(0 1) We assume a natural conjugate prior of the form  (\2)˜
µµ

0

0

¶
 42

µ
1 0

0 1

¶¶
and


¡
2
¢
˜(25 3)

The matlab code for this example is shown in figures 20 and 21. The code on Lines 5 to 9 generates the artificial

data. We set the priors on lines 11 to 14. On line 16 we calculate the marginal likelihood for this model analytically

using the formula on page 41 in Koop (2003). We can now compare this estimate with the estimate produced

using Chib’s method. The Gibbs sampler used to estimate the model is coded on lines 19 to 43. Line 46 calculates



5. APPENDIX: CALCULATING THE MARGINAL LIKELIHOOD FOR THE LINEAR REGRESSION MODEL USING THE GIBBS SAMPLER.27

Figure 20. Matlab code for calculating the marginal likelihood

the posterior mean of the coefficients, line 47 calculates the posterior mean of the variance while line 48 calculates

the posterior mean of 12. For computational convenience, when considering the prior ln (Φ) and the posterior

distribution ln (Φ\ ) in the expression for the marginal likelihood (see equation 5.2) we consider the precision
12 and use the Gamma distribution. This allows us to use built in matlab functions to evaluate the Gamma PDF.

On line 51, we evaluate the log of the prior distribution of the VAR coefficients  (\2) at the posterior mean.
Line 53 evaluates the Gamma posterior for the precision. The function gampdf1 converts the two parameters of

the distribution: the degrees of freedom 0 and scale parameter 0 into the parameters  = 02 and  = 20

as expected by the parameterisation of the Gamma distribution used by Matlab in its built in function gampdf.
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Figure 21. Matlab code for calculating the marginal likelihood continued

Line 55 evaluates the log likelihood at the posterior mean. Lines 56 to 61 evaluate the term 
¡
∗\2∗¢ in the

factorisation of the posterior 
¡
∗ 12∗

¢
= 

¡
∗\2∗¢×

¡
12∗

¢
. Lines 63 to 69 evaluate the term 

¡
12∗

¢
.

Each iteration in the loop evaluates 
¡
12∗\

¢
 Note that this is simply the Gamma distribution with degrees

of freedom 0 +  and scale parameter 0 + 0 where the residuals  are calculated using each Gibbs draw of the
regression coefficients  .0 and 0 denote the prior degrees of freedom and prior scale parameter respectively. Line

73 constructs 
¡
12∗

¢ ≈ 1


P
=1

¡
12∗\

¢
. The marginal likelihood is calculated using equation 5.2 on line

75 of the code.



CHAPTER 2

Gibbs Sampling for Vector Autoregressions

This chapter introduces Bayesian simulation methods for Vector Autoregressions (VARs). The estimation of

these models typically involves a large number of parameters. As a consequence, estimates of objects of interest

such as impulse response functions and forecasts can become imprecise in large scale models. By incorporating prior

information into the estimation process, the estimates obtained using Bayesian methods are generally more precise

than those obtained using the standard classical approach. In addition, bayesian simulation methods such as Gibbs

sampling provide an efficient way not only to obtain point estimates but also to characterise the uncertainty around

those point estimates. Therefore we focus on estimation of VARs via Gibbs sampling in this chapter.

Note, however, that under certain prior distributions, analytical expressions exist for the marginal posterior

distribution of the VAR parameters. A more general treatment of Bayesian VARs can be found in Canova (2007)

amongst others. See http://apps.eui.eu/Personal/Canova/Courses.html for F.Canova’s BVAR code.

This chapter focusses on two key issues

• It states the conditional posterior distributions of the VAR parameters required for Gibbs sampling and

discussed the Gibbs sampling algorithm for VARs

• We go through the practical details of setting different type of priors for VAR parameters
• We focus on implementation of Gibbs sampling for VARs in Matlab.
• We discuss how to estimate structural VARs with sign restrictions using Matlab.

1. The Conditional posterior distribution of the VAR parameters and the Gibbs sampling algorithm

Consider the following VAR(p) model

 = +1−1 +2−2− +  (1.1)

 (0) = Σ if  = 

 (0) = 0 if  6= 

 () = 0

where  is a  × matrix of endogenous variables,  denotes a constant term. The VAR can be written compactly

as

 =  +  (1.2)

with  = { −1 −2 −}Note that as each equation in the VAR has identical regressors, it can be re-

written as

 = ( ⊗) +  (1.3)

where  = () and  = () and  = ().

Assume that the prior for the VAR coefficients  is normal and given by

()˜
³
̃0

´
(1.4)

where ̃0 is a ( × ( ×  + 1)) × 1 vector which denotes the prior mean while  is a is a [ × ( ×  + 1)]×
[ × ( ×  + 1)] matrix where the diagonal elements denote the variance of the prior. We discuss different ways

of setting ̃0 and  in detail below.

It can be shown that the posterior distribution of the VAR coefficients conditional on Σ is normal (see Kadiyala

and Karlsson (1997)) . That is the conditional posterior for the coefficients is given by  (\Σ ) ˜ (∗  ∗) where
∗ =

¡
−1 +Σ−1 ⊗ 0



¢−1 ³
−1̃0 +Σ−1 ⊗ 0

̂
´

(1.5)

 ∗ =
¡
−1 +Σ−1 ⊗ 0



¢−1
where ̂ is a ( × ( ×  + 1)) × 1 vector which denotes the OLS estimates of the VAR coefficients in vectorised

format ̂ = 
³
( 0

)
−1
( 0

)
´
. The format of the conditional posterior mean in equation 1.5 is very similar

to that discussed for the linear regression model (see section 2.1 in the previous chapter). That is the mean of the

conditional posterior distribution is a weighted average of the OLS estimator ̂ and the prior ̃0 with the weights

given by the inverse of the variance of each (Σ−1 ⊗ 0
 is the inverse of ̂ while 

−1 is the inverse of the variance
of the prior).

29
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The conjugate prior for the VAR covariance matrix is an inverse Wishart distribution with prior scale matrix ̄

and prior degrees of freedom 

(Σ)˜
¡
̄ 

¢
(1.6)

Definition 3. If Σ is a ×  positive definite matrix, it is distributed as an inverse Wishart with the following

density  (Σ) = 
||2

|Σ|(++1)2 exp
¡−05Σ−1¢ where −1 = 22(−1)4

Y
=1

Γ [( + 1− ) 2],  is the scale

matrix and  denotes the degrees of freedom. See Zellner (1971) pp395 for more details.

Informally, one can think of the inverse Wishart distribution as a multivariate version of the inverse Gamma

distribution introduced in the context of the linear regression model in the previous chapter. Given the prior in

equation 1.6, the posterior for Σ conditional on  is also inverse Wishart  (Σ\ ) ˜
¡
Σ̄  + 

¢
where  is the

sample size and

Σ̄ = ̄ + ( −)
0
( −) (1.7)

Note that  denotes the VAR coefficients reshaped into ( ×  + 1) by  matrix.

1.1. Gibbs sampling algorithm for the VAR model. The Gibbs sampling algorithm for the VAR model

consists of the following steps:

Step 1 Set priors for the VAR coefficients and the covariance matrix. As discussed above, the prior for the VAR

coefficients is normal and given by ()˜
³
̃0

´
. The prior for the covariance matrix of the residuals Σ

is inverse Wishart and given by 
¡
̄ 

¢
 Set a starting value for Σ (e.g. the OLS estimate of Σ).

Step 2 Sample the VAR coefficients from its conditional posterior distribution  (\Σ ) ˜ (∗  ∗) where
∗

(×(×+1))×1
=
¡
−1 +Σ−1 ⊗ 0



¢−1 ³
−1̃0 +Σ−1 ⊗ 0

̂
´

(1.8)

 ∗
(×(×+1))×(×(×+1))

=
¡
−1 +Σ−1 ⊗ 0



¢−1
(1.9)

Once ∗ and  ∗ are calculated, the VAR coefficients are drawn from the normal distribution (see algorithm 1 in

Chapter 1)

1
((×(×+1))×1)

= ∗
((×(×+1))×1)

+

"
̄

(1×(×(×+1)))
× ( ∗)12
(×(×+1))×(×(×+1))

#
(1.10)

Step 3 Draw Σ from its conditional distribution (Σ\ ) ˜
¡
Σ̄  + 

¢
where Σ̄ = ̄+

¡
 −

1
¢0 ¡

 −
1
¢

where 1 is the previous draw of the VAR coefficients reshaped into a matrix with dimensions (×+1)×
so it is conformable with 

Algorithm 3. To draw a matrix Σ̂ from the  distribution with v degrees of freedom and scale parameter 

draw a matrix  with dimensions  × , from the multivariate normal (0 −1) Then the draw from the inverse

Wishart distribution is given by the following transformation:

Σ̂ =

Ã
X
=1


0


!−1
Step 3 (continued) With the parameters of inverse Wishart distribution in hand (Σ̄ = ̄ +

¡
 −

1
¢0 ¡

 −
1
¢
and

 + ) one can use algorithm 3 to draw Σ from the inverse Wishart distribution.

Repeat Steps 2 to 3  times to obtain 1 and (Σ)
1
 (Σ)


. The last  values of  and Σ from these iterations is used

to form the empirical distribution of these parameters. Note that the draws of the model parameters (after

the burn-in period) are typically used to calculate forecasts or impulse response functions and build the

distribution for these statistics of interest.

In general, the Gibbs sampling algorithm for VARs is very similar to that employed for the linear regression

model in the previous chapter. The key difference turns out to be the fact that setting up the prior in the VAR model

is a more structured process than the linear regression case.

We now turn to a few key prior distributions for VARs that have been proposed in the literature and the

implementation of the Gibbs sampling algorithm in Matlab. To discuss the form of the priors we will use the

following bi-variate VAR(2) model as an example:µ



¶
=

µ
1
2

¶
+

µ
11 12
21 22

¶µ
−1
−1

¶
+

µ
11 12
21 22

¶µ
−2
−2

¶
+

µ
1
2

¶
(1.11)

where 

µ
1
2

¶
= Σ =

µ
Σ11 Σ12
Σ12 Σ22

¶
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2. The Minnesota prior

The Minnesota prior (named after its origins at the Federal Reserve Bank of Minnesota) incorporates the prior

belief that the endogenous variables included in the VAR follow a random walk process or an AR(1) process. In other

words, the mean of the Minnesota prior for the VAR coefficients in equation 1.11 implies the following form for the

VAR

µ



¶
=

µ
0

0

¶
+

µ
011 0

0 022

¶µ
−1
−1

¶
+

µ
0 0

0 0

¶µ
−2
−2

¶
+

µ
1
2

¶
(2.1)

Equation 2.1 states that the Minnesota prior incorporates the belief that both  and  follow an AR(1) process or

a random walk if 011 = 022 = 1. If  and  are stationary variables then it may be more realistic to incorporate

the prior that they follow an AR(1) process. For this example, the mean of the Minnesota prior distribution for the

VAR coefficients (i.e. ̃0 from ()˜
³
̃0

´
) is given by the vector

̃0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

011
0

0

0

0

0

022
0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.2)

where the first five rows correspond to the coefficients for the first equation and the second five rows correspond to the

coefficients for the second equation. The variance of the prior  is a set in a more structured manner (as compared

to the examples in chapter 1) and is given by the following relations for the VAR coefficients 

µ
1

3

¶2
  =  (2.3)µ

12

3

¶2
  6= 

(14)
2
for the constant

where  refers to the dependent variable in the  equation and  to the independent variables in that equation.

Therefore, if  =  then we are referring to the coefficients on the own lags of variable .  and  are variances

of error terms from AR regressions estimated via OLS using the variables in the VAR. The ratio of  and  in

the formulas above controls for the possibility that variable  and  may have different scales. Note that  is the lag

length. The 0 are parameters set by the researcher that control the tightness of the prior:

• 1 controls the standard deviation of the prior on own lags. As 1 → 0 11 22 → 011 
0
22 respectively and

all other lags go to zero in our example VAR in equation 1.11.

• 2 controls the standard deviation of the prior on lags of variables other than the dependent variable i.e.

12 21 etc. As 2 → 0    go to zero. With 2 = 1 there is no distinction between lags of the dependent

variable and other variables.

• 3 controls the degree to which coefficients on lags higher than 1 are likely to be zero. As 3 increases

coefficients on higher lags are shrunk to zero more tightly.

• The prior variance on the constant is controlled by 4 As 4 → 0 the constant terms are shrunk to zero.

It is instructive to look at how the prior variance matrix looks for our example VAR(2) in equation 1.11. This is

shown below in equation 2.4
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 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(14)
2

0 0 0 0 0 0 0 0 0

0 (1)
2

0 0 0 0 0 0 0 0

0 0
³
112
2

´2
0 0 0 0 0 0 0

0 0 0
¡
1
23

¢2
0 0 0 0 0 0

0 0 0 0
³
112
22

3

´2
0 0 0 0 0

0 0 0 0 0 (24)
2

0 0 0 0

0 0 0 0 0 0
³
212
1

´2
0 0 0

0 0 0 0 0 0 0 (1)
2

0 0

0 0 0 0 0 0 0 0
³
212
12

3

´2
0

0 0 0 0 0 0 0 0 0
¡
1
23

¢2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.4)

The matrix  in equation 2.4 is a 10 × 10 matrix, because for this example we have 10 total coefficients in
the VAR model. The diagonal elements of the matrix  are the prior variances for each corresponding coefficient.

Consider the the first five elements on the main diagonal correspond to the first equation the VAR model and is

re-produced in equation 2.5. ⎛⎜⎜⎜⎜⎜⎜⎜⎝

(14)
2

0 0 0 0

0 (1)
2

0 0 0

0 0
³
112
2

´2
0 0

0 0 0
¡
1
23

¢2
0

0 0 0 0
³
112
22

3

´2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(2.5)

The first diagonal element (14)
2
controls the prior on the constant term. The second element (1)

2
controls the

prior on 11 the coefficient on the first lag of  Note that this element comes from the first expression in equation

2.3
¡
1
3

¢2
with the lag length  = 1 as we are dealing with the first lag. The third diagonal element controls the

prior on 12 the coefficient on the first lag of  in the equation for  Note that this element comes from the second

expression in equation 2.3 i.e.
³
12


3

´2
with  = 1. The third and the fourth diagonal elements control the prior on

the coefficients 11 and 12 respectively (and again come from the first and second expression in equation 2.3 with

 = 2).

Under a strict interpretation of the Minnesota prior, the covariance matrix of the residuals of the VAR Σ is

assumed to be diagonal with the diagonal entries fixed using the error variances from AR regressions . Under

this assumption, the mean of the posterior distribution for the coefficients is available in closed form. For the exact

formula, see Kadiyala and Karlsson (1997) Table 1. However, it is common practice amongst some researchers to

incorporate the Minnesota prior into the Gibbs sampling framework and draw Σ from the inverse Wishart distribution.

We turn to the practical implementation of this algorithm next.

An important question concerns the values of the hyperparameters that control the priors. Canova (2007) pp

380 reports the following values for these parameters typically used in the literature.

1 = 02

2 = 05

3 = 1  2

4 = 105

Some researchers set the value of these parameters by comparing forecast performance of the VAR across a range of

values for these parameters. In addition, the marginal likelihood can be used to select the value of these hyperpa-

rameters. The appendix to this chapter shows how to use the procedure in Chib (1995) to calculate the marginal

likelihood for a VAR model.

2.1. Gibbs sampling and the Minnesota prior. Matlab code. We consider the estimation of a bi-variate

VAR(2) model using quarterly data on annual GDP growth and CPI inflation for the US from 1948Q2 to 2010Q4. We

employ a Minnesota prior which incorporates the belief that both variables follow a random walk. Note that while

annual CPI inflation may be non-stationary (and hence the random walk prior reasonable), annual GDP growth

is likely to be less persistent. Hence one may want to consider incorporating the belief that this variable follows

an AR(1) process in actual applications. Note that, we also incorporate a inverse Wishart prior for the covariance

matrix and hence depart from the strict form of this model where the covariance matrix is fixed and diagonal. The
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Figure 1. Matlab code for example 1

model is estimated using the Gibbs sampling algorithm described in section 1.1. The code for this model is in the

file example1.m in the subfolder chapter 2 under the folder code. The code is also shown in figures 1, 2 and 3. We

now go through this code line by line.

Line 5 of the code loads the data for the two variables from an excel file and lines 8 and 9 prepare the matrices

Lines 16 to 24 compute 1 and 2 (to be used to form the Minnesota prior) using AR(1) regressions for each

variable. In this example we use the full sample to compute these regressions. Some researchers use a pre-sample (or

a training sample) to compute 1 and 2 and then estimate the VAR on the remaining data points. The argument

for using a pre-sample is that the full sample should not really be used to set parameters that affect the prior.
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Figure 2. Matlab code for example 1 (continued)

Lines 27 to 29 specify the parameters 1,2 3,4 that control the tightness of the prior and are used to build the

prior covariance. Line 33 specifies ̃0 the prior mean. As mentioned above in this example we simply assume a prior

mean of 1 for the coefficients on own first lags. In practice, this choice should depend on the stationarity properties of

the series. Line 35 forms the 10×10 prior variance matrix . Lines 37 to 47 fill the diagonal elements of this matrix as
shown in equation 2.4. Line 49 specifies the prior scale matrix for the inverse Wishart distribution as an identity matrix

but specifies the prior degrees of freedom as the minimum possible +1 (line 51) hence making this a non-informative

prior. Line 53 sets the starting value for Σ as an identity matrix. We use 10,000 Gibbs replications discarding the

first 5000 as burn-in. Line 62 is the first step of the Gibbs sampler with the calculation of the mean of the conditional
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Figure 3. Matlab code: Example 1 continued

posterior distribution of the VAR coefficients ∗
(×(×+1))×1

=
¡
−1 +Σ−1 ⊗ 0



¢−1 ³
−1̃0 +Σ−1 ⊗ 0

̂
´

while line 63 compute the variance of this distribution as  ∗
(×(×+1))×(×(×+1))

=
¡
−1 +Σ−1 ⊗ 0



¢−1
. On

line 64 we draw the VAR coefficients from the normal distribution using ∗ and  ∗. Line 66 calculates the residuals
of the VAR. Line 68 calculates the posterior scale matrix Σ̄. Line 69 draws the covariance matrix from the inverse

Wishart distribution where the function IWPQ uses the method in algorithm 3. Once past the burn-in period we

build up the predictive density and save the forecast for each variable. The quantiles of the predictive density are

shown in figure 4
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Figure 4. Forecast for annual GDP growth and inflation using a VAR with a Minnesota prior

3. The Normal inverse Wishart Prior

3.1. The natural conjugate prior. The normal inverse Wishart prior assumes a normal prior for the VAR

coefficients and a inverse Wishart prior for the covariance matrix. This is a conjugate prior for the VAR model. This

prior for the VAR parameters can be specified as follows

 (\Σ) ˜
³
̃0Σ⊗ ̄

´
(3.1)

(Σ)˜ (̄ ) (3.2)

where ̃0 is specified exactly as in equation 2.1. The matrix ̄ is a diagonal matrix where the diagonal elements

are defined as µ
01

3

¶2
for the coefficients on lags (3.3)

(04)
2
for the constant (3.4)

So, for our example VAR(2), this matrix is given as

̄ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(04)
2

0 0 0 0

0
³
01
1

´2
0 0 0

0 0
³
01
2

´2
0 0

0 0 0
³

01
231

´2
0

0 0 0 0
³

01
232

´2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.5)

The matrix ̄ is defined as a  × diagonal matrix with diagonal elements given byµ


0

¶2
(3.6)
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For our example VAR this matrix is given by

̄ =

⎛⎜⎝
³
1
0

´2
0

0
³
2
0

´2
⎞⎟⎠ (3.7)

The parameters that make up the diagonal elements of ̄ and ̄ have the following interpretation:

• 0 controls the overall tightness of the prior on the covariance matrix.

• 1 controls the tightness of the prior on the coefficients on the first lag. As 1 → 0 the prior is imposed

more tightly.

• 3 controls the degree to which coefficients on lags higher than 1 are likely to be zero. As 3 increases

coefficients on higher lags are shrunk to zero more tightly.

• The prior variance on the constant is controlled by 4 As 4 → 0 the constant is shrunk to zero.

To consider the interpretation of this prior (i.e. equations 3.1 and 3.2), consider calculating the prior covariance

matrix for the coefficients. This will involve the following operation

̄ ⊗ ̄ (3.8)

That is the matrix  or the prior variance of all the VAR coefficients is obtained by a kronecker product in 3.8.

Consider calculating this kronecker product in our bi-variate VAR example

⎛⎜⎝
³
1
0

´2
0

0
³
2
0

´2
⎞⎟⎠⊗

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(04)
2

0 0 0 0

0
³
01
1

´2
0 0 0

0 0
³
01
2

´2
0 0

0 0 0
³

01
231

´2
0

0 0 0 0
³

01
232

´2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
This kronecker product involves each element of ̄ being multiplied by the entire ̄. If one does one obtains equation

3.9

 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(14)
2

0 0 0 0 0 0 0 0 0

0 (1)
2

0 0 0 0 0 0 0 0

0 0
³
11
2

´2
0 0 0 0 0 0 0

0 0 0
¡
1
23

¢2
0 0 0 0 0 0

0 0 0 0
³

11
22

3

´2
0 0 0 0 0

0 0 0 0 0 (24)
2

0 0 0 0

0 0 0 0 0 0
³
21
1

´2
0 0 0

0 0 0 0 0 0 0 (1)
2

0 0

0 0 0 0 0 0 0 0
³

21
12

3

´2
0

0 0 0 0 0 0 0 0 0
¡
1
23

¢2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.9)

Note that this is just the Minnesota prior variance with the parameter 2 = 1. Therefore the structure of the

natural conjugate prior implies that we treat lags of dependent variable and lags of other variables in each equation

of the VAR in exactly the same manner. This is in contrast to the Minnesota prior where the parameter 2 governs

the tightness of the prior on lags of variables other than the dependent variable.

Given the natural conjugate prior, analytical results exist for the posterior distribution for the coefficients and

the covariance matrix. Therefore one clear advantage of this set up over the Minnesota prior is that it allows the

derivation of these analytical results without the need for a fixed and diagonal error covariance matrix. The exact

formulas for the posteriors are listed in table 1 in Kadiyala and Karlsson (1997).

The Gibbs sampling algorithm for this model is identical to that described in section 2.1. As explained above

the only difference is that the variance of the prior distribution is set equalt to  as described in equation 3.9.

3.2. The independent Normal inverse Wishart prior. The restrictions inherent in the natural conjugate

prior may be restrictive in many practical circumstances. That is, in many practical applications one may want

to treat the coefficients of the lagged dependent variables differently from those of other variables. An example is

a situation where the researcher wants impose that some coefficients in a VAR equation are close to zero (e.g. to

impose money neutrality or small open economy type restrictions). This can be acheived via the independent Normal
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inverse Wishart prior. As the name suggests, this prior involves setting the prior for the VAR coefficients and the

error covariance independently (unlike the natural conjugate prior)

 () ˜
³
̃0

´
(3.10)

(Σ)˜ (̄ ) (3.11)

where the elements of ̃0,  and ̄ are set by the researcher to suit the empirical question at hand. Under this

prior analytical expressions for the marginal posterior distributions are not available. Therefore, the Gibbs sampling

algorithm outlined in section 1.1 has to be used.

As an example, consider estimating the following VAR(2) model for the US,⎛⎜⎜⎝







⎞⎟⎟⎠ =

⎛⎜⎜⎝
1
2
3
4

⎞⎟⎟⎠+
⎛⎜⎜⎝

11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44

⎞⎟⎟⎠
⎛⎜⎜⎝

−1
−1
−1
−1

⎞⎟⎟⎠ (3.12)

+

⎛⎜⎜⎝
11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44

⎞⎟⎟⎠
⎛⎜⎜⎝

−2
−2
−2
−2

⎞⎟⎟⎠+
⎛⎜⎜⎝

1
2
3
4

⎞⎟⎟⎠
where



⎛⎜⎜⎝
1
2
3
4

⎞⎟⎟⎠ = Σ

and  is the federal funds rate,  is the 10 year government bond yield,  is the unemployment rate and  is

annual CPI inflation. Suppose that one is interested in estimating the response of these variables to a decrease in

the government bond yield. This shock may proxy the impact of quantitative easing polices recently adopted. Note,

that given the recession in 2010/2011 it is reasonable to assume that the federal funds rate is unlikely to respond to

changes in other variables. The standard way to impose this restriction on the contemporaneous period is to identify

the yield shock using a Cholesky decomposition of Σ

Σ = 0
0
0

where 0 is a lower triangular matrix. Note, however, that one may also want impose the restriction that the Federal

Funds rate does not respond with a lag to changes in the other variables. Given that the Federal Funds rate is near

the zero lower bound during the crisis period this restriction can be justified.

The independent Normal Wishart prior offers a convenient way to incorporate these restrictions into the VAR

model. One can specify the prior mean for all coefficients equal to zero i.e. ̃0 = 0(×(×+1))×1 and the covariance
of this prior  as a diagonal marix with diagonal elements equal to a very large number except for the elements

corresponding to the coefficients 12 13 14 and 12 13 14 The elements of  corresponding to these coefficients

are instead set to a very small number and the prior mean of zero is imposed very tightly for them. Therefore the

posterior estimates of 12 13 14 and 12 13 14 will be very close to zero. We now turn to a matlab implementation

of this example using Gibbs sampling.

3.2.1. Gibbs sampling and the independent normal Wishart prior. We estimate the VAR model in equation 3.12

using data for the US over the period 2007m1 to 2010m12, the period associated with the financial crisis. We employ

a prior which sets the coefficients 12 13 14 and 12 13 14 close to zero— i.e. the prior mean for these equals

zero and the prior variance is a very small number. Given the very short sample period, we also set a prior for the

remaining VAR coefficients. For these remaining coefficients, we assume that the prior mean for coefficients on own

first lags are equal to 0.95 and all others equal zero. The prior variance for these is set according to equation 3.9.

We set a prior independently for error covariance. We use a Gibbs sampling algorithm to approximate the posterior.

The matlab code (example2.m) can be seen in figures 5, 6 and 7.

Lines 16 to 34 of the code calculate 1 2 3 4 the variances used to scale the prior variance for the VAR

coefficients other than 12 13 14 and 12 13 14. Lines 36 to 38 specify the parameters that will control the variance

of the prior on these parameters. Lines 40 to 44 set the prior mean for the VAR coefficients. Under the prior the

VAR has the following form:⎛⎜⎜⎝







⎞⎟⎟⎠ =

⎛⎜⎜⎝
0

0

0

0

⎞⎟⎟⎠+
⎛⎜⎜⎝
095 0 0 0

0 095 0 0

0 0 095 0

0 0 0 095

⎞⎟⎟⎠
⎛⎜⎜⎝

−1
−1
−1
−1

⎞⎟⎟⎠

+

⎛⎜⎜⎝
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

−2
−2
−2
−2

⎞⎟⎟⎠+
⎛⎜⎜⎝

1
2
3
4

⎞⎟⎟⎠
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Figure 5. Matlab code for example 2

Lines 48 to 53 set the variance around the prior for 12 13 14 and 12 13 14 Note that the variance is set to a

very small number implying that we incorporate the belief that these coefficients equal zero very strongly. Lines 56

to 88 set the prior variance for the remaining VAR coefficients according to equation 3.9. This is an ad hoc way of

incorporating prior information about these coefficients but is important given the small sample. Lines 90 and 92

set the prior for the error covariance as in example 1. Given these priors the Gibbs algorithm is exactly the same

as in the previous example. However, we incorporate one change usually adopted by researchers. On lines 108 to

115 we draw the VAR coefficients from its conditional posterior but ensure that the draw is stable. In other words

the function stability re-writes the VAR coefficient matrix in companion form and checks if the eigenvalues of this
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Figure 6. example 2: Matlab code continued

matrix are less than or equal to1—i.e. that the VAR is stable (see Hamilton (1994) page 259). Once past the burn-in

stage line 123 calculates the structural impact matrix 0 as the Cholesky decomposition of the draw of Σ and lines

124 to 129 calculate the impulse response to a negative shock in the Government bond yield using this 0 We save

the impulse response functions for each remaining draw of the Gibbs sampler. Quantiles of the saved draws of the

impulse response are error bands for the impulse responses.

The resulting median impulse responses and the 68% error bands are shown in figure 8. Note that 68% error

bands are typically shown as the 90% or 95% bands can be misleading if the distribution of the impulse response

function is skewed due to non-linearity. The response of the Federal Funds rate to this shock is close to zero as
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Figure 7. example2: Matlab code (continued)

implied by the Cholesky decomposition and the prior on 12 13 14 and 12 13 14 A 0.3% fall in the Government

bond yield lowers unemployment by 0.1% after 10 months (but the impact is quite uncertain as evident from the

wide error bands). The impact on inflation is much more imprecise with the zero line within the error bands for most

of the impulse horizon.

4. Steady State priors

In some circumstances it is useful to incorporate priors about the long run behaviour of the variables included

in the VAR. For example one may be interested in forecasting inflation using a VAR model. It can be argued that
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Figure 8. Impulse response to a fall in the Government bond yield

inflation in the long run will be close to the target set by the central bank. This information is a potentially useful

input as a prior.

Note that while the priors introduced above allow the researcher to have an impact on the value of the constant

terms in the VAR, there is no direct way to affect the long run mean (note that forecasts converge to the long run

unconditional mean). Consider our example bi-variate VAR re-produced belowµ



¶
=

µ
1
2

¶
+

µ
11 12
21 22

¶µ
−1
−1

¶
+

µ
11 12
21 22

¶µ
−2
−2

¶
+

µ
1
2

¶
  

µ
1
2

¶
= Σ (4.1)

The Minnesota and the Normal inverse Wishart priors place a prior on the constants

µ
1
2

¶
 The long run or steady

state means for  and  denoted by 1 and 2 however, is defined as (see Hamilton (1994) page 258)µ
1
2

¶
=

µµ
1 0

0 1

¶
−
µ

11 12
21 22

¶
−
µ

11 12
21 22

¶¶−1µ
1
2

¶
(4.2)

Villani (2009) proposes a prior distribution for the unconditional means  = {1 2} along with coefficients of
the VAR model. This requires one to re-write the model in terms of  = {1 2} rather than the constants 1 and
2 This can be done in our example VAR by substituting for 1 and 2 in equation 4.1 using the values of these

constants from equation 4.2 to obtainµ



¶
=

µµ
1 0

0 1

¶
−
µ

11 12
21 22

¶
−
µ

11 12
21 22

¶¶µ
1
2

¶
+

µ
11 12
21 22

¶µ
−1
−1

¶
+

µ
11 12
21 22

¶µ
−2
−2

¶
+

µ
1
2

¶
or more compactly in terms of lag operators as

 () ( − ) =  (4.3)

where  = { },  = {1 2}and  () =

µ
1 0

0 1

¶
−
µ

11 12
21 22

¶
−

µ
11 12
21 22

¶
2
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Villani (2009) proposes a normal prior for 

 () ∼ (0Σ) (4.4)

The priors for the autoregressive coefficients and the error covariance are specified independently. For example,

one can specify the Minnesota prior for the autoregressive coefficients and an inverse Wishart prior for the error

covariance.

Note that there are three sets of parameters to be estimated in this VAR model: (1) The VAR coefficients, the

error covariance and the long run means Villani (2009) describes a Gibbs sampling algorithm to estimate the model

and we turn to this next.

4.1. Gibbs sampling algorithm. The Gibbs sampling algorithm for this model is an extension of the algorithm

described in section 1.1. Conditional on knowing  the reparametrised model is a just a standard VAR and standard

methods apply. The algorithm works in the following steps

Step 1 Set a normal prior for the VAR coefficients (̄)˜
³
̃0

´
where ̄ the (vectorised) VAR coefficients except

for the constant terms. The prior for the covariance matrix of the residuals Σ is inverse Wishart and given

by 
¡
̄ 

¢
 The prior for the long run means is  () ∼ (0Σ) Set a starting value for  A starting

value can be set via OLS estimates of the VAR coefficients as

 =
³
 − ̃

´−1
̂

where ̃ are the OLS estimates of the VAR coefficients in companion form and  denotes the OLS estimates

of the constant terms in a comformable matrix. For the bi-variate VAR in equation 4.1 this looks as follows⎛⎝ 1
2

⎞⎠ =

⎛⎜⎜⎝
⎛⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎠−
⎛⎜⎜⎝

̂11 ̂12 ̂11 ̂12

̂21 ̂22 ̂21 ̂22
1 0 0 0

0 1 0 0

⎞⎟⎟⎠
⎞⎟⎟⎠
−1⎛⎜⎜⎝

̂1
̂2
0

0

⎞⎟⎟⎠
Step 2 Sample the VAR coefficients from their conditonal distribution. Conditional on , equation 4.3 implies that

the model is a VAR in the transformed (or de-meaned) variables  0
 =  − . The conditional posterior

distribution of the VAR coefficients is normal distribution 
¡
̄\Σ  ∗

¢
˜ (∗  ∗) where

∗
(×(× ))×1

=
¡
−1 +Σ−1 ⊗00

 
0


¢−1 ³
−1̃0 +Σ−1 ⊗00

 
0
 ̂
´

(4.5)

 ∗
(×(× ))×(×(× ))

=
¡
−1 +Σ−1 ⊗00

 
0


¢−1
(4.6)

where 0
 = [

0
−1  

0
−] and ̂ = 

³¡
00
 

0


¢−1 ¡
00
 

0


¢´
 Note that the dimensions of∗ and  ∗ are different

relative to those shown in section 1.1 because 0
 does not contain a constant term. Once

∗ and  ∗ are calculated,
the VAR coefficients are drawn from the normal distribution as before.

Step 3 Draw Σ from its conditional distribution
¡
Σ\̄  ∗

¢
˜

¡
Σ̄  + 

¢
where Σ̄ = ̄+

¡
 0
 −0


1
¢0 ¡

 0
 −0


1
¢

where 1 is the previous draw of the VAR coefficients reshaped into a matrix with dimensions ( × )×

so it is conformable with ∗ 
Step 4 Draw  from its conditional distribution. Villani (2009) shows that the conditional distribution of  is given

as 
¡
\̄Σ ∗

¢
∼  (∗Ω∗) where

Ω∗ =
¡
Σ−1 +  0

¡
0 ⊗Σ−1¢ 0¢−1 (4.7)

∗ = Ω∗
¡
 0

¡
Σ−1 0

¢
+Σ−1 0

¢
(4.8)

where  is a  × ( + 1) matrix  = [−−1− −] where  is the constant term ( a  × 1) vector equal to
one).  is a matrix with the following structure

 =

⎛⎜⎜⎝

1




⎞⎟⎟⎠
For our two variable VAR  looks as follows

 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0

0 1

11 12
21 22
11 12
21 22

⎞⎟⎟⎟⎟⎟⎟⎠ (4.9)
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Figure 9. Matlab code for VAR with steady state priors

Finally  =  −1−1 − − where  denotes the VAR coefficients on the i
 lag from the previous Gibbs

iteration.

Step 5 Repeat steps 2 to 4  times to obtain 1 and (Σ)
1
 (Σ)


and 1 The last  values of 

and Σ from these iterations is used to form the empirical distribution of these parameters.

4.2. Gibbs sampling algorithm for the VAR with steady state priors. The matlab code. We estimate

the VAR with steady state priors using the same data used in the first example (quarterly data on annual GDP growth

and CPI inflation for the US from 1948Q2 to 2010Q4) and consider a long term forecast of these variables. The code
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Figure 10. Matlab code for steady state VAR (continued)

for the model (example3.m) is presented in figures 9, 10, 11 and 12. The code is identical to the first matlab example

until line 50 where we set the prior for the long run means of the two variables. As an example we set the prior mean

equal to 1 for both 1 and 2 and a tight prior variance. Lines 54 to 58 estimate the VAR coefficients via OLS and

estimate a starting value for 1 and 2 as described in Step 1 of the Gibbs sampling algorithm above. Line 68 is the

first step of the Gibbs algorithm and computes the demeaned data  0
 =  −  and uses this on line 77 and 78 to

compute the mean and the variance of the conditional posterior distribution 
¡
̄\Σ  ∗

¢
and samples the VAR

coefficients from the normal distribution. Lines 81 to 85 draw Σ from the inverse Wishart distribution. Lines 89 to 100

draw 1 and 2 from the normal distribution. On line 89 the code creates the matrix  =  −1−1 − −
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Figure 11. Matlab code for VAR with steady state priors (continued)

Lines 90 to 96 create the matrix  =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0

0 1

11 12
21 22
11 12
21 22

⎞⎟⎟⎟⎟⎟⎟⎠  Line 97 creates the matrix  = [−−1 − −] . Lines

98 and 99 compute the variance and mean of the conditional posterior distribution of  (see equation 4.7 and 4.8

)while line 100 draws  from the normal distribution. After the burn-in stage the VAR is used to do a forecast for
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Figure 12. Matlab code for VAR with Steady State priors.

40 quarters. It is convenient to parameterise the VAR in the usual form i.e as in equation 4.1. On line 110 the code

calculates the implied constants in the VAR using the fact that⎛⎜⎜⎝
⎛⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎠−
⎛⎜⎜⎝

11 12 11 12
21 22 21 22
1 0 0 0

0 1 0 0

⎞⎟⎟⎠
⎞⎟⎟⎠
⎛⎜⎜⎝

1
2
1
2

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1
2
0

0

⎞⎟⎟⎠
and lines 113 to 117 calculate the forecast for each retained draw. The resulting forecast distribution in figure 13 is

centered around the long run mean close to 1 for both variables.
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Figure 13. Forecast distribution for the VAR with steady state priors.

5. Implementing priors using dummy observations

The computation of the mean of the conditional posterior distribution (see equation 1.5) requires the inversion of

( × ( × ( + 1)))× ( × ( × ( + 1))) matrix ¡−1 +Σ−1 ⊗ 0


¢−1
. For large VARs ( ≥ 20) this matrix

has very large dimensions (e.g for  = 20 and  = 2 this is a 820 × 820 matrix). This can slow down the Gibbs
sampling algorithm considerably. This computational constraint can be thought of as one potential disadvantage of the

way we have incorporated the prior, i.e. via the covariance matrix which has the dimensions ( × ( × ( + 1)))×
( × ( × ( + 1))) 

Note also that our method of implementing the prior makes it difficult to incorporate priors about combination

of coefficients in each equation or across equations. For instance, if one is interested in a prior that incorporates

the belief that the sum of the coefficients on lags of the dependent variable in each equation sum to 1 (i.e. each

variable has a unit root) this is very difficult to implement using a prior covariance matrix. Priors on combinations

of coefficients across equations may arise from the implications of DSGE models (see Negro and Schorfheide (2004)).

Again these are difficult to implement using the standard approach.

An alternative approach to incorporating prior information into the VAR is via dummy observations or artificial

data. Informally speaking this involves generating artificial data from the model assumed under the prior and mixing

this with the actual data. The weight placed on the artificial data determines how tightly the prior is imposed.

5.1. The Normal Wishart (Natural Conjugate) prior using dummy observations. Consider artificial

data denoted  and  (we consider in detail below how to generate this data) such that

0 = ( 0
)

−1
( 0

) (5.1)

 = ( −0)
0
( −0)

where ̃0 = (0). In other words a regression of  on  gives the prior mean for the VAR coefficients and sum

of squared residuals give the prior scale matrix for the error covariance matrix. The prior is of the normal inverse

Wishart form

(\Σ)˜
³
̃0Σ⊗ ( 0

)
−1´

(5.2)

 (Σ) ˜ (  −)

where  is the length of the artificial data and  denotes the number of regressors in each equation.

Given this artificial data, the conditional posterior distributions for the VAR parameters are given by
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 (\Σ ) ˜((∗)Σ⊗ (∗0∗)−1) (5.3)

 (Σ\ ) ˜ (∗  ∗)
where  ∗ = [ ;]∗ = [;] i.e. the actual VAR left and right hand side variables appended by the artificial

data and  ∗ denotes the number of rows in  ∗ and

∗ = (∗0∗)−1 (∗0 ∗)

∗ = ( ∗ −∗)0 ( ∗ −∗)

Note that the conditional posterior distribution has a simple form and the variance of  (\Σ ) only involves
the inversion of  ×  + 1 matrix making a Gibbs sampler based on this formulation much more computationally

efficient in large models.

5.1.1. Creating the dummy observations for the Normal Wishart prior. The key question however is, where do

 and  come from? The artificial observations are formed by the researcher and are created using the following

hyper-parameters:

•  controls the overall tightness of the prior

•  controls the tightness of the prior on higher lags

•  controls the tightness of the prior on constants

•  are standard deviation of error terms from OLS estimates of AR regression for each variable in the model

To discuss the creation of the dummy observations we are going to use the bi-variate VAR given below as an

example:µ



¶
=

µ
1
2

¶
+

µ
11 12
21 22

¶µ
−1
−1

¶
+

µ
11 12
21 22

¶µ
−2
−2

¶
+

µ
1
2

¶
  

µ
1
2

¶
= Σ (5.4)

Consider dummy observations that implement the prior on the coefficients on the first lag of  and  The

artificial data (denoted by 1 and 1) is given by

1 =

µ
(1)1 0

0 (1)2

¶
(5.5)

1 =

µ
0 (1)1 0 0 0

0 0 (1)2 0 0

¶
To see the intuition behind this formulation consider the VAR model using the artificial data

µ
(1)1 0

0 (1)2

¶
1

=

µ
0 (1)1 0 0 0

0 0 (1)2 0 0

¶
1

⎛⎜⎜⎜⎜⎝
1 2
11 21
12 22
11 21
12 22

⎞⎟⎟⎟⎟⎠


+

µ
1
2

¶
(5.6)

Expanding the equation above gives the followingµ
(1)1 0

0 (1)2

¶
=

µ
(1)111 (1)121
(1)212 (1)222

¶
+

µ
1
2

¶
(5.7)

Consider the first equation in the expression above (1)1 = (1)111 + 1 or 11= 1− 1
1

 Taking the expected

value of this gives  (11)= 1−
³
1
1

´
which equals 1 as  (1) = 0. In other words, the dummy variables imply

a prior mean of 1 for 11 Similarly, the variance of 11 is
2(1)

21
 Note that the implied prior mean and variance

for 11 is identical to the Natural conjugate prior discussed above. That is under the prior 11˜
³
1

2(1)

21

´
 As

 → 0 the prior is imlemented more tightly.

Consider the second equation implied by expression 5.7: 0 = (1)121 + 2 or 21= − 2
1
. This implies that

 (21) = 0 and  (21) =
2(2)

21
 Thus 21˜

³
0

2(2)

21

´
where the variance is of the same form as the

corresponding element in equation 3.9.

Thus, the artificial observations in 5.5 implement the Normal inverse Wishart prior for the coefficients on the

first lags of the two variables. We need to create artificial observations to implement the prior on the second lags.

These are given by the following matrices

2 =

µ
0 0

0 0

¶
(5.8)

2 =

µ
0 0 0 (1)12

 0

0 0 0 0 (1)22


¶
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Proceeding as in equation 5.7 one can show that these dummy variables imply a prior mean of 0 for the second lag

with the prior variance of the same form as in equation 3.9. For example, the prior variance associated with 11 is
2(1)

212
 .

The artificial observations that control the prior on the constants in the model are given by:

3 =

µ
0 0

0 0

¶
(5.9)

3 =

µ
1 0 0 0 0

1 0 0 0 0

¶
As  → 0 the prior is imlemented more tightly. The dummy observations to implement the prior on the error

covariance matrix are given by

4 =

µ
1 0

0 2

¶
(5.10)

4 =

µ
0 0 0 0 0

0 0 0 0 0

¶
with the magnitude of the diagonal elements of Σ controlled by the scale of the diagonal elements of 4 (i.e. larger

diagonal elements implement the prior belief that the variance of 1 and 2 is larger).

The prior is implemented by adding all these dummy observations to the actual data. That is

 ∗ = [ ;1;2;3;4]
∗ = [;1;2;3;4]

With this appended data in hand, the conditional distributions in equation 5.3 can be used to implement the Gibbs

sampling algorithm. Note that, as discussed in Banbura et al. (2007), these dummy observations for a general 

variable VAR with  lags are given as

 =

⎛⎜⎜⎜⎜⎜⎜⎝

(11)



0×(−1)×


 (1 )



01×

⎞⎟⎟⎟⎟⎟⎟⎠  =

⎛⎜⎜⎝
⊗(1 )


0×1

0× 0×1


01× 

⎞⎟⎟⎠ (5.11)

where  are the prior means for the coefficients on the first lags of the dependent variables (these can be different

from 1) and  = (1 )

5.1.2. Creating dummy variables for the sum of coefficients prior. If the variables in the VAR have a unit root,

this information can be reflected via a prior that incorporates the belief that coefficients on lags of the dependent

variable sum to 1 (see Robertson and Tallman (1999)). This prior can be implemented in our example VAR via the

following dummy observations

5 =

µ
1 0

0 2

¶
5 =

µ
0 1 0 1 0

0 0 2 0 2

¶
(5.12)

where 1 is the sample mean of  and 2 is the sample mean of  possibly calculated using an intial sample of

data. Note that these dummy observations imply prior means of the form  +  = 1 where  = 1 2 and  controls

the tightness of the prior. As  →∞ the prior is implemented more tightly. Banbura et al. (2007) show that these

dummy observations for a  variable VAR with  lags are given as

 =
 (11 )


 =

³
(12 )⊗(11 )


0×1

´
(5.13)

where  = 1 and   = 1  are sample means of each variable included in the VAR.

5.1.3. Creating dummy variables for the common stochastic trends prior. One can express the prior belief that

the variables in the VAR have a common stochastic trend via the following dummy observations

6 =
¡
1 2

¢
6 =

¡
 1 2 1 2

¢
(5.14)

These dummy observations imply, for example, that 1 = 1+111+212+111+212 i.e. the mean of the

first variable is a combination of 1 and 2 Note as  →∞ the prior is implemented more tightly and the series in

the VAR share a common stochastic trend.

5.1.4. Matlab code for implementing priors using dummy observations. Figures 14, 15 and 16 show the matlab

code for the bi-variate VAR(2) model using quarterly data on annual GDP growth and CPI inflation for the US from

1948Q2 to 2010Q4 (example4.m). Line 26 of the code calculates the sample means of the data to be used in setting

the dummy observations. Some researchers use a pre-sample to calculate these means and the standard deviations

 Lines 28 to 32 specify the parameters that control the prior. Lines 33 to 37 set the dummy observations for

the VAR coefficients on the first lags. Lines 38 to 42 set the dummy observations for the VAR coefficients on the

second lag. Lines 43 to 47 specify the dummy observations for the prior on the constant. Lines 48 to 53 specify
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Figure 14. Normal Wishart prior using dummy observations

the dummy observations for the unit root prior. Lines 56 to 57 set out the dummy observations for the common

stochastic trends prior. Lines 59 to 64 specify the dummy observations for the prior on the covariance matrix.

Lines 68 and 69 mix the actual observations with the dummy data creating  ∗ = [ ;]
∗ = [;]. Line 72

computes the mean of the conditional posterior distribution of the VAR coefficients ∗ = (∗0∗)−1 (∗0 ∗). Line
83 calculates the variance of this posterior distribution Σ⊗(∗0∗)−1 and line 85 draws the VAR coefficients from the
normal distribution with this mean and variance. Line 88 calculates the scale matrix for the inverse Wishart density

∗ = ( ∗ −∗∗)0 ( ∗ −∗∗) and line 89 draws the covariance matrix from the inverse Wishart distribution.

Once past the burn-in stage the code forecasts the two variables in the VAR and builds up the predictive density.
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Figure 15. Normal Wishart prior using dummy observations continued

6. Application1: Structural VARs and sign restrictions

Structural VAR models offer a simple and flexible framework for analysing several questions of interest. Once

structural shocks are identified using an appropriate identification scheme, impulse response analysis, variance de-

composition and historical decomposition offer powerful tools. For a detailed explanation of structural VARs see

Hamilton (1994) or Canova (2007). In this section we focus on how structural analysis fits in the Gibbs sampling

framework established in the chapter.

As shown in the matlab example in section 3.2.1, one can estimate structural VARs by calculating the structural

impact matrix 0 (where Σ = 000 ) for each retained Gibbs draw and use this to compute impulse response
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Figure 16. Normal Wishart prior using dummy observations continued

functions, variance decompositions and historical decompositions. The Gibbs sampling framework is convenient

because it allows one to build a distribution for these objects (i.e. impulse response functions, variance decompositions

and historical decompositions) and thus characterise uncertainty about these estimates.

Strictly speaking, this indirect method of estimating structural VARs—i.e. calculating 0 using a Gibbs draw

of Σ (and not sampling 0 directly) provides the posterior distribution of 0 only if the structural VAR is exactly

identified (for e.g. when 0 is calculated using a Cholesky decomposition as in section 3.2.1) . In the case of over

identification one needs to estimate the posterior of 0 directly ( see Sims and Zha (1998)). We will consider such

an example in Chapter 4.
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Recent applications of structural VARs have used sign restrictions to identify structural shocks (for a critical

survey see Fry and Pagan (2007)). Despite the issues raised in Sims and Zha (1998), sign restrictions are implemented

using an indirect algorithm. In other words for each retained draw of Σ one calculates an 0 matrix which results

in impulse responses to a shock of interest with signs that are consistent with theory. For example to identify a

monetary policy shock one may want an 0 matrix that leads to a response of output and inflation that is negative

and a response of the policy interest rate that is positive for a few periods after the shock.

Ramirez et al. (2010) provide an efficient algorithm to find an 0 matrix consistent with impulse responses of

a certain sign consistent with theory. We review this algorithm by considering the following VAR(1) model as an

example ⎛⎝ 



⎞⎠ =

⎛⎝ 1
2
3

⎞⎠+
⎛⎝ 11 12 13

21 22 23
31 32 33

⎞⎠⎛⎝ −1
−1
−1

⎞⎠+
⎛⎝ 1

2
3

⎞⎠ (6.1)

where 

⎛⎝ 1
2
3

⎞⎠ = Σ  is output growth,  is inflation and  is the interest rate. The aim is to calculate

the impulse response to a monetary policy shock. The monetary policy shock is assumed to be one that decreases 
and  and increases  in the period of the shock. As described above, the Gibbs sampling algorithm to estimate

the parameters of the VAR model cycles through two steps, sampling successively from  (\Σ ) and  (Σ\ ) 
Once past the burn-in stage the following steps are used calculate the required 0 matrix:

Step 1 Draw a  × matrix  from the standard normal distribution

Step 2 Calculate the matrix  from the  decomposition of  Note that  is orthonormal i.e. 0 = .

Step 3 Calculate the Cholesky decomposition of the current draw of Σ = ̃00̃0
Step 4 Calculate the candidate 0 matrix as 0 = ̃0. Note that because 0 =  this implies that 000

will still equal Σ By calculating the product ̃0 we alter the elements of ̃0 but not the property that

Σ = ̃00̃0 The candidate 0 matrix in our 3 variable VAR example will have the following form

0 =

⎛⎝ 11 12 13
21 22 23
31 32 33

⎞⎠
The third row of this matrix corresponds with the interest rate shock. We need to check if 31  0 and

32  0 and 33  0. If this is the case a contemporaneous increase in  will lead to a fall in  and

 as the elements
¡
31 32 33

¢
correspond to the current period impulse response of   and 

respectively. If 31  0 and 32  0 and 33  0 we stop and use this 0 matrix to compute impulse

responses and other objects of interest. If the restriction is not satisfied we go to step 1 and try with an

new  matrix.

Step 5 Repeat steps 1 to 4 for every retained Gibbs draw.

6.1. A Structural VAR with sign restrictions in matlab. We estimate a large scale VAR model for the

US using quarterly data from 1971Q1 to 2010Q4 (example5.m). The VAR model includes the following variables (in

this order): (1) Federal Funds Rate (2) Annual GDP growth (3) Annual CPI Inflation (4) Annual real consumption

growth (5) Unemployment rate (6) change in private investment (7) net exports (8) annual growth in M2 (9) 10 year

government bond yield (10) annual growth in stock prices (11) annual growth in the yen dollar exchange rate. We

identify a monetary policy shock by assuming that a monetary contraction has the following contemporaneous effects

Variable Sign restriction

Federal Funds Rate +

Annual GDP growth -

Annual CPI Inflation -

Annual Real Consumption Growth -

Unemployment rate +

Annual Investment Growth -

Annual Money Growth -

The Matlab code for this example is shown in figures 17, 18 and 19. Line 37 of the code builds the dummy

observations for the normal wishart prior for the VAR using equations 5.11 and the sum of coefficients prior using

equation 5.13 via the function create_dummies.m in function folder. Lines 49 to 55 sample from the conditional

posterior distributions as in the previous example. Once past the burn-in stage, on line 61 we draw a  × matrix

from the standard normal distribution. Line 62 takes the QR decomposition of  and obtaines the matrix  Line

63 calculates the Cholesky decomposition of Σ while line 64 calculates the candidate 0 matrix as 0 = ̃0. Lines

66 to 72 check if the sign restrictions are satisfied by checking the elements of the first row of the 0 matrix (the row

that corresponds the interest rate). Lines 77 to 83 check if the sign restrictions are satisfied with the sign reversed.

If they are, we multiply the entire first row of the 0 matrix by -1. The code keeps on drawing  and calculating

candidate 0 = ̃0 matrices until an 0 matrix is found that satisfies the sign restrictions. Once an 0 matrix is
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Figure 17. A Structural VAR with sign restrictions: Matlab Code

found that satisfies the sign restrictions, this is used to calculate the impulse response to a monetary policy shock

and the impulse response functions for each retained Gibbs draw are saved. The file example6.m has exactly the

same code but makes the algorithm to find the 0 matrix more efficient by searching all rows of candidate 0 = ̃0
matrix for the one consistent with the policy shock—i.e. with the signs as in the table above. Once this is found we

insert this row into the first row of the candidate 0 matrix. Note that that this re-shuffling of rows does not alter the

property that Σ = 000. Note also that the 0 matrix is not unique. That is, one could find 0 matrices that satisfy
the sign restrictions but have elements of different magnitude. Some researchers deal with this issue by generating

0 matrices that satisfy the sign restrictions for each Gibbs draw and then retaining the 0 matrix that is closest to
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Figure 18. A structural VAR with sign restrictions (continued)

the mean or median of these  matrices. This imples that one restricts the distribution of the selected 0 matrices

via a (arbitrary) rule. The file example7.m does this for our example by generating 100 0 matrices for each retained

Gibbs draw and using the 0 matrix closest to the median to compute the impulse response functions. Figure 20

shows the estimated impulse response functions computed using example7.m

7. Application 2: Conditional forecasting using VARs and Gibbs sampling

In many cases (relevant to central bank applications) forecasts of macroeconomic variables that are conditioned

on fixed paths for other variables is required. For example, one may wish to forecast credit and asset prices assuming
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Figure 19. A structural VAR with sign restrictions: Matlab code (continued)

that inflation and GDP growth follow future paths fixed at the official central bank forecast. Waggoner and Zha

(1999) provide a convenient framework to calculate not only the conditional forecasts but also the forecast distribution

using a Gibbs sampling algorithm.

To see their approach consider a simple VAR(1) model

 = +−1 +0 (7.1)
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Figure 20. Impulse response to a monetary policy shock using sign restrictions

where  denotes a  × matrix of endogenoeus variables,  are the uncorrelated structural shocks and 0
0
0 = Σ

where Σ denotes the variance of the reduced form VAR esiduals. Iterating equation 7.1 forward  times we obtain

+ = 

X
=0

 +−1 +0

X
=0

+− (7.2)

Equation 7.2 shows that the K period ahead forecast + can be decomposed into components with and without

structural shocks. The key point to note is that if a restriction is placed on the future path of the   variable in

, this implies restrictions on the future shocks to the other variables in the system. This can easily be seen by

re-arranging equation 7.2

+ − 

X
=0

 −−1 = 0

X
=0

+− (7.3)

If some of the variables in + are constrained to follow a fixed path, this implies restrictions on the future

innovations on the RHS of equation 7.3. Waggoner and Zha (1999) express these constraints on future innovations as

 =  (7.4)

where  is a ( × ) × 1 vector where  are the number of constrained variables and  denotes the number of

periods the constraint is applied. The elements of the vector  are the path for the constrained variables minus the

unconditional forecast of the constrained variables.  is a matrix with dimensions ( × )× ( × ). The elements

of this matrix are the impulse responses of the constrained variables to the structural shocks  at horizon 1 2.

The ( × )× 1 vector  contains the constrained future shocks. We give a detailed example showing the structure
of these matrices below.

Doan et al. (1983) show that a least square solution for the constrained innovations in equation 7.4 is given as

̂ = 0(0)−1 (7.5)

With these constrained shocks ̂ in hand, the conditional forecasts can be calculated by substituting these in

equation7.2.
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7.1. Calculating conditional forecasts. To see the details of this calculation, consider the following VAR

model with two endogenous variablesµ



¶
=

µ
1
2

¶
+

µ
1 2
3 4

¶µ
−1
−1

¶
+

µ
11
12 22

¶µ
1
2

¶
(7.6)

In addition denote  as the impulse response of the 
 variable at horizon  to the  structural shock where

 = 1 2. Consider forecasting  three periods in the future using the estimated VAR in equation 7.6. However we

impose the condition that

⎛⎝ ̂+1

̂+2

̂+3

⎞⎠ =

⎛⎝ 1

1

1

⎞⎠, i.e. variable  is fixed at 1 over the forecast horizon. In order to

calculate the forecast for  under this condition, the first step involves using equation 7.5 to calculate the restricted

structural shocks. Using equation 7.5 requires building the matrices  and . We now describe the structure of these

matrices for our example. First note that the restricted structural shocks (to be calculated) are stacked as

̂ =

⎛⎜⎜⎜⎜⎜⎜⎝
̂1+1
̂2+1
̂1+2
̂2+2
̂1+3
̂2+3

⎞⎟⎟⎟⎟⎟⎟⎠ (7.7)

The matrix of impulse responses  is built to be compatible with ̂ (see equation 7.4) In this example, it has the

following structure

 =

⎛⎝ 112 212 0 0 0 0

122 222 112 212 0 0

132 232 122 222 112 212

⎞⎠ (7.8)

The matrix  is made of the response of the constrained variable 2 (i.e. ) to the two structural shocks. The

first row of the matrix has the response of  to 1 and 2 at horizon 1. Note that this row corresponds to the

first two elements in ̂— it links the constrained shocks 1 period ahead to their responses The second row of  has

this impulse response at horizon 2 (first two elements) and then at horizon 1 (third and fourth element). This row

corresponds to the forecast two periods ahead and links the structural shocks at horizon 1 and 2 to their respective

impulse responses. A similar interpretation applies to the subsequent rows of this matrix.

The matrix r is given as

 =

⎛⎝ 1− ̃+1

1− ̃+2

1− ̃+3

⎞⎠ (7.9)

where ̃+ denotes the unconditional forecast of  Once these matrices are constructed, the restricted structural

shocks are calculated as ̂ = 0(0)−1. These are then used calculate the conditional forecast by substituting them
in equation 7.6 and iterating forward.

In figures 21 and 22 we show the matlab code for this simple example of calculating a conditional forecast (the

matlab file is example8.m). We estimate a VAR(2) model for US GDP growth and inflation and use the estimated

VAR to forecast GDP growth 3 periods ahead assuming inflation remains fixed at 1% over the forecast horizon.Lines

18 to 21 of the code estimate the VAR coefficients and error covariance via OLS and calculate 0 as the Choleski

decomposition of the error covariance matrix. As shown in Waggoner and Zha (1999) the choice of identifying

restrictions (i.e. the structure of 0) does not affect the conditional forecast which depends on the reduced form

VAR. Therefore it is convenient to use the Choleski decomposition to calculate 0 for this application. Lines 25 to

28 estimate the impulse response functions  . Line 33 to 39 constructs the unconditional forecast by simulating

the estimated VAR model for three periods. Lines 41 to 43 construct the  matrix as specified in equation 7.8.

Line 45 constructs the  matrix. With these in hand, the restricted future shocks are calculated on line 50. The

conditional forecast is calculated by simulating the VAR using these restricted shocks 50 to 59 of the code with the

matlab variable yhat2 holding the conditional forecast.

7.2. Calculating the distribution of the conditional forecast. The main contribution of Waggoner and

Zha (1999) is to provide a Gibbs sampling algorithm to construct the distribution of the conditional forecast and

thus allow a straigth forward construction of fan charts whn some forecasts are subject to constraints. In particular,

Waggoner and Zha (1999) show that the distribution of the restricted future shocks  is normal with mean ̄ and

variance ̄ where

̄ = 0(0)−1 (7.10)

̄ =  −0(0)−1

The Gibbs sampling algorithm to generate the forecast distribution proceeds in the following steps

(1) Initialise the VAR coefficients and the 0 matrix



60 2. GIBBS SAMPLING FOR VECTOR AUTOREGRESSIONS

Figure 21. Matlab code for computing the conditional forecast

(2) Form the matrices  and  Draw the restricted structural shocks from the (̄ ̄ ) distribution where ̄

and ̄ are calculated as in equation 7.10. This draw of structural shocks is used to calculate the conditional

forecast ̂+

(3) Construct the appended dataset  ∗ = [; ̂+]. This the actual data for the VAR model with the forecasts
added to it. The conditional posterior of the VAR coefficients and covariance matrix is construced using

 ∗ and new values of the coefficients and covariance matrix are drawn. The 0 matrix can be updated as
the Cholesky decomposition of the new draw of the covariance matrix. Note that by using  ∗ we ensure
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Figure 22. Matlab code for computing the conditional forecast (continued)

that the draws of the VAR parameters take into account the restrictions  = . This procedure therefore

accounts for parameter uncertainty and the restrictions imposed on the forecasts by the researcher.

(4) Goto step 2 and repeat  times. The last  draws of ̂+ can be used to construct the distribution of the

forecast.

In order to demonstrate this algorithm we continue our Matlab example above and calculate the distribution of

the GDP growth forecast, leaving the inflation forecast restricted at 1%.

The Matlab code is shown in figures 23 and 24. Note that this is a continuation of the code in the previous example

from line 60. We use 5000 Gibbs iterations and discard the first 3000 as burn in. Line 70 of the code constructs the
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Figure 23. Calculating the distribution of the conditional forecast via Gibbs sampling

appended dataset and lines 82 to 90 use this appended data to draw the VAR coefficients and covariance matrix from

their conditional distributions. The impulse responses and unconditional forecasts based on this draw of the VAR

coefficients and the new 0 matrix are used to construct the  matrix and the  vector on lines 113 to 117. Lines

119 to 122 construct the mean and variance of the restricted structural shocks ̄ and ̄ . On line 124 we draw the

structural shocks from the (̄ ̄ ) distrbution and lines 126 to 136 use these to construct the conditional forecast.

Once past the burn-in stage the conditional forecasts are saved in the matrices out1 and out2.

Running the code produces figure 25. The left panel of the figure shows the forecast distribution for GDP growth.

The right panel shows the forecast for inflation which is restricted at 1% over the forecast horizon.
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Figure 24. Calculating the distribution of the conditional forecast via Gibbs sampling (continued)

7.3. Extensions and other issues. The example above places restrictions on both structural shocks 1 and

2 to produce the conditional forecast. In some applications it may be preferable to produce the conditional forecast

by placing restrictions only on a subset of shocks. For instances one may wish to restrict 1 only in our application.

This can be done easily by modifying the  matrix as follows:

 =

⎛⎝ 112 0 0 0 0 0

122 0 112 0 0 0

132 0 122 0 112 0

⎞⎠ (7.11)
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Figure 25. Conditional forecast for US GDP growth

Waggoner and Zha (1999) also discuss a simple method for imposing ‘soft conditions’ on forecasts— i.e. restricting

the forecasts for some variables to lie within a range rather than the ‘hard condition’ we examine in the example

above. Robertson et al. (2005) introduce an alternative method to impose ‘soft conditions’.

8. Further Reading

• A comprehensive general treatment of Bayesian VARs can be found in Canova (2007) Chapter 10.
• An excellent intuitive explanation of priors and conditional forecasting can be found in Robertson and
Tallman (1999).

• A heavily cited article discussing different prior distributions for VARs and methods for calculating posterior
distributions is Kadiyala and Karlsson (1997).

• Banbura et al. (2007) is an illuminating example of implementing the natural conjugate prior via dummy
observations.

• The appendix of Zellner (1971) provides an excellent description of the Inverse Wishart density.

9. Appendix: The marginal likelihood for a VAR model via Gibbs sampling

We can easily apply the method in Chib (1995) to calculate the marginal likelihood for a VAR model. This can

then be used to select prior tightness (see for example Carriero et al. (2010)) or to choose the lag length and compare

different models.

Consider the following VAR model

 = +

X
=1

− +   () = Σ (9.1)



9. APPENDIX: THE MARGINAL LIKELIHOOD FOR A VAR MODEL VIA GIBBS SAMPLING 65

The prior for the VAR coefficients  = { } is  ()˜(̃) and for the covariance matrix  (Σ)˜ (̄ ). The

posterior distribution of the model parameters Φ = Σ is defined via the Bayes rule

 (Φ\ ) =  ( \Φ)×  (Φ)

 ( )
(9.2)

where ln ( \Φ) = −
2
ln 2 + 

2
ln
¯̄
Σ−1

¯̄
− 05P

=1

¡
Σ
−10

¢
is the likelihood function with N representing the

number of endogenous variables,  (Φ) is the joint prior distribution while  ( ) is the marginal likelihood that we

want to compute. Chib (1995) suggests computing the marginal likelihood by re-arranging equation 9.2. Note that

in logs we can re-write equation 9.2 as

ln ( ) = ln ( \Φ) + ln (Φ)− ln (Φ\ ) (9.3)

Note that equation 9.3 can be evaluated at any value of the parameters Φ to calculate ln ( ). In practice a

high density point Φ∗ such as the posterior mean or posterior mode is used.
The likelihood function is easy to evaluate. In order to evaluate the priors, the pdf of the normal density and the

inverse Wishart is needed. The latter is given in definition 3 above.

Following Chib (1995) the posterior density  (Φ∗\ ) =  (∗Σ∗\ )can be factored as
 (∗Σ∗\ ) = (∗\Σ∗  )× (Σ∗\ ) (9.4)

The first term on the RHS of equation 9.4 can be evaluated easily as this is simply the conditional posterior distribution

of the VAR coefficients—i.e. a normal distribution with a known mean and covariance matrix.

(∗\Σ∗  )˜( )

 =
¡
−1 +Σ∗−1 ⊗ 0



¢−1 ³
−1̃0 +Σ∗−1 ⊗ 0

̂
´

 =
¡
−1 +Σ∗−1 ⊗ 0



¢−1
The second term on the on the RHS of equation 9.4 can be evaluated by noting that

 (Σ∗\ ) ≈ 1



X
=1

 (Σ∗\   ) (9.5)

where  represent  = 1 draws of the VAR coefficients from the Gibbs sampler used to estimate the VAR model.

Note that  (Σ∗\   ) is the inverse Wishart distribution with scale matrix Σ̄ = ̄ + 0 and degrees of freedom
 +  where the residuals  are calculated using the draws  

Figures 26 and 27 show the matlab code for estimating the marginal likelihood in a simple BVAR with a natural

conjugate prior implemented via dummy observations. On line 44 we calculate the marginal likelihood analytically for

comparison with Chib’s estimate. Analytical computation is possible with the natural conjugate prior (see Bauwens

et al. (1999)), while Chib’s estimator can be used more generally. Lines 46 to 67 estimate the VAR model using Gibbs

sampling with the posterior means calculated on lines 69 and 70. Lines 73 to 76 calculate the prior moments which

are used to evaluate the prior densities on lines 79 and 81. Line 83 evaluates the log likelihood function for the VAR

model. Line 86 evaluates the term(∗\Σ∗  ). Lines 88 to 99 evaluate the term (Σ∗\ ) ≈ 1


P
=1 (Σ∗\   ).

These components are used to calculate the marginal likelihood on line 102.
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Figure 26. Marginal Likelihood for a VAR model
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Figure 27. Marginal Likelihood for a VAR model (continued)





CHAPTER 3

Gibbs Sampling for state space models

1. Introduction

State space models have become a key tool for research and analysis in central banks. In particular, they can be

used to detect structural changes in time series relationships and to extract unobserved components from data (such

as the trend in a time series). The state space formulation is also used when calculating the likelihood function for

DSGE models.

The classic approach to state space modelling can be computationally inefficient in large scale models as it is

based on maximising the likelihood function with respect to all parameters. In contrast, Gibbs sampling proceeds

by drawing from conditional distributions which implies dealing with smaller components of the model. In addition,

Gibbs sampling provides an approximation to the marginal posterior distribution of the state variable and therefore

directly provides a measure of uncertainty associated with the estimate of the state variable. The use of prior

information also helps along the dimensions of the model where the data is less informative.

This chapter discusses the Gibbs sampling algorithm for state space models and provides examples of implement-

ing the algorithm in Matlab.

2. Examples of state space models

In general, a state space model consists of the following two equations

 =  + +  Observation Equation (2.1)

 = + −1 +  Transition Equation (2.2)

Consider first the components of the observation equation 2.1. Here  is observed data,  denotes either the

right hand side variables or a coefficient matrix depending on the model as discussed below.  is the unobserved

component or the state variable.  denotes exogenous variables with coefficient . The observation equation,

therefore, connects observed data to the unobserved state variable.

Consider the transition equation 2.2. This equation describes the dynamics of the state variable. Note that the

order of the AR process in equation 2.2 is restricted to be 1. This condition is not restrictive in a practical sense as

any AR(p) process can always be re-written in first order companion form. This is described in the examples below.

Finally, note that we make the following assumptions about the error terms  and  :

  () =    () =  ( ) = 0 (2.3)

As an example of a state space model consider a time-varying parameter regression:  =  + +  where

the coefficients  and  are assumed to evolve as random walks. In state-space form this model can be expressed

as:

 =
¡

1 

¢ µ



¶
+  Observation Equation (2.4)

µ



¶
=

−1µ
−1
−1

¶
+

µ
1
2

¶
Transition Equation (2.5)

where   () =   () =  ( ) = 0. Note that: (a) In this model  = 0 and  =

µ
1 0

0 1

¶
by assumption and (b) the matrix  in the observation equation represents the right hand side variables of the

time-varying regression.

As a second example of a state space model, consider decomposing a series  into two unobserved components,

i.e.  =  +  . We assume that: (1) the trend component   follows random walk:   =  −1 + 2 and (2) the

cyclical component  follows an AR(2) process with a constant: i.e.  = + 1−1 + 2−2 + 1 In state space

form this model can be expressed as:

 =
¡

1 1 0
¢ ⎛⎝ 

 
−1

⎞⎠ Observation Equation (2.6)

69
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⎛⎝ 

 
−1

⎞⎠ =

⎛⎝ 

0

0

⎞⎠+
⎛⎝ 1 0 2

0 1 0

1 0 0

⎞⎠
−1⎛⎝ −1
 −1
−2

⎞⎠+
⎛⎝ 1
2
0

⎞⎠ Transition Equation (2.7)

where 

⎛⎝ 1
2
0

⎞⎠ =  =

⎛⎝ 11 12 0

12 22 0

0 0 0

⎞⎠  Consider the observation equation for this model. Here the

matrix  is a coefficient matrix which links the state variables

⎛⎝ 

 
−1

⎞⎠ to . Note that the observation equation

has no error term as we assume that  decomposes exactly into the two components.

The left hand side of the transition equation has the state vector at time  i.e. . The right hand side contains

the state vector lagged one period i.e. −1 =

⎛⎝ −1
 −1
−2

⎞⎠  The fact that the state vector contains −1 implies that

−1 contains −2. This gives us a way to incorporate the AR(2) process for  into the transition equation. In

general, if the state variable follows an AR(p) process, this implies adding  − 1 lags of that state-variable into the
state vector 

The first row of the matrix  contains the AR coefficients for  with the constant in the corresponding row of

. The second row forms the random walk process for   Note that the last row of  contains a 1 (element (1,1) )

to link −1 on the left hand side and −1 on the right hand side and represents an identity. As a consequence, the
last row of  equals zero with corresponding zeros in the  matrix.

As a final example of a state space model, consider a dynamic factor model for a panel of series  where

 = 1 2 represents time and  = 1 2 represents the cross-section. Each series in the panel is assumed to depend

on a common component  i.e.  = −1 + We assume that the common unobserved component  follows

an (2) process:  = + 1−1+ 2−2 +  This model has the following state-space representation:

⎛⎜⎜⎝
1
2




⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 0

1 0

 0

 0

⎞⎟⎟⎠
µ

−1

¶
+

⎛⎜⎜⎝
1
2




⎞⎟⎟⎠ Observation Equation (2.8)

µ

−1

¶
=

µ


0

¶
+

µ
1 2
1 0

¶ −1µ
−1
−2

¶
+

µ
1
0

¶
Transition Equation (2.9)

where  () =  =

⎛⎜⎜⎝
11 0 0 0

0 22 0 0

0 0  0

0 0 0 

⎞⎟⎟⎠ and  () =  =

µ
11 0

0 0

¶
. As in the unobserved

component model, the matrix  contains the coefficients linking the data  to the state variables  The first lag of

 appears in the state vector because of our assumption that  follows an AR(2) process. The transition equation

of the system incorporates the AR(2) dynamics for the state variable in companion form with appropriate structures

for the   and  matrices.

See Kim and Nelson (1999) Chapter 2 for further examples of state space models.

3. The Gibbs sampling algorithm for state space models

It is instructive to consider the unknown parameters of our state space system:

 =  + +   () =  (3.1)

 = + −1 +   () =  (3.2)

In the observation equation the unknown parameters consist of the elements of  that are not fixed or given

as data (for e.g. the coefficients  in equation 2.8), the elements of  and the non-zero elements of the covariance

matrix  In the transition equation, the parameters to be estimated are the non-zero and free elements of   and

In addition, the state variable  is unknown and needs to be estimated.

A Gibbs sampling algorithm for this problem can be discerned by considering the hypothetical case where the

state variable  is known and observed. If this is the case, then the observation and the transition equations collapse

to linear regressions with the conditional posterior distribution of coefficients and variances exactly as in Chapter 1.

For example if the common factor  in equations 2.8 and 2.9 is known, these equations become a series of linear

regressions. Equation 2.8 is then simply  linear regressions while equation 2.9 is an AR(2) model. The conditional
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distributions of the parameters in this case are known from Chapter 1. This observation indicates the following

general Gibbs algorithm for the state space model in equations 3.1 and 3.2.

Step 1 Conditional on , sample  and  from their posterior distributions.

Step 2 Conditional on  sample   and  from their posterior distributions.

Step 3 Conditional on the parameters of the state space:    and  sample the state variable  from its

conditional posterior distribution.

Step 4 Repeat steps 1 to 3 until convergence is detected.

As emphasised above, steps 1 to 3 are standard and involve linear regressions and/or VARs with known conditional

posteriors. The new step required for the state space model is step 3 where we sample  from its conditional posterior

distribution. We turn to a description of the conditional posterior distribution for  next.

3.1. The conditional distribution of the state variable. We follow Kim and Nelson (1999) chapter 8 closely

in this description. Let ̃ = [1 2  ] i.e. the time series of  from time 1 2 . Similarly, let ̃ = [1  ]

Recall that we are interested in deriving the conditional posterior distribution 
³
̃\   ̃

´
i.e. the joint

posterior for 1 2   As shown by Carter and Kohn (1994), it is convenient to consider a factorisation of the

joint density 
³
̃ \̃

´
. Note, we drop the conditioning arguments for simplicity in what follows below.

We can factor 
³
̃\̃

´
into the following conditional distributions


³
̃\̃

´
= 

³
 \̃

´
×

³
̃−1\  ̃

´
(3.3)

Note that the right hand side of 3.3 splits 
³
̃ \̃

´
into the product of the marginal distribution of the

state variable at time T and the distribution of the vector ̃−1 = [1 2 −1] conditioned on   We can

expand the term 
³
̃−1\  ̃

´
as 

³
̃−1\  ̃

´
= 

³
−1\   ̃

´
× 

³
̃−2\  −1 ̃

´
where

̃−2 = [1 2 −2] . Thus:


³
̃ \̃

´
= 

³
 \̃

´
×

³
−1\  ̃

´
×

³
̃−2\  −1 ̃

´
(3.4)

Continuing in this vein and expanding 
³
̃−2\  −1 ̃

´
= 

³
−2\   −1 ̃

´
×


³
̃−3\  −1 −2 ̃

´

³
̃\̃

´
= 

³
 \̃

´
×

³
−1\  ̃

´
×

³
−2\  −1 ̃

´
×

³
̃−3\  −1 −2 ̃

´
Expanding further →


³
̃\̃

´
= 

³
\̃

´
×

³
−1\  ̃

´
×

³
−2\  −1 ̃

´
(3.5)

×
³
−3\  −1 −2 ̃

´
×

³
1\  −1 −2 2 ̃

´
As shown in Kim and Nelson (1999) (page 191) expression 3.5 can be simplified by considering the fact that 
follows a first order AR or Markov process. Because of this Markov property, given ̃ and −1, in the term


³
−2\   −1 ̃

´
,  contains no additional information for −2. This term can therefore be re-written as


³
−2\−1 ̃

´
. Similarly 

³
−3\  −1 −2 ̃

´
can be re-written as 

³
−3\−2 ̃

´
.

A similar argument applies to the data vector ̃  For example, in the term 
³
−2\−1 ̃

´
, ̃−2 =

[1 −2] contains all the required information for −2 (given −1). Therefore, this term can be re-written as


³
−2\−1 ̃−2

´
. Similarly, the term 

³
−3\−2 ̃

´
can be re-written as 

³
−3\−2 ̃−3

´


Given these simplifications we can re-write expression 3.5 as


³
̃\̃

´
= 

³
\̃

´
×

³
−1\  ̃−1

´
×

³
−2\−1 ̃−2

´
×

³
−3\−2 ̃−3

´
(3.6)

×
³
1\2 ̃1

´
or more compactly


³
̃ \̃

´
= 

³
 \̃

´ −1Y
=1


³
\+1 ̃

´
(3.7)

The conditional distribution of the state variable is given by expression 3.7.
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Assuming that the disturbances of the state space model  and  are normally distributed:


³
\̃

´
˜(\  \ ) (3.8)


³
\+1 ̃

´
˜(\+1  \+1)

where the notation \ denotes an estimate of  at time  given information upto time . The two components on
the right hand side of expression 3.7 are normal distributions. However, to draw from these distributions, we need

to calculate their respective means and variances. To see this calculation we consider each component in turn.

3.1.1. The mean and variance of 
³
\̃

´
. We can compute the mean \ and the variance \ using

the Kalman filter. The Kalman filter is a recursive algorithm which provides with an estimate of the state variable at

each time period, given information up to that time period—i.e. it provides an estimate of \ and its variance \.
To estimate the state variable, the Kalman filter requires knowledge of the parameters of the state space  

and . These are available in our Gibbs sampling framework from the previous draw of the Gibbs sampler.

The Kalman filter consists of the following equations which are evaluated recursively through time starting from

an initial value 0\0 and 0\0

\−1 = + −1\−1 (3.9)

\−1 = −1\−1
0 +

\−1 =  −\−1 −

\−1 = \−1
0 +

\ = \−1 +\−1
\ = \−1 −\−1

where  = \−1 0−1
\−1. Running these equations from  = 1 2 delivers \ and \ at the end of the

recursion.

Consider the intuition behind each equation of the Kalman filter. The first and the second equation are referred

to as the prediction equations. The first equation \−1 =  + −1\−1 simply predicts the value of the state
variable one period ahead using the transition equation of the model. This equation can be easily derived by taking

the expected value of the transition equation i.e. 
¡
+ −1 + \̄−1

¢
= +−1\−1 where ̄ = { }. This

follows by noting that (\̄−1) = 0 and 
¡
−1\̄−1

¢
= −1\−1 The second equation is simply the estimated

variance of the state variable given information at time  − 1 and can be derived by taking the variance of  (i.e.
calculating 

£
 −

¡
−1\̄−1

¢¤
) The prediction equations of the Kalman filter threfore produce an estimate of the

state variable simply based on the parameters of the transition equation. Note that the observed data ̄ is not involved

upto this point. The third equation of the Kalman filter calculates the prediction error \−1 = −\−1−.

The fourth equation calculates the variance of the prediction error \−1 = \−1 0 + . This equation can be

derived by calculating 
³
 −\−1 −

´2


The final two equations of the Kalman filter are referred to as the updating equations. These equations update

the initial estimates \−1 and \−1 using the information contained in the prediction error \−1. Note that
 = \−1 0−1

\−1 (referred to as the Kalman gain) can be thought of as the weight attached to prediction error.
The updating equations can be derived by considering the formula for updating a linear projection.

As shown in Hamilton (1994) page 99 this formula is given as

̂ (3\2 1) = ̂ (3\1) +32
−1
22

h
2 − ̂ (2\1)

i
(3.10)

In equation 3.10 we consider the hypothetical case where we have three variables 12 and 3. Originally we

were forecasting 3 based on 1 i.e. the term ̂ (3\1) and we want to update this projection using the variable
2. According to equation 3.10 the updated projection is the sum of ̂ (3\1) and the error in predicting 2
where the projection of 2 is based on 1. The weight attached to this prediction error is 32

−1
22 where 

is the covariance between  . Consider first the intuition behind the prediction error 2 − ̂ (2\1). If the
information contained in 1 and 2 is very similar, it is likely that ̂ (2\1) and 2 will be similar and hence

the extra unanticipated information contained in 2 will be limited. The weight attached to this extra information

32
−1
22 can be interpreted as the regression coefficient between 3 and 2. A larger value of this coefficient implies

that the information contained in 2 receives a larger weight when updating the forecast ̂ (3\1).
In our application, if we let 3 = , 2 =  and 1 =  −1 →

\ = \−1 +
h³
 − \−1

´¡
 − \−1

¢0i× (3.11)


h¡
 − \−1

¢ ¡
 − \−1

¢0i−1 × \−1
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where \−1 = \−1 + . Note that the term 
h¡
 − \−1

¢ ¡
 − \−1

¢0i
is simply the forecast error

variance \−1 Also note that  − \−1 = ( + + )−
³
\−1 +

´
= 

³
 − \−1

´
+  Thus


h³
 − \−1

´ ¡
 − \−1

¢0i
= 

∙³
 − \−1

´³

³
 − \−1

´
+ 

´0¸
→



∙³
 − \−1

´³

³
 − \−1

´´0¸
= \−1

0

Substituting these in equation 3.11 produces the updating equation \ = \−1 + \−1. A similar deriva-

tion can be used to obtain the final updating equation \ as shown in Hamilton (1994) page 380. Finally note
that the likelihood function is given as a by product of the Kalman filter recursions as −1

2

P
=1 ln 2


¯̄
\−1

¯̄
−

1
2

P
=1 

0
\−1

−1
\−1\−1

For a stationary transition equation, the initial values for the Kalman filter recursions 0\0 and 0\0 are given

as the unconditional mean and variance. That is 0\0 = ( −  )
−1

 and (0\0) = ( −  ⊗  )
−1

(). If

the transition equation of the system is non-stationary (for e.g. if the state variable follows a random walk) the

unconditional moments do not exist. In this case 0\0 can be set arbitrarily. 0\0 is then set as a diagonal matrix
with large diagonal entries reflecting uncertainty around this initial guess.

To recap, we evaluate the equations of the Kalman filter given in 3.9 for periods  = 1 . The final recursion

delivers \ and \ the mean and variance of 
³
 \̃

´


3.1.2. The mean and variance of 
³
\+1 ̃

´
. The mean and variance of the conditional distribution

³
\+1 ̃

´
can also be derived using the Kalman filter updating equations. As discussed in Kim and Nelson (1999) page 192,

deriving the mean \+1 can be thought of as updating \ (the kalman filter estimate of the state variable)
for information contained in +1which we treat as observed (for e.g. at time  − 1, +1 is given using a draw
from 

³
 \̃

´
which we discussed above) Note that this task fits into the framework of the updating equations

discussed in the previous section as we are updating an estimate using new information. In other words, the updating

equations of the Kalman filter apply with parameters and the prediction error chosen to match our problem.

For the purpose of this derivation we can consider a state space system with the observation equation:

+1 = +  + +1 (3.12)

This implies that the prediction error is given by ∗+1\ = +1 −+\. The forecast error variance is given
by ∗+1\ = \ 0 +. Note also that for this observation equation, the matrix that relates the state variable 
to the observed data +1 is 

∗ =  With these definitions in hand we can simply use the updating equations of

the Kalman filter. That is

\+1 = \ +∗
³
+1 − + \

´
(3.13)

\+1 = \ −∗∗\ (3.14)

where the gain matrix is ∗ = \∗0
∗−1
+1\.

Equations 3.13 and 3.14 are evaluated backwards in time starting from period  − 1 and iterating backwards to
period 1. This recursion consists of the following steps:

Step 1 Run the Kalman filter from  = 1 to obtain the mean \ and the variance \ of the distribution


³
 \̃

´
 Also save \ and \ for  = 1 . Draw  from the normal distribution with mean \

and the variance \  Denote this draw by ̂
Step 2 At time −1, use 3.13 to calculate −1\−1 = −1\−1+

∗
³
̂ − + −1\−1

´
where −1\−1

is the Kalman filter estimate of the state variable (from step 1) at time  −1. Use equation 3.14 to calculate
\+1 . Draw ̂−1 from the normal distribution with mean −1\−1 and variance \+1 

Step 3 Repeat step 2 for  =  − 2  − 3 1
This backward recursion (The Carter and Kohn algorithm) delivers a draw of ̃ = [1 2  ] from its

conditional posterior distribution.

A minor modification to this algorithm is required if the matrix  is singular (see the example of the state space

model given in equation 2.6). In this case we evaluate equations 3.13 and 3.14 using ̄ instead of  , ̄ instead of

 and ̄ instead of  where ̄  ̄ ̄ correspond to the non-singular block of  In the example given in equation 2.6

above ̄ =

µ


0

¶
 ̄ =

µ
1 0 2
0 1 0

¶
and ̄ =

µ
11 12
12 22

¶

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3.2. The Gibbs sampling algorithm. We can now re-state the Gibbs alogrithm for the state space model in

equations 3.1 and 3.2.

Step 1 Conditional on , sample  and  from their posterior distributions.

Step 2 Conditional on  sample   and  from their posterior distributions.

Step 3 Conditional on the parameters of the state space:    and  sample the state variable  from its

conditional posterior distribution. That is, run the Kalman filter to obtain \ and \ for  = 1 and
draw   Use equations 3.13 and 3.14 to draw 1 2 −1

Step 4 Repeat steps 1 to 3 until convergence is detected.

Implementing this Gibbs sampling algorithm therefore requires programming the Kalman filter and equations

3.13 and 3.14 in matlab. The remainder of this chapter describes this task with the help of several examples.

4. The Kalman filter in Matlab

To discuss the implementation of the Kalman filter in Matlab we will consider the following time varying parameter

model as an example

 =  +  (4.1)

 = + −1 + 

 () = 

 () = 

where  is a  × 1 matrix containing the dependent variable,  is a  × 1 matrix containg the regressor with
time-varying coefficient . For the moment we assume that the parameters of this state space model   and 

are known and we are interested in estimating the time-varying coefficient  the state variable.

Figures 1 and 2 show the matlab code for the Kalman filter equations (Example1.m). Lines 7 to 20 of the file

generate artificial data for  (see equation 4.1) assuming that  = 0  = 1 = 0001  = 001. Line 21 starts

the Kalman filter by setting up the initial conditions for the state variable  Line 22 assumes that 0\0 = 0 and

line 23 sets 0\0 the variance of the initial state equal to 1. The Kalman filter starts with −1\−1 = 0\0 and
−1\−1 = 0\0 (lines 27 and 28) and then iterates through the sample (loop starts on line 29). Line 32 is the
first equation of the prediction step of the Kalman filter |−1 =  + −1|−1. Line 33 calculates the variance of
|−1 using the equation \−1 = −1\−1 0 +  Line 34 calculates the fitted value of  for that time period

as |−1 and the next line calculates the prediction error for that time period \−1 =  − |−1 Line 36
calculates the variance of the prediction error \−1 = \−1 0

 + . Line 38 starts the updating step of the

Kalman filter by calculating the Kalman gain  = \−1 0

−1
\−1. Line 39 updates the the estimate of the state

variable based on information contained in the prediction error \ = |−1 +\−1 where this information is
weighted by the Kalman gain. The final equation of the Kalman filter (line 40) updates the variance of the state

variable \ = \−1 −\−1
Figure 3 shows the estimates of  obtained using the Kalman filter. These closely match the assumed true value

of 

5. The Carter and Kohn algorithm in Matlab

Recall that that the conditional distribution of the state variable ̃ = [1 2  ] is


³
̃

´
= 

³
  ̃

´ −1Y
=1


³
\+1 ̃

´
(5.1)

As discussed above, this implies that

 ˜(\  \ ) (5.2)

\+1˜(\+1  \+1)
As described above, the mean and variance in  ˜(\  \ ) is delivered by the Kalman filter at time  =  .

The computation of the mean and variance in (\+1  \+1) requires the updating equations 3.13 and 3.14.
Written in full these are:

\+1 = \ + \
0 ¡\ 0 +

¢−1 ³
+1 − − \

´
(5.3)

\+1 = \ − \
0 ¡\ 0 +

¢−1
\ (5.4)

These are computed going backwards in time from period  − 1 to 1. We now turn to the implementation of the

algorithm in Matlab

Figures 4 and 5 show the matlab code for the Carter and Kohn algorithm for artificial data on the state space

model shown in equation 4.1) assuming that  = 0  = 1 = 0001  = 001 (See example2.m). As alluded to

above, the algorithm works in two steps. As a first step we run the Kalman filter to obtain \  \ . Lines 21 to
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Figure 1. The Kalman filter in Matlab

44 of the code are the Kalman filter equations and are identical to the example above. Note that the matrix ptt saves

\ for each time period.1The matrix beta_tt saves \ for each time period. Line 47 specifies an empty matrix to
hold the draw of  Line 48 specifies a  × 1 vector from the  (0 1) distribution to be used below. Line 51 draws

from 
³
  ̃

´
where the mean of this distribution is \ and the variance is \ where both these quantities

are delivered by the kalman filter and saved as the last row of beta_tt and ptt respectively. Line 53 starts the second

step of the Carter and Kohn algorithm and begins a loop going backwards from period T-1 to1. Line 55 computes the

1This is set up as a three dimensional matrix where the first dimension is time and the second two dimensions are the rows and

columns of the covariance matrix \. In this example this matrix has dimension 500× 1× 1
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Figure 2. The Kalman filter in Matlab continued

mean of 
³
\+1 ̃

´
using the expression \+1 = \ + \ 0

¡
\ 0 +

¢−1 ³
+1 − − \

´
. Note

that the term +1 is the draw of  one period in the future. Line 56 calculates the variance of 
³
\+1 ̃

´
using the expression \+1 = \ −\ 0

¡
\ 0 +

¢−1
\Line 57 draws the state variable from a normal

distribution using this mean and variance.

Figure 6 plots the result of running this code and shows the draw for 
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Figure 3. Estimates of  from the Kalman filter

6. The Gibbs sampling algorithm for a VAR with time-varying parameters

We now consider our first example that illustrates the Carter and Kohn algorithm. Following Cogley and Sargent

(2002), we consider the following VAR model with time-varying coefficients

 =  +

X
=1

− +    () =  (6.1)

 = { 1}
 = + −1 +   () = 

Note that most empirical applications of this model assume that  = 0 and  = 1 and we are going to implement

this assumption in our code below. The Gibbs sampling algorithm for this model can be discerned by noticing that if

the time-varying coefficients  are known, the conditional posterior distribution of  is inverse Wishart. Similarly,

conditional on  the distribution of  is inverse Wishart. Conditional on  and  and with  = 0 and  = 1 the

model in 6.1 is a linear Gaussian state space model. The conditional posterior of  is normal and the mean and

the variance can be derived via the Carter Kohn algorithm. Therefore the Gibbs sampling algorithm consists of the

following steps

Step 1 Set a prior for  and  and starting values for the Kalman filter. The prior for  is inverse Wishart

 () ∼  (0 0). Note that this prior is quite crucial as it influences the amount of time-variation

allowed for in the VAR model. In other words, a large value for the scale matrix 0 would imply more

fluctuation in  This prior is typically set using a training sample. The first 0 observations of the

sample are used to estimate a standard fixed coefficient VAR via OLS such that 0 = (
0
00)

−1
( 0

00)

with a coefficient covariance matrix given by 0\0 = Σ0 ⊗ ( 0
00)

−1
where 0 = {0−1 0− 1},

Σ0 =
(0−00)

0(0−00)

0− and the subscript 0 denotes the fact that this is the training sample. The scale

matrix 0 is set equal to 0\0 × 0 ×  where  is a scaling factor chosen by the researcher. Some studies

set  = 3510−4 i.e. a small number to reflect the fact that the training sample in typically short and the
resulting estimates of 0\0 maybe imprecise. Note that one can control the apriori amount of time-variation
in the model by varying  . The prior degrees of freedom are set equal to 0 The prior for  is inverse

Wishart with scale parameter 0 and degrees of freedom 0
. The initial state is set equal to 0\0 = (

0)
0 and the intial state covariance is given by 0\0 We set a starting value for  and 
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Figure 4. The Carter and Kohn algorithm in Matlab

Step 2 Sample ̃ conditional on  and  from its conditional posterior distribution 
³
̃ \ ̃

´
where ̃ =

[(1)
0 (2)

0 ( )
0] and ̃ = [1  ] This is done via the Carter and Kohn algorithm as

described in the example above. We describe the Matlab implementation in the next section.

Step 3 Sample  from its conditional posterior distribution. Conditional on ̃ the posterior of  is inverse Wishart

with scale matrix
³
̃
1

 − ̃
1

−1
´0 ³

̃
1

 − ̃
1

−1
´
+0 and degrees of freedom  +0 where  denotes the length

of the estimation sample and ̃
1

 is the previous draw of the state variable ̃ Notice that once the state

variable is drawn from its distribution we treat it like data. It is therefore easy to extend this step to sample
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Figure 5. The Carter and Kohn algorithm in Matlab (continued)

  which are just the intercept and AR coefficients in an AR regression for each individual coefficient in

̃ (the conditional distributions for linear regression models are described in chapter 1)

Step 4. Sample  from its conditional posterior distribution. Conditional on the draw ̃
1

 the posterior of  is

inverse Wishart with scale matrix
³
 −

³
1 +

P
=1

1
−

´´0 ³
 −

³
1 +

P
=1

1
−

´´
+ 0 and

degrees of freedom  + 0


Step 5. Repeat steps 2 to 4  times and use the last  draws for inference. Note that unlike fixed coefficient VAR

models, this state space model requires a large number of draws for convergence (e.g.  ≥ 100 000).



80 3. GIBBS SAMPLING FOR STATE SPACE MODELS

50 100 150 200 250 300 350 400 450 500
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

 

 Kalman filter estimated β
t

Draw from H(β
t
)

true β
t

Figure 6. A draw from the conditional posterior distribution of  using the Carter and Kohn algorithm

6.1. Matlab code for the time-varying parameter VAR. We consider a time-varying VAR model with

two lags using US data on GDP growth, CPI inflation and the Federal Funds rate over the period 1954Q3 to 2010Q2

(Example3.m). We use the time-varying VAR model to compute the impulse response to a monetary policy shock

at each point in time and see if the response of the US economy to this shock has changed over this period. The

code for this model can be seen in figures 7, 8, 9 and 10. Line 13 of the code sets the training sample equal to

the first 40 observations of the sample and line 16 calculates a fixed coefficient VAR using this training sample to

obtain 0 and 0\0 In calculating 0 on line 21 we set  = 3510−4 Lines 25 and 26 set a starting value for 
and  Lines 29 and 30 remove the training sample from the data—the model is estimated on the remaining sample.

Lines 38 to 88 sample the time-varying coefficients conditional on  and  using the Carter and Kohn algorithm.

The code for this is exactly the same as in the previous example with some monor differences. First, note that the

VAR is expressed as  = ( ⊗) () +  for each time period  = 1 . This is convenient as it allows

us to write the transition equation in terms of () i.e. the VAR coefficients in vectorised form at each point in

time. Therefore, on line 47 x is set equal to ( ⊗) . The second practical differences arises in the backward

recursion on lines 64 to 87. In particular (following earlier papers) we draw ̃ = [(1)
0 (2)

0 ( )
0] for


³
̃ \ ̃

´
but ensure that the VAR is stable at each point in time. If the stability condition fails for one time

period, the entire matrix ̃ = [(1)
0 (2)

0 ( )
0] is discarded and the algorithm tries again. With the

draw of ̃ in hand line 89 calculates the residuals of the transition equation  Line 90 calculates the scale matrix³
̃
1

 − ̃
1

−1
´0 ³

̃
1

 − ̃
1

−1
´
+0 and line 91 draws  from the inverse Wishart distribution. Line 94 draws the VAR

error covariance  from the inverse Wishart distribution. Note that we use a flat prior for  in this example. One

past the burn-in stage we save the draws for ̃ ,  and . We use the saved draws to compute the impulse response

to a monetary policy shock and use sign restrictions to identify a monetary policy shock (lines 106 to 180). We

assume that a monetary policy shock is one that increases interest rates, decreases inflation and output growth. The

results for the time-varying impulse response are shown in 11. The 3-D surface charts show the impulse response

horizon on the Y-axis and the time-series on the X-axis. These results show little evidence of significant variation in

the impulse response functions across time for this dataset.
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Figure 7. Matlab code for a time-varying VAR

7. The Gibbs sampling algorithm for a Factor Augmented VAR

Our second example is based on the Factor augmented VAR model introduced in Bernanke et al. (2005). The

FAVAR model can be written compactly as

 =  +  +  (7.1)

 =  +

X
=1

− + 

 = { }
 () =   () = 
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Figure 8. Matlab code for a time-varying VAR (continued)

where  is a  × matrix containing a panel of macroeconomic and financial variables.  denotes the Federal

Funds rate and  are the unobserved factors which summarise the information in the data  The first equation is

the observation equation of the model, while the second equation is the transition equation. Bernanke et al. (2005)

consider a shock to the interest rate in the transition equation and calculate the impulse response of each variable in



It is instructive to consider the state-space representation of the FAVAR model in more detail. We assume in this

example that the lag length in the transition equation equals 2 and there are 3 unobserved factors  = {1 23}
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Figure 9. Matlab code for a time-varying VAR (continued)

Consider the observation equation of the model⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2

3













⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
̃

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11  13 1 0 0 0 0

21   0 0 0 0

   0 0 0 0

   0 0 0 0

   0 0 0 0

   0 0 0 0

   0 0 0 0

1 3  0 0 0 0

1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
3



1−1
2−1
3−1

−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
3










0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


(7.2)
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Figure 10. Matlab code for a time-varying VAR (continued)

The left hand side of the observation equation 7.2 contains the dataset  with the Funds rate as the last variable

(thus ̃ = { }) .  is related to the three factors via the factor loadings  where  = 1 and

 = 1 2 3  is related to the Federal Funds rate via the coefficients  Bernanke et al. (2005) assume that  are

non-zero only for fast moving financial variables.  appears in the state vector  (even though it is observed)

as we want it to be part of the transition equation. Therefore the last row of the coefficient matrix  describes the

identity  =  The state vector contains the first lag of all state variables as we want two lags in the VAR
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Figure 11. Time-varying impulse responses to a monetary policy shock

that forms the transition equation. Note also that

  () =  =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0

0 2 0 0 0

0 0  0 0

0 0 0  0

0 0 0 0 0

⎞⎟⎟⎟⎟⎠ (7.3)

The transition equation of the model is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
3



1−1
2−1
3−1

−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
3
4
0

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11 12 13 14 15 16 17 18
21 22 23 24 25 26 27 28
31 32 33 34 35 36 37 38
41 42 43 44 45 46 47 48
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−1
2−1
3−1

−1
1−2
2−2
3−2

−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−1

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
3
4
0

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


(7.4)

Note that this is simply a VAR(2) in 1 2 3 and  written in first order companion form to make

consistent with the usual form of a transition equation (i.e. the transition equation needs to be in AR(1) form). Note

that:

 () =  =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11 12 13 14 0 0 0 0

12 22 23 24 0 0 0 0

13 23 33 34 0 0 0 0

14 24 23 44 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7.5)

where the zeros result from the fact that the last 4 equations in the transition equation describe identities. Therefore

the matrix  is singular in this FAVAR model. This implies that the Carter and Kohn recursion has to be generalised

slightly to take this singularity into account as discussed above. This modification implies that we use ∗  ∗∗ ∗+1
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in equations 3.13 and 3.14 where ∗  ∗ ∗ ∗+1 denote the first  rows of   +1. In our example  = 3 as
we extract three factors (the  equation in the observation equation is an identity).

The Gibbs sampling algorithm can be discerned by imagining the situation where the factors  are observed.

Give the factors, the observation equation is just  linear regressions of the form  =  +  +  and

the conditional distributions studies in Chapter 1 apply immediately to sample  and  (i.e. the elements of )

and . Similarly, given the factors, the transition equation is simply a VAR model. The conditional distributions in

Chapter 2 can be used to sample ,  and . Finally, given a draw for  ,  and  the model can be cast into

the state-space form shown in equations 7.2 and 7.4. Then the Carter and Kohn algorithm can be used to draw 
from its conditional distribution. The Gibbs sampling algorithm consists of the following steps

Step 1 Set priors and starting values. The prior for the factor loadings is normal. Let  = {  }. Then
 () ∼ (0Σ

). The prior for the diagonal elements of  is inverse Gamma and given by  () ∼
 (0 0). The prior for the VAR parameters ,  and  can be set using any of the priors for VARs

considered in the previous chapter. For example, one may consider setting an independent Normal inverse

Wishart prior. Collecting the VAR coefficients in the matrix  and the non-zero elements of  in the matrix

Ω this prior can be represented as  () ∼ (0Σ) and  (Ω) ∼  (Ω0 0). The Kalman filter requires

the initial value of the state vector  =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
3



1−1
2−1
3−1

−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. One can use principal components to get an initial

estimate of 1 2 and 3 to set 0\0 The principal component estimate also provides a good starting
value for the factors  = 1 2 and 3 One can arbitrarily set  = 1 and Ω to an identity matrix to

start the algorithm.

Step 2. Conditional on the factors  and  sample the factor loadings  = { } from their conditional

distributions. For each variable in  the factor loadings have a normal conditional posterior (as described

in Chapter 1)  (\ ) ∼ (∗  
∗
 )

∗ =
µ
Σ−1

+
1



0

¶−1µ
Σ−1

0 +
1



0

¶
 ∗ =

µ
Σ−1

+
1



0

¶−1
where  = {1 2,3 } if the  series  is a fast moving data series which has a contempora-

neous relationship with the Federal Funds rate (e.g. stock prices) and  = {1 2,3} if the  series
 is a slow moving data series which has no contemporaneous relationship with the Federal Funds rate

(e.g. GDP). Note that as 1 2,3 and  are both estimated the model is unidentified. Bernanke et al.

(2005) suggest fixing the top 3× 3 block of  to an identity matrix and the top 3× 1 block of  to zero
for identification. See Bernanke et al. (2005) for more details on this issue.

Step 3. Conditional on the factors  and the factor loadings  = {  } sample the variance of the er-
ror terms of the observation equation  from the inverse Gamma distribution with scale parameter

( − )
0
( − ) +0 with degrees of freedom  + 0 where  is the length of the estimation

sample.

Step 4. Conditional on the factors  and the error covariance matrix Ω, the posterior for the VAR coefficients 

(recall  = { } the coefficients in the transition equation of the model) is normal (see Chapter 2) and
given as  (\Ω) ∼ (∗∗) where 0Σ

∗ =
¡
Σ−1 +Ω−1 ⊗ ̄ 0

̄

¢−1 ³
Σ−1 (0) +Ω

−1 ⊗ ̄ 0
̄(̂)

´
∗ =

¡
Σ−1 +Ω−1 ⊗ ̄ 0

̄

¢−1
where ̄ = {−1 −1 −2 −2 1} and ̂ is the OLS estimate of 

Step 5. Conditional on the factors  and the VAR coefficients  the error covariance Ω has a inverse Wishart

posterior with scale matrix
¡
 − ̄

¢0 ¡
 − ̄

¢
+Ω0 and degrees of freedom +0

Step 6. Given   and Ω the model can be cast into state-space form and then the factors  are sampled via

the Carter and Kohn algorithm.

Step 7 Repeat steps 2 to 6 M times and use the last L values for inference

7.1. Matlab code for the FAVAR model. We estimate a FAVAR model using UK data over the period

1970Q1 to 2006Q1. We use 40 Macroeconomic and financial time series along with the Bank of England policy rate

to estimate the model and consider the impact of a monetary policy shock.

The Matlab code for this example (example4.m) can be seen in figures 12, 13, 14, 15, 16 and 17.
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Figure 12. Code for the FAVAR model

Lines 3 and 4 load the  × panel of UK data and the variable names ( = 40). Line 6 reads a variable called

index. The first column is a  × 1 vector which equals 1 if the corresponding data series in the panel has to be first
differenced. The second column is a  × 1 vector which equals 1 if the corresponding data series is a fast-moving
variable (like an asset price) and will have a contemporaneous relationship with the policy interest rate i.e.  6= 0
for this variable. Lines 10 to 23 transform the data to stationarity and standardises it. Lines 25 to 27 read the bank

rate and standardises it. Line 35 extracts three principal components from the dataset to use as starting values for

the three factors in this example. Line 36 defines 0\0 =[pmat(1,:) z(1) zeros(1,N)]. Notice that there are 8 state
variables: 3 factors, the interest rate and the first lags of these 4 state variables and thus 0\0 is 1× 8 Line 38 sets
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Figure 13. Code for the FAVAR model (continued)

0\0 as a 8× 8 identity matrix. We arbitrarily set  = 1 and Ω =  to start the algorithm on lines 39 and 40. Note

that following Bernanke et al. (2005) we will not use prior distributions for the regression or VAR coefficients which

will imply that the conditional posteriors collapse to OLS formulae.

Lines 48 to 72 sample the factor loadings. The code loops through the 40 data series and selects each as the

dependent variable (line 52) to be regressed on the factors only for slow moving series (line 54) or the factors and

the policy interest rate for fast moving series (line 56). Line 58 calculates the mean of the conditional posterior

distribution of the factor loadings without the priors

∗ = (
0
)

−1
(0)
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Figure 14. Code for the FAVAR model (continued)

and line 59 calculates the variance of this distribution (without the prior information).

 ∗ =
µ
1



0

¶−1
The coefficients  are stored in the matrix fload and the coefficients  in floadr. Lines 74 and 76 impose the

identification conditions and fix the top 3× 3 block of fload to an identity matrix and top 3× 1 block of floadr to 0.
Lines 79 to 83 sample  from the inverse Gamma distribution (using the function IG in the functions folder) with

prior degrees of freedom and the prior scale matrix set to 0 (hence using information from the data only). Lines 85
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Figure 15. Code for the FAVAR model (continued)

and 86 set up the left hand side and the right hand side variables for the VAR model using the factors (pmat) and the

policy rate. Lines 89 and 90 calculate the mean and variance of the conditional distribution of the VAR coefficients

(without prior information these are just OLS). Line 93 draws the VAR coefficients ensuring stability. Lines 102 and

103 draw the covariance matrix Ω from the inverse Wishart distribution. We now have a draw for all parameters

of the state space representation so we build the matrices necessary to cast the FAVAR into the state space form.

Lines 110 to 112 build the matrix  seen in equation 7.2. Line 114 builds the covariance matrix of the error term

 Line 116 builds the matrix  seen in equation 7.4. Line 118 builds the matrix F, while line 120 builds the matrix

. With the matrices of the state space representation in hand we start the Carter and Kohn algorithm by running
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Figure 16. Code for the FAVAR model (continued)

the Kalman filter from lines 123 to 153. Note a minor difference to the previous example is that the observation

equation now does not have a regressor on the right hand side. Hence on line 127 x is set equal to the matrix 

Line 156 starts the backward recursion. Recall that the last 5 state variables represent identities and  is singular.

Therefore we will only work with the first 3 rows (and columns for covariance matrices) of   and +1 Lines

159 to 161 create ∗  ∗∗. Lines 168 and 169 are the modified Carter and Kohn updating equations. Line 172 sets
the factors pmat equal to the last draw using the Carter and Kohn algorithm and we return to the first step of the

Gibbs sampler. Once past the burn-in period we calculate an impulse response of the factors to a shock to the bank

rate in the transition equation using a Cholesky decomposition of the covariance matrix to form the 0 matrix. Line
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Figure 17. Code for the FAVAR model (continued)

182 uses the observation equation of the model to calculate the impulse response of all the underlying data series.

The estimated impulse responses are shown in 18.

8. Further reading

• Kim and Nelson (1999) chapter 3 is an excellent intuitive intrduction to state space models.

• Hamilton (1994) chapter provides a more formal derivation of the Kalman filter.
• Kim and Nelson (1999) chapter 8 provides a detailed description of Gibbs sampling for state space models.

• Code and a monograph by Gary Koop:
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Figure 18. Impulse response of UK Macroeconomic series to a monetary policy shock using a

FAVAR model.

http://personal.strath.ac.uk/gary.koop/bayes_matlab_code_by_koop_and_korobilis.html.
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The Metropolis Hastings algorithm





CHAPTER 4

An introduction to the the Metropolis Hastings Algorithm

1. Introduction

The Gibbs sampling algorithm relies on the availability of conditional distributions to be operational. In many

cases (of practical relevance) conditional distributions are not available in closed form. An important example of

such a situation is the estimation of Dynamic Stochastic General Equilibrium (DSGE) models where the conditional

distribution of different parameter blocks is unavailable. In such cases an algorithm more general than the Gibbs

sampler is required to approximate the posterior distribution. The Metropolis Hastings algorithm offers such an

alternative. This chapter introduces this algorithm and discusses its implementation in Matlab for a number of

important cases. The algorithm is applied to DSGE models in the next chapter.

2. The Metropolis Hastings algorithm

In this section we describe the Metropolis Hastings (MH) algorithm in a general setting. We follow that with a

number of specific examples and Matlab code in the subsequent sections.

Suppose that we are interested in drawing samples from the following distribution (this is referred to as the target

density below)

 (Φ) (2.1)

where Φ is a  × 1 vector which represents a set of parameters.  (Φ) could be a posterior distribution where direct
sampling is not possible and the Gibbs sampler is not operational as conditional distributions of different blocks of

the parameters Φ are unknown. However, given a value for Φ = Φ∗ we are able to evaluate the density at Φ∗ i.e.
calculate  (Φ∗) 

In this situation the MH algorithm can be used to take draws from  (Φ) using the following steps

Step 1 Specify a candidate density 
¡
Φ+1\Φ¢ where  indexes the draw of the parameters Φ One must be able

to draw samples from this density. We discuss the exact specification of 
¡
Φ+1\Φ¢ below.

Step 2 Draw a candidate value of the parameters Φ+1from the candidate density 
¡
Φ+1\Φ¢ 

Step 3 Compute the probability of accepting Φ+1 (denoted by ) using the expression

 = min

Ã

¡
Φ+1

¢

¡
Φ+1\Φ¢

 (Φ)  (Φ\Φ+1)  1

!
(2.2)

The numerator of this expression is the target density evaluated at the new draw of the parameters 
¡
Φ+1

¢
divided by the candidate density evaluated at the new draw of the parameters 

¡
Φ+1\Φ¢  The denomi-

nator is the same expression evaluated at the previous draw of the parameters.

Step 4 If the acceptance probability  is large enough retain the new draw Φ+1, otherwise retain the old draw

Φ. How do we decide if  is large enough in practice? We draw a number  from the standard uniform

distribution. If   . accept Φ+1 otherwise keep Φ1.

Step 5 Repeat steps 2 to 4  times and base inference on the last  draws. In other words, the empirical

distribution using the last  draws is an approximation to target density. We discuss convergence of the

MH algorithm below.

Note that one can think of the Gibbs sampler as a special case of the MH algorithm—i.e. a situation where the

candidate density 
¡
Φ+1\Φ¢ coincides with the target density and the acceptance probability assigned to every

draw equals 1

3. The Random Walk Metropolis Hastings Algorithm

The random walk MH algorithm offers a simple way of specifying the candidate density 
¡
Φ+1\Φ¢ and is

therefore widely used in applied work. As the name suggests, the random walk MH algorithm specifies the candidate

generating density as a random walk

Φ+1 = Φ +  (3.1)

1This essentially means that we accept the draw with probability  if this experiment is repeated many times. For e.g if  = 01

and if we 1000 replications we should expect 100 of the 1000 draws to have   

97



98 4. AN INTRODUCTION TO THE THE METROPOLIS HASTINGS ALGORITHM

where  ∼  (0Σ) is a ×1 vector. Note that  = Φ+1−Φ is normally distributed. As the normal distribution is
symmetric, the density 

¡
Φ+1 −Φ¢ equals  ¡Φ −Φ+1¢. In other words,  ¡Φ+1\Φ¢ = 

¡
Φ\Φ+1¢ under

this random walk candidate density and the formula for the acceptance probability in equation 2.2 simplifies to

 = min

Ã

¡
Φ+1

¢
 (Φ)

 1

!
(3.2)

The random walk MH algorithm, therefore, works in the following steps:

Step 1 Specify a starting value for the parameters Φ denoted by Φ0 and fix Σ the variance of shock to the random

walk candidate generating density.

Step 2 Draw a new value for the parameters Φ using

Φ = Φ +  (3.3)

where Φ = Φ0 for the first draw

Step 3 Compute the acceptance probability

 = min

Ã

¡
Φ

¢
 (Φ)

 1

!
(3.4)

If    v (0 1), then retain Φ and set Φ = Φ, otherwise retain Φ

Step 4 Repeat steps 2 and 3 M times and use the last L draws for inference.

Note that Σ the variance of  is set by the researcher. A higher value for Σ could mean a lower rate of acceptances

across the MH iterations (i.e. the acceptance rate is defined as the number of accepted MH draws divided by the

total number of MH draws) but would mean that the algorithm explores a larger parameter space. In contrast, a

lower value for Σ would mean a larger acceptance rate with the algorithm considering a smaller number of possible

parameter values. The general recommendation is to choose Σ such that the acceptance rate is between 20% to 40%.

We consider the choice of Σ in detail in the examples described below.2

3.1. Estimating a non-linear regression via the random walk MH algorithm. As an example, consider

the estimation of the following non-linear regression model

 = 1

³
2



´
+   ∼ (0 2) (3.5)

and for the moment assume no prior information is used in estimating 1 2 and 2 so the posterior distribution

coincides with the likelihood function. Our aim is to draw samples from the marginal posterior distribution of the

parameters. As the model is non linear, the results on the conditional distributions of the regression coefficients

shown in Chapter 1 do not apply and the MH algorithm is needed. We proceed in the following steps:

Step 1 Set starting values for Φ = {1 2, 2} These starting values could be set, for e.g, by estimating a log
linearised version of equation 3.5 via OLS. The variance of the candidate generating density Σ can be set

as the OLS coefficient covariance matrix Ω̂ times a scaling factor  i.e Σ = Ω̂ × Note that Ω̂ provides a

rough guess of how volatile each parameter is. The scaling factor lets the researcher control the acceptance

rate (a higher value for  would mean a lower acceptance rate). Note that in this simple model the choice

of starting values may not be very important and the algorithm would probably converge rapidly to the

posterior. However, in the more complicated (and realistic) models considered below this choice can be

quite important.

Step 2 Draw a new set of parameters from the random walk candidate density

Φ = Φ +  (3.6)

Step 3 Compute the acceptance probability  = min

µ
(Φ)
(Φ)

 1

¶
 Note that the target density  () is the likeli-

hood function in this example. The log likelihood function for this regression model is given by

ln (\Φ) = −
2
ln 2 − 

2
2 − 05

⎛⎜⎝
³
 −1

³
2



´´0 ³
 −1

³
2



´´
2

⎞⎟⎠ (3.7)

Therefore the acceptance probability is simply the likelihood ratio

 = min
¡
exp

¡
ln

¡
\Φ

¢− ln ¡\Φ¢¢  1¢ (3.8)

where ln
¡
\Φ

¢
is the log likelihood evaluated at the new draw of 1 2, 

2 and ln
¡
\Φ

¢
is the log

likelihood at the old draw. If    ∼ (0 1) we retain the new draw and set Φ = Φ.

Step 4 Repeat steps 2 and 3 M times. The last L draws of 1 2, 
2 provide an approximation to the marginal

posterior distributions.



3. THE RANDOM WALK METROPOLIS HASTINGS ALGORITHM 99

Figure 1. Matlab code for example1

Figures 1 and 2 show the matlab code for this example (example1.m). Lines 3 to 9 generate artificial data for the

non-linear regression model assuming that1 = 4 2 = 2, 
2 = 1 Line 11 sets the starting values for these parameters

arbitrarily. Lines 20 to 22 set the variance of the random walk candidate density as Σ =

⎛⎝ 1 0 0

0 2 0

0 0 01

⎞⎠×scaling
factor where 1 and 2 are OLS estimates of the variance of 1 and 2. Line 29 sets the variable naccept which

will count the number of accepted draws. Hence the acceptance rate is naccept/REPS. Line 30 starts the loop for the

2See Chib and Ramamurthy (2010) for a more efficient version of the basic algorithm described above.
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Figure 2. Matlab code for example1 (continued)

MH algorithm. Line 32 draws the new value of the parameters from the random walk candidate density. Note that

there is nothing intrinsic in this step that stops the new value of 2 from being less than zero. Therefore lines 35 to

37 set the value of the log likelihood to a very small number if a negative 2 is drawn thus ensuring that this draw

is not going to be accepted. Alternatively one can set the acceptance probability to 0 when a negative value for 2

is drawn. Lines 44 to 46 calculate the log likelihood at the old draw. Line 49 calculates the acceptance probability.

Line 53 checks if the acceptance probability is bigger than  a number from the standard uniform distribution. If

this is the case we retain the new draw of the parameters.Figure 3 shows all the draws of the model parameters. The

algorithm is close to the true values of these parameters after a few hundred draws.
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Figure 3. Draws of 1 2 
2 using the MH algorithm in example 1

3.2. Estimating a non-linear regression via the random walk MH algorithm (incorporating prior

distributions). We consider the same non-linear regression model examined in the previous section but now incor-

porate prior distribution for the regression parameters. We assume that the regression coefficients  = {1 2}
have a normal prior  () ∼ (0Σ0). For convenience, we set a prior for the precision, the reciprocal of the

variance. The Gamma prior 
¡
12

¢
with a prior scale parameter 0

2
and degrees of freedom  0

2
. The random walk

MH algorithm now consists of the following steps:

algorithm is needed. We proceed in the following steps:

Step 1 Set the parameters of the prior distributions  () and 
¡
12

¢
 Set starting values for Φ = {1 2, 2}

Finally set the variance of the candidate generating density Σ.

Step 2 Draw a new set of parameters from the random walk candidate density

Φ = Φ +  (3.9)

Step 3 Compute the acceptance probability  = min

µ
(Φ)
(Φ)

 1

¶
 Note that the target density  () is the pos-

terior density in this example as we have prior distributions for our parameters. Recall from chapter 1

that the Bayes law states that he posterior distribution is proportional to the likelihood times the prior.

Therefore we need to evaluate the likelihood and the prior distributions at the drawn value of the parameters

and multiply them together. The log likelihood function for this regression model is given by

ln (\Φ) = −
2
ln 2 − 

2
2 − 05

⎛⎜⎝
³
 −1

³
2



´´0 ³
 −1

³
2



´´
2

⎞⎟⎠ (3.10)

The prior density for the regression coefficients is just a normal density given by

 () = (2)
−2 |Σ0|−

1
2 exp

£−05 ( −0)
0
Σ−10 ( −0)

¤
(3.11)

Note that this is evaluated at the new draw of the regression coefficients. If the new draw is very far from the prior

mean 0 and the prior is tight (the diagonal elements of Σ0 are small) then  () will evaluate to a small number.
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Similarly, the log prior density for 12 is a Gamma distribution with a density function given by


¡
12

¢
= ∗

1

2

0
2
−1
exp

µ−0
22

¶
(3.12)

where ∗ = 1

Γ(02 )(
2

0
)
0
2

and Γ () denotes the Gamma function. The log posterior is given by

ln (Φ\) ∝ ln (\Φ) + ln () + ln
¡
12

¢
Therefore the acceptance probability is simply the likelihood ratio

 = min
¡
exp

¡
ln

¡
Φ\

¢− ln ¡Φ\¢¢  1¢ (3.13)

where ln
¡
Φ\

¢
is the log posterior evaluated at the new draw of 1 2, 

2 and ln
¡
Φ\

¢
is the log

posterior evaluated at the old draw. If    ∼ (0 1) we retain the new draw and set Φ = Φ.

Step 4 Repeat steps 2 and 3 M times. The last L draws of 1 2, 
2 provide an approximation to the marginal

posterior distributions.

Figures 4 and 5 show the code for this example (example2.m). Relative to the previous example there are only

two changes. First on lines 12 to 15 we set the parameters of the prior distributions for  and 12 Second, line 45

evaluates the log prior density for  at the new draw. Similarly, line 46 evaluates the log prior density for 12 at

the new draw. The log posterior at the new draw is calculated on line 47. Lines 50 to 55 calculate the log posterior

at the old draw of the parameters. The remaining code is identical to the previous example.
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Figure 4. Matlab code for example 2
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Figure 5. Matlab code for example 2 (continued)
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3.3. The random walk MH algorithm for a state space model. In this section we consider the estimation

of a regression with time-varying parameters using the MH algorithm. Note that Gibbs sampling is feasible for this

model. Our reason for using the MH algorithm is related to the fact the steps involved in dealing with this model

are very similar to those required when estimating a DSGE model. In particular, the choice of starting values is no

longer trivial.

The model we consider has the following state space representation

 =  +  +  ˜(0 ) (3.14)µ



¶
=

µ
1
2

¶
+

µ
1 0

0 2

¶µ
−1
−1

¶
+

µ
1
2

¶
µ

1
2

¶
˜

µµ
0

0

¶


µ
1 0

0 2

¶¶
The random walk MH algorithm for this model works exactly as before. At each iteration we calculate the log

posterior for the model at the old and the new draw of the parameters Φ = {1 2 1 2 12}. Calculation of
the posterior involves evaluating the prior distributions and the log likelihood of the model. Note that the likelihood

function of this state space model is evaluated using the Kalman filter. As discussed in Hamilton (1994) (page 385)

if the shocks to the state space model ( 1 2) are distributed normally, then the density of the data  (\) is
given as

 (\) = (2)−12
¯̄
\−1

¯̄−12 × exp³−050\−1−1\−1\−1
´

(3.15)

for  = 1 with the log likelihood of the model given by

ln  (\Φ) =
X
=1

ln  (\) (3.16)

Here \−1 is the prediction error from the prediction step of the Kalman filter and \−1 is the variance of the
prediction error (see Chapter 3).

Figures 6 and 7 show a matlab function (likelihoodTVP.m) which uses the Kalman filter to calculate the likelihood

for this model and will be used in the main code discussed below. Line 4 checks if the variances (stored as the last

three elements of theta) are positive and 1and 2 do not sum to a number greater than 1 ( this is a rough way to

check for stability). Lines 5 to 7 form the matrix

µ
1 0

0 2

¶
while lines 8 to 10 form the matrix

µ
1
2

¶
. Line

13 specifies the matrix R while lines 14 to 16 specify the matrix

µ
1 0

0 2

¶
 The Kalman filter recursions on lines

20 to 39 are as described in Chapter 3. Line 40 uses the prediction error and the variance of the prediction error to

calculate  (\) = (2)−12
¯̄
\−1

¯̄−12× exp³−050
\−1

−1
\−1\−1

´
 Line 42 adds this for each observation (if

there are no numerical problems). Line 47 returns the negative of the likelihood function (we are going to minimise

this below).

The MH algorithm for this model is given by the following steps:

Step 1 Set priors for the coefficients and variances of the state space model. We assume that 1 2 1 2 have a

normal prior while the reciprocal of 1 2 have a Gamma prior.

Step 2 Set a starting value for the parameters Φ = {1 2 1 2 12} and the variance of the shock to
the random walk candidate generating density. We set the starting value for Φ as the estimate Φ by

numerically maximising the log posterior. The mode of the posterior provides a reasonable point to the start

the MH algorithm and implies that fewer iterations may be required for the algorithm to converge.3The

estimate of the covariance of Φ can be used to set the variance of the random walk candidate density.

Note that the covariance of Φ is given by the inverse of the hessian of the log posterior with respect to

the model parameters. Denoting this estimated variance by Ω̂ the variance of the shock to the candidate

generating density is set as Σ = Ω̂×  where  is a scaling factor chosen by the researchers such that the

acceptance rate is between 20% and 40%.

Step 3 Draw a new set of parameters from the random walk candidate density

Φ = Φ +  (3.17)

Step 4 Compute the acceptance probability  = min

µ
(Φ)
(Φ)

 1

¶
 As in the previous example the target density is

the posterior distribution. The log of the posterior distribution is calculated as the sum of the log likelihood

and the sum of the log priors. As described above, the log likelihood is calculated by using the Kalman

filter. If    ∼ (0 1) then we keep Φ otherwise we retain the old draw.

3Note also that if the posterior is multi-modal (which may be the case for complicated models) the numerical maximum will be a

rough approximation to the posterior mode.
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Figure 6. The log likelihood for the time-varying parameter model in Matlab

Step 5 Repeat steps 3 and 4 M times. The last L draws of Φ provide an approximation to the marginal posterior

distributions.

Figures 8, 9 and 10 show the code for the MH algorithm for this model. Line 2 of the code adds the optimization

software csminwel written by Chris Sims and freely available at http://sims.princeton.edu/yftp/optimize/mfiles/.

This matlab function minimises a user supplied function. Lines 5 to 23 create artificial data for the state space

model assuming that 1 = 01 2 = −01 1 = 095 2 = 095  = 2 1 = 01 2 = 01. Lines 25 to 36 set the

parameters for the prior distributions. Lines 37 to 39 maximise the log posterior of the model using csminwel. Line

39 called csminwel using the code:
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Figure 7. The log likelihood for the time-varying parameter model in Matlab (continued)

[FF,AA,gh,hess,itct,fcount,retcodeh] =

csminwel(‘posterior’,theta0,eye(length(theta0))*.1,[],1e-15,1000,y,x,F0,VF0,MU0,VMU0,R0,VR0,Q0,VQ0);

The inputs to the function are (1) the name of the function that calculates the log posterior. This is called

posterior.m in our example. Note that this example evaluates the log likelihood using likelihoodTVP.m. The function

then evaluates the log prior for each parameter. The sum of these is the log joint prior. The sum of the log joint prior

and the log likelihood is the log posterior. Note that posterior.m returns the negative of the log posterior. Therefore

csminwel minimises the minimum of the negative log posterior which is equivalent to maximising the log posterior.

(2) the initial values of the model parameters theta0. (3) the initial hessian matrix which can be left as default. (4) a
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Figure 8. Matlab code for the TVP model

Figure 9. Matlab code for the TVP model (continued)
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Figure 10. Matlab code for TVP model continued

function for calculating analytical derivitives. If this is unavailable then we enter an empty matrix [] as done above.

(5) The tolerance level to stop the iterative procedure. This should be left as default. (6) The maximum number of

iterations set to a 1000 in the example above. All the remaining arguments (y,x,F0,VF0,MU0,VMU0,R0,VR0,Q0,VQ0)

are passed directly to the function posterior.m and are inputs for that function. The function returns (1) FF the

value of the function at the minimum. (2) AA the value of the parameters at the minimum and (3) hess the inverse

hessian of the function being minimised

Line 42 of the code sets the variance of the random walk candidate generating density as a scalar times the

parameter variance obtained from the optimisation using csminwel. Line 43 sets the initial value of the parameters

as the posterior mode estimates.

Line 51 calculates the log likelihood at the initial value of the parameters. Lines 59 to 68 evaluate the log prior

distributions for the parameters of the state space model. Line 69 calculates the log joint prior as the sum of these

prior distributions. Line 70 calculates the log posterior as the sum of the log likelihood and the log joint prior.

Line 74 draws the new value of the parameters from the random walk candidate generating density. Line 82

calculates the log likelihood at the new draw (assuming that the drawn variances are positive and the elements of 

sum to less than 1). Lines 83 to 100 evaluate the log joint prior at the new draw and line 101 calculates the posterior.

Line 109 calculates the acceptance probability. If this is bigger than a number from the standard uniform distribution

then the new draw of the parameters is accepted. In this case Line 115 also sets posteriorOLD to posteriorNEW— it

automatically updates the value of the posterior at the old draw eliminating the need to compute the posterior at

the old draw at every iteration (as we have done in the examples above).

Line 120 computes the acceptance rate (the ratio of the number of accepted draws and the total draws). Once

past the burn-in stage we save the draws of the model parameters. Figure 11 shows the retained draws of the

parameters along with the true values.

3.4. The random walk MH algorithm used in a Threshold VAR model. In this section, we consider

how the MH algorithm is used in the estimation of a Threshold VAR model (TVAR). The TVAR is defined as

 = 1 +

X
=1

1− +   () = Ω1 if  ≤  ∗

 = 2 +

X
=1

2− +   () = Ω2 if    ∗

where  is a matrix of endogenous variables,  = − (i.e. a lag of one of the endogenous variables) is the
threshold variable and  ∗ is the threshold level. Note that if  ∗ and  are known, then the TVAR is simply two
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Figure 11. MH draws for the TVP model

VAR models defined over the appropriate data samples using  ≤  ∗ and    ∗. This observation allows us to
devise a Gibbs algorithm (with a MH step). In what follows below we assume the delay parameter  to be known.

See Chen and Lee (1995) for the extension of the algorithm to the case where  is estimated.

Step 1 Set Priors. In the application below, we assume  ( ∗) ˜(̄ ∗  ∗). We set a natural conjugate prior for
the VAR parameters in both regimes using dummy observations. See the prior used in section 6. Set an

initial value for  ∗. One way to do this is to use the mean or median of −.
Step 2 Seperate the data into two regimes. The first regime includes all observations such that  ≤  ∗. Call this

sample 1 The second regime includes all observations such that    ∗. Call this sample 2
Step 3 Sample the VAR parameters  = { } and Ω in each regime  = 1 2. Let  denote the right hand side

variables of the VAR. The conditional distribution is exactly as defined in chapter 2 above and is given by

 (\Ω   ∗) ˜((∗ )Ω ⊗ (∗0 ∗ )−1) (3.18)

 (Ω\    ∗) ˜ (∗  
∗
 )

where

∗ = (
∗0
 

∗
 )
−1
(∗0 

∗
 )

∗ = (
∗
 −∗ )

0
(∗ −∗ )

where ∗ = [;] and ∗ = [;] with  the dummy observations that define the prior for

the left and the right hand side of the VAR respectively.

Step 4 Use a MH step to sample  ∗. Draw a new value of the threshold from the random walk

 ∗ =  ∗ +  ˜(0Σ)

Then compute the acceptance probability

 =
 ( \Ω  ∗)  ( ∗)
 ( \Ω  ∗)  ( ∗)

where  ( \Ω  ∗) is the likelihood of the VAR computed as the product of the likelihoods in the two
regimes. The log likelihood in each regime (ignoring constants) isµ



2

¶
log
¯̄
Ω−1

¯̄
− 05

X
=1

∙³
 −̃

´0
Ω−1

³
 −̃

´¸
with ̃ equivalent to  reshaped to be conformable with . Then draw ˜(0 1). If    accept  ∗
else retain  ∗. The scale Σ can be tuned to ensure an acceptance rate between 20% and 40%.

As an example we consider a TVAR where  contains US data on GDP growth, CPI inflation, a short term

interest rate and a financial conditions index (FCI) calculated by the Chicago Fed. The threshold variable is assumed

to be the second lag of FCI and examine the impulse response of the variables to a unit increase in FCI (a deterioration
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Figure 12. Matlab code for TVAR model

of financial conditions) in the two regimes. The matlab code is in the file named thresholdvarNFCI.m and displayed

in figures 12, 13 and 14. In this example the prior  ( ∗) ˜(̄ ∗  ∗) is set by using the mean of NFCI as ̄ ∗ and
 ∗ = 10 (line 28). Lines 30 to 53 set the natural conjugate prior for the VAR parameters. Lines 80 to 87 seperate

the sample into two regimes. Lines 89 to 128 draw the VAR coefficients and covariance in each regime. The MH step

to draw the threshold variable starts on line 134 with a draw from the random walk candidate density. Then the log

posterior ln ( ( \Ω  ∗)  ( ∗)) is computed on line 136 while ln ( ( \Ω  ∗)  ( ∗)) is computed on
line 137. The acceptance probability is computed on line 138.



112 4. AN INTRODUCTION TO THE THE METROPOLIS HASTINGS ALGORITHM

Figure 13. Matlab code for TVAR model
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Figure 14. Matlab code for TVAR model
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Figure 15. Results from the TVAR model for the US

The top right panel of figure 15 plots the estimated threshold and the threshold variable and shows that regime 2

persisted in the 1980s, the early 1990s and then during the recent recession. There is some evidence that the negative

impact of an FCI shock on GDP growth is larger in regime 2.

4. The independence Metropolis Hastings algorithm

The independence MH algorithm differs from the random walk MH algorithm in that the candidate generating

density is not specified as a random walk. Therefore, the new draw of the parameters does not depend directly on

the previous draw. The candidate density is specified as


¡
Φ+1\Φ¢ = 

¡
Φ+1

¢
(4.1)

Note that now, in general, the formula for the acceptance probability does not simplify and is given by

 = min

Ã

¡
Φ+1

¢

¡
Φ+1\Φ¢

 (Φ)  (Φ\Φ+1)  1

!
(4.2)

The independence MH algorithm is therefore more general than the random walk MH algorithm. Unlike the

random walk MH algorithm, the candidate generating density in the independence MH algorithm has to be tailored

to the particular problem at hand. We examine an application to stochastic volatility models below.

Apart from the change in the form of the candidate generating density the steps of the algorithm remain the

same:

Step 1 Set starting values for the model parameters.

Step 2 Draw a candidate value of the parameters Φ+1from the candidate generating density 
¡
Φ+1

¢
Step 3 Compute the acceptance probability

 = min

Ã

¡
Φ+1

¢

¡
Φ+1Φ

¢
 (Φ)  (ΦΦ+1)

 1

!
(4.3)

Step 4 If  ∼ (0 1) is less than  retain Φ+1. Otherwise retain the old draw.

Step 5 Repeat steps 2 to 4  times and base inference on the last  draws. In other words, the empirical

distribution using the last  draws is an approximation to target density.

4.1. Estimation of stochastic volatility models via the independence MH algorithm. A simple sto-

chastic volatility model for a  × 1 data series  is given by

 = 
p
exp (ln) (4.4)

ln = ln−1 + 

˜(0 )
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where  is time-varying variance. Note that this is a state space model where the observation equation is non-linear

in the state variable  and therefore the Carter and Kohn algorithm does not apply. Jacquier et al. (2004) instead

suggest applying an independence MH algorithm at each point in time to sample from the conditional distribution

of  which is given by  (\− ) where the subscript − denotes all other dates than Jacquier et al. (2004)

argue that because the transition equation of the model is a random walk, the knowledge of +1 and −1 contains
all relavant information about  Therefore, the conditional distribution of  can be simplified as

 (\− ) =  (\−1 +1 ) (4.5)

Jacquier et al. (2004) show that this density has the following form

 (\−1 +1 ) = −05 exp

µ−2
2

¶
× −1 exp

Ã
− (ln − )

2

2

!
(4.6)

with

 =
(ln+1 + ln−1)

2
(4.7)

 =


2
(4.8)

That is  (\−1 +1 ) is a product of a normal density −05 exp
³
−2
2

´
and a log normal density −1 exp

³
−(ln−)2

2

´


To sample from  (\−1 +1 ), Jacquier et al. (2004) suggest a date by date application of the independence
MH algorithm with the candidate density defined as the second term in equation 4.6


¡
Φ+1

¢
= −1 exp

Ã
− (ln − )

2

2

!
(4.9)

The acceptance probability in this case is given by

 = min

Ã

¡
Φ+1

¢

¡
Φ+1Φ

¢
 (Φ)  (ΦΦ+1)

 1

!
(4.10)

→

 =

h
−05 exp

³
−2

2

´
× −1 exp

³
−(ln−)2

2

´i
−1 exp

³
−(ln−)2

2

´
h
−05 exp

³
−2
2

´
× −1 exp

³
−(ln−)2

2

´i
−1 exp

³
−(ln−)2

2

´ (4.11)

where the subscript  denotes the new draw and the subscript  denotes the old draw. Equation 4.11 simplifies

to give

 =
−05 exp

³
−2

2

´
−05 exp

³
−2
2

´ (4.12)

Therefore, for each  one generates a value of  using the candidate density in equation 4.9 and then calculates

the acceptance probability using equation 4.12. Note however that this algorithm is not operational for the first and

the last date in the sample as the calculation of  =
(ln+1+ln−1)

2
requires knowledge of +1 and −1

Jacquier et al. (2004) suggest sampling the initial value of  denoted by 0 using the following procedure.

Starting with the following prior for ln0˜ (̄ ̄) Jacquier et al. (2004) show that the posterior for ln0 is given by

 (0\1) = −10 exp

Ã
− (ln0 − 0)

2

20

!
(4.13)

where

0 =
̄

̄ + 

0 = 0

µ
̄

̄
+
ln1



¶
Therefore the algorithm starts by sampling 0 from equation 4.13 and accepting the draw (as the data for this

observation 0 is not defined).

Jacquier et al. (2004) suggest sampling the final value of  (with  =  )using the following modified candidate

generating density


¡
Φ+1

¢
= −1 exp

Ã
− (ln − )

2

2

!
(4.14)

where

 = ln−1 (4.15)

 = 
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The algorithm for the stochastic volatility model consists of the following steps4:

Step 1 Obtain a starting value for   = 0 as ̂
2
 and set the prior ̄ ̄ (e.g ̄ could be the log of OLS estimate

of the variance of  and ̄ could be set to a big number to reflect the uncertainty in this initial guess). Set

an inverse Gamma prior for  i.e. () ∼ 
¡
0
2
 0
2

¢
Set a starting value for 

Step 2 Time 0 Sample the initial value of  denoted by 0 from the log normal density

 (0\1) = −10 exp

Ã
− (ln0 − 0)

2

20

!
where the mean 0 = 0

³
̄
̄
+ ln1



´
and 0 =

̄
̄+

.

Algorithm 4. To sample from the log normal density  ∼ log ( ) sample 0 from the normal density

 ( )  Then  = exp (0) 

ep 2 Time 1 to T-1 For each date t=1 to T-1 draw a new value for  from the candidate density (call the draw )


¡
Φ+1

¢
= −1 exp

Ã
− (ln − )

2

2

!
where  =

(ln+1+ln−1)
2

and  =

2
 Compute the acceptance probability

 = min

⎛⎝−05 exp
³
−2

2

´
−05 exp

³
−2
2

´  1

⎞⎠
Draw ˜(0 1). If    set h = . Otherwise retain the old draw.

Step 2 Time T For the last time period  =  compute  = ln−1 and  =  and draw  from the candidate density


¡
Φ+1

¢
= −1 exp

Ã
− (ln − )

2

2

!
Compute the acceptance probability

 = min

⎛⎝−05 exp
³
−2

2

´
−05 exp

³
−2
2

´  1

⎞⎠
Draw ˜(0 1). If    set h = . Otherwise retain the old draw.

Step 3 Given a draw for  compute the residuals of the transition equation  = ln − ln−1 Draw  from the

inverse Gamma distribution with scale parameter
0+0

2
and degrees of freedom +0

2
 Note that this is an

example of a combination of Metropolis and Gibbs sampling algorithms.

Step 4 Repeat steps 2 and 3 M times. The last L draws of  and  provide an approximation to the marginal

posterior distributions.

Figures 16, 17 and 18 present the Matlab code for the stochastic volatility model applied to annual UK inflation

over the period 1914q1 to 2011q4 (example4.m). Lines 14 and 15 of the code set the prior for  Lines 16 and 17

set the prior ln0˜ (̄ ̄) where ̄ is set equal to the log of the variance of the first 10 observations in the sample.

Line 23 calculates a rough starting value for  as the square of the first difference of . Lines 35 and 36 calculate

0 and 0 and line 38 draws 0 from the log normal density. Line 41 starts a loop from period 1 to T-1. Note that

line 42 selects +1 as the lead value of  using the last draw of  Line 47 and 48 calculate the mean and variance

of the candidate density and line 49 draws the candidiate value of  Line 54 calculates the acceptance probability

in logs. Lines 68 to 84 repeat this for the final observation in the sample period. Line 84 calculate the residuals of

the transition equation as  = ln − ln−1 Line 85 draws  from the inverse Gamma distribution.

4Note that the Jacquier et al. (2004) algorithm is a single-move algorithm— the stochastic volatility is drawn one period at a time.

This may mean that this algorithm requires a large number of draws before convergence occurs. Kim et al. (1998) develop an algorithm

to sample the entire time-series of the stochastic volatility jointly and show that this multi-move algorithm is more efficient.
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Figure 16. Matlab code for the stochastic volatility model
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Figure 17. Matlab code for the stochastic volatility model continued
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Figure 18. Matlab code for the stochastic volatility model continued
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Figure 19. Estimated stochastic volatility of UK inflation

The right panel of figure 19 plots the estimated stochastic volatility of UK inflation.

We now a consider an extended version of this stochastic volatility model for inflation. The model now assumes

a time-varying AR(1) specification for inflation with stochastic volatility in the error term. This model is given as

 =  + −1 + 
p
exp (ln) (4.16)

Letting  = { } the coefficients in the regression evolve as
 = −1 +  (4.17)

where  ∼ (0). As before, the variance of the error term  evolves as

ln = ln−1 +  (4.18)

˜(0 )

This model can be easily estimated by combining the Carter and Kohn algorithm with the Metropolis algorithm

described above. The steps are as follows:

Step 1 Set a inverse Wishart prior for . The prior scale matrix can be set as 0 =  × × 0 where 0 is the

length of training sample,  is the variance covariance matrix of  obtained via OLS using the traning

sample and  is a scaling factor set to a small number. Obtain a starting value for   = 0 as ̂
2
 and

set the prior ̄ ̄ (e.g ̄ could be the log of OLS estimate of the variance of  using the training sample

and ̄ could be set to a big number to reflect the uncertainty in this initial guess). Set an inverse Gamma

prior for  i.e. () ∼  (0 0) Set a starting value for  and 

Step 2 Time 0 Conditional on  and  sample the initial value of  denoted by 0 from the log normal density

 (0\1) = −10 exp

Ã
− (ln0 − 0)

2

20

!
where the mean 0 = 0

³
̄
̄
+ ln1



´
and 0 =

̄
̄+

.

ep 2 Time 1 to T-1 For each date t=1 to T-1 draw a new value for  (conditional on  and ) from the candidate density

(call the draw )


¡
Φ+1

¢
= −1 exp

Ã
− (ln − )

2

2

!
where  =

(ln+1+ln−1)
2

and  =

2
 Compute the acceptance probability (note that the residuals  are

used in the expression below rather than  as in the previous example)

 = min

⎛⎝−05 exp
³
−2

2

´
−05 exp

³
−2
2

´  1

⎞⎠
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Draw ˜(0 1). If    set h = . Otherwise retain the old draw.

Step 2 Time T For the last time period  =  compute  = ln−1 and  =  and draw  from the candidate density


¡
Φ+1

¢
= −1 exp

Ã
− (ln − )

2

2

!
Compute the acceptance probability

 = min

⎛⎝−05 exp
³
−2

2

´
−05 exp

³
−2
2

´  1

⎞⎠
Draw ˜(0 1). If    set h = . Otherwise retain the old draw.

Step 3 Given a draw for  compute the residuals of the transition equation  = ln − ln−1 Draw  from the

inverse Gamma distribution with scale parameter
0+0

2
and degrees of freedom +0

2
 Note that this is an

example of a combination of Metropolis and Gibbs sampling algorithms.

Step 4 Conditional on  and  sample  using the Carter and Kohn algorithm as described in Chapter 3. This

algorithm remains apart from the minor difference that the variance of the error to observation equation is

different at each point in time. This is easily incorporated into the Kalman filter by selecting the appropriate

variance at each point in time.

Step 5 Sample from the inverse Wishart distribution (conditional on) with scale matrix ( −−1)
0
( −−1)+

0 and degrees of freedom 0 +  .

Step 6 Repeat steps 2 and 5 M times. The last L draws of , ,  and  provide an approximation to the

marginal posterior distributions.
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Figure 20. Matlab code for the time-varying parameter AR model with stochastic volatility

The matlab code for this example (example5.m) is shown in figures 20, 21 and 22. Lines 18 to 23 of the

code estimate an AR(1) model via OLS on a training sample of 10 observations. Line 24 sets ̄ as the log of the

error variance using this OLS residuals. Lines 27 and 28 set the initial value of the time varying coefficients and

the associated variance as the OLS estimates. Line 30 sets the prior scale matrix 0 using the OLS estimate of the

coefficient covariance. Lines 37 to 40 set an initial value for  and  and line 47 starts the algorithm. Lines 48 to 101

sample  using the independence MH step described in the previous example. The only change is that the residuals

from the observation equation  are used to evaluate the densities 
−05
 exp

³
−2

2

´
and −05 exp

³
−2

2

´
when

calculating the acceptance probability. Line 104 samples  from the inverse Gamma distribution. Line 108 samples
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Figure 21. Matlab code for the time-varying parameter AR model with stochastic volatility continued

the time-varying coefficients using the Carter Kohn algorithm. For simplicity, the code for this algorithm is moved

into a seperate function carterkohn1.m saved in the functions folder. This code is identical to the examples discussed

in the previous chapter apart from the minor difference that the value of the variance of the errors of the observation

equation at time  is set to . See line 18 in carterkohn1.m. Note that this function also returns the updated value of

the error term  The inputs to this function are as follows: (1) the initial state 0\0 (2) Variance of the initial state
(3) the time-varying variance of shock to the observation equation  (4)  (5)  the dependent variable and (6) 

the independent variables. Conditional on a value for  line 112 samples  from the inverse Wishart distribution.

Figure 23 shows the estimated stochastic volatility and the time-varying coefficients.
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Figure 22. Matlab code for the time-varying parameter AR model with stochastic volatility continued

5. A VAR with time-varying coefficients and stochastic volatility

We re-examine an extended version of the time-varying parameter VAR model shown in the previous chapter.

The extension involves allowing the variance covariance matrix of the error terms to be time-varying. This model

has been used in several recent studies (see for e.g. Primiceri (2005)) and is especially suited to examining the

time-varying transmission of structural shocks to the economy.
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Figure 23. Estimates from the time-varying AR model with stochastic volatility

We consider the following VAR model with time-varying parameters

 =  +

X
=1

− +    () =  (5.1)

 = { 1}
 = −1 +   () = 

The covariance matrix of the error term  i.e.  has time-varying elements. For simplicity most studies consider

the following structure for 

 = −1 
−10
 (5.2)

where  is a lower triangular matrix with elements  and  is a diagonal matrix with diagonal elements 

For example for a three variable VAR

 =

⎛⎝ 1 0 0

12 1 0

13 23 1

⎞⎠  =

⎡⎣ 1 0 0

0 2 0

0 0 3

⎤⎦
where

 = −1 +   () = 

and

ln = ln−1 +   () = 

for  = 13. Therefore, this model has two sets of time varying ‘coefficients’  and  and a stochastic volatility

model for the diagonal elements . As in the previous example, this VAR model can be estimated by combining the

Carter and Kohn algorithm to draw  and  with the independence MH algorithm for the stochastic volatility.

Before we describe the algorithm, it is worth noting the following relationship

 =  (5.3)

where   () = . For a three variable VAR this relationship implies the following set of equations⎛⎝ 1 0 0

12 1 0

13 23 1

⎞⎠⎛⎝ 1
2
3

⎞⎠ =

⎛⎝ 1
2
3

⎞⎠ (5.4)

or expanding

1 = 1 (5.5)

2 = −121 + 2

3 = −131 − 232 + 3
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where   (2) = 2 and   (3) = 3 and

12 = 12−1 + 1  (1) = 1 (5.6)µ
13
23

¶
=

µ
13−1
23−1

¶
+

µ
2
3

¶
  (

µ
2
3

¶
) = 2 (5.7)

Therefore,  are time varying coefficients on regressions involving the VAR residuals and can be sampled using

the method described in the previous example. The Gibbs and MH algorithm for estimating this three variable

time-varying VAR model consists of the following steps

Step 1a Set a prior for  and starting values for the Kalman filter. The prior for  is inverse Wishart  () ∼
 (0 0). Note that this prior is quite crucial as it influences the amount of time-variation allowed for in

the VAR model. In other words, a large value for the scale matrix 0 would imply more fluctuation in 

This prior is typically set using a training sample. The first 0 observations of the sample are used to estimate

a standard fixed coefficient VAR via OLS such that 0 = (
0
00)

−1
( 0

00) with a coefficient covariance

matrix given by 0\0 = Σ0 ⊗ ( 0
00)

−1
where 0 = {0−1 0− 1}, Σ0 = (0−00)

0(0−00)

0−
and the subscript 0 denotes the fact that this is the training sample. The scale matrix 0 is set equal to

0\0×0×  where  is a scaling factor chosen by the researcher. Some studies set  = 3510−4 i.e. a small
number to reflect the fact that the training sample in typically short and the resulting estimates of 0\0
maybe imprecise. Note that one can control the apriori amount of time-variation in the model by varying

 . Set a starting value for  The initial state is set equal to 0\0 = ( 0)
0 and the intial state covariance

is given by 0\0
Step 1b Set the prior for 1 and 2. The prior for 1 is inverse Gamma  (1) ∼  (10 0) and the prior

for 2 is inverse Wishart  (2) ∼  (20 0). Benati and Mumtaz (2006) set 10 = 0001 and 20 =µ
0001 0

0 0001

¶
 Let  = Σ

12
0 and let 0 denote the inverse of the matrix  with the diagonal normalised

to 1. The initial values for  (i.e. the initial state 0\0) are the non-zero elements of 0 with the variance
of the initial state set equal to  () × 10 (as in Benati and Mumtaz (2006)). Set a starting value for


Step 1c Obtain a starting value for   = 0 and  = 13 as ̂2 and set the prior ̄ ̄. ̄ can be set equal to

the log of the  diagonal element of Σ0 and ̄ to a large number. Set an inverse Gamma prior for  i.e.

() ∼  (0 0). Set a starting value for 

Step 2 Conditional on ,  and  draw  using the Carter and Kohn algorithm. The algorithm exactly as

described for the time-varying VAR without stochastic volatility in Chapter 3 with the difference that the

variance of  changes at each point in time and this needs to be taken into account when running the

Kalman filter.

Step 3 Using the draw for  calculate the residuals of the transition equation  − −1 =  and sample  from

the inverse Wishart distribution using the scale matrix 0 +0 and degrees of freedom  + 0

Step 4 Draw  the elements of  using the Carter and Kohn algorithm (conditional on 1 and 2). The

state space formulation for 12 is

2 = −121 + 2   (2) = 2

12 = 12−1 + 1  (1) = 1

The state space formulation for 13 and 23 is

3 = −131 − 232 + 3   (3) = 3µ
13
23

¶
=

µ
13−1
23−1

¶
+

µ
2
3

¶
  (

µ
2
3

¶
) = 2

Note that these two formulations are just time-varying regressions in the residuals and the Carter and Kohn

algorithm is applied to each seperately to draw 12 13 and 23

Step 5. Conditional on a draw for 12 13 and 23 calculate the residuals 1, 2 and 3 Draw 1 from the

inverse Gamma distribution with scale parameter
 0
11+10

2
and degrees of freedom +0

2
. Draw 2 from

the inverse Wishart distribution with scale matrix  0
22 +20 and degrees of freedom  + 0

Step 6 Using the draw of  from step 4 calculate  =  where  =

⎛⎝ 1
2
3

⎞⎠. Note that  are contemporane-
ously uncorrelated. We can therefore draw  for  = 13 separately by simply applying the independence

MH algorithm described above for each  (conditional on a draw for )

Step 7 Conditional on a draw for  for  = 13 draw  from the inverse Gamma distribution with scale parameter
(ln−ln−1)0(ln−ln−1)+0

2
and degrees of freedom +0

2


Step 8 Repeat steps 2 and 7 M times. The last L draws provide an approximation to the marginal posterior

distributions of the model parameters.
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Figure 24. Matlab code for the time-varying VAR with stochastic volatility

The matlab code for estimating this model (example6.m) is shown in figures 24, 25, 26 and 27. We consider a

time-varying VAR model with two lags using US data on GDP growth, CPI inflation and the Federal Funds rate over

the period 1954Q3 to 2010Q2 in this code. Lines 25 to 27 set the initial values for the elements of  by calculating

the matrix 0. Lines 30 amd 31 set the variance around these initial values. Lines 32 and 33 set the prior scale

matrices 10 and 20 Lines 38 to 45 set the priors and starting values for the stochastic volatility models for the

transformed VAR residuals  Lines 59 to 112 contain the Carter and Kohn algorithm to sample the VAR coefficients

. The only change relative to the example in chapter 3 is on lines 69 to 72. Line 70 using the function chofac.m

to reshape the value of   at time  into a lower triangular matrix. Line 72 calculates the VAR error covariance
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Figure 25. Matlab code for the time-varying VAR with stochastic volatility

matrix for that time period and this is used in Kalman filter equations. Line 116 samples  from the inverse Wishart

distribution. Line 121 uses the Carter and Kohn algorithm to sample 12 (where for simplicity the code for the

algorithm is in the function carterkohn1.m). Line 122 samples 13 and 23 using the same function. Lines 124

and 125 sample 1 from the inverse Gamma distribution. Lines 127 and 128 sample 2 from the inverse Wishart

distribution. Lines 131 to 136 calculate  = . Lines 138 to 142 use the independence MH algorithm to draw

  = 13 using these  The code for the algorithm is identical to the two previous examples but is included in

the function getsvol.m for simplicity. This function takes in the following inputs (1) the previous draw of  (2) 
(3) ̄ (4) ̄ (5)  and returns a draw for  Lines 145 to 148 draw  from the inverse Gamma distribution.
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Figure 26. Matlab code for the time-varying VAR with stochastic volatility

Figure 28 plots the estimated impulse response to a monetary policy shock (identified via sign restrictions) and

the estimated stochastic volatility.

6. Convergence of the MH algorithm
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Figure 27. Matlab code for the time-varying VAR with stochastic volatility



6. CONVERGENCE OF THE MH ALGORITHM 131

Figure 28. Response to a monetary policy shock from the time-varying VAR with stochastic volatil-
ity (Top panel) and the estimated stochastic volatility (bottom panel)
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Figure 29. Recursive mean for key parameters of the time-varying VAR model

Most of the methods for checking convergence of the Gibbs sampler (see Chapter 1) can be applied immediately

to output from the MH algorithm. Several studies present simple statistics such as recursive means of the MH draws

and the autocorrelation functions to test if the algorithm has converged. As an example we present the recursive

means of the retained draws for the time-varying parameter VAR considered in the previous section. As described

above this model is estimated using a mixture of Gibbs and MH steps. Figure 29 presents the recursive means

calculated every 20 draws for   and . The X-axis of each panel represents these parameterised vectorised.

The Y-axis represents the draws. The recursive means usggest convergence for   but indicate some variation

in the means for  possibly suggesting that more draws are required for this model.

Gelman and Rubin (1992) suggest a diagnostic for monitoring the convergence of multiple MH chains (for esti-

mating the same model) started from different starting values. For every parameter of interest  Gelman and Rubin

(1992) calculate the within chain variance as

 =
1



X
=1

1



X
=1

¡
̄ − ̄

¢2


̄ =
1



X
=1

 ̄ =
1



X
=1

̄

where  denotes the total number of iterations in each of the  MH algorithms.

Gelman and Rubin (1992) calculate the between chain variance

 =
1



X
=1

¡
̄ − ̄

¢2
They argue that  underestimates the variance of  (before convergence) as the MH algorithm has not explored

the parameter space. In contrast, 2 =
−1


 + overestimates this variance due to dispersed starting values. If

the MH algorithm has converged then  and 2 should be similar. Gelman and Rubin (1992) suggest calculating

the statistic

 =
2 +








 − 2

where  =
2

2+




2


and checking if this is close to 1 which would indicate convergence of the MH algorithm.

7. Further Reading

• Koop (2003) chapter 5 provides an excellent description of the Metropolis Hastings algorithm.
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8. Appendix: Computing the marginal likelihood using the Gelfand and Dey method

Gelfand and Dey (1994) introduce a method for computing the marginal likelihood that is particularly convenient

to use when employing the Metropolis Hastings algorithm. This method is based on the following result.



∙
 (Φ)

 ( \Φ)×  (Φ)
\
¸
=

1

 ( )
(8.1)

where  ( \Φ) denotes the likelihood function,  (Φ) is the prior distribution,  ( ) is the marginal likelihood and
 (Φ) is any pdf with support Θ defined within the region of the posterior. The proof of equation 8.1 can be obtained

by noting that 
h

(Φ)

 ( \Φ)× (Φ)\
i
=

Z
(Φ)

 ( \Φ)× (Φ) ×  (Φ\ ) Φ where  (Φ\ ) is the posterior distribution.
Note that  (Φ\ ) =  ( \Φ)× (Φ)

 ( )
and the density  (Φ) integrates to 1 leaving us with the right hand side in

equation 8.1.

We can approximate the marginal likelihood as 1


X
=1

(Φ)

 ( \Φ)× (Φ) where Φ denotes draws of the parameters

from Metropolis Hastings algorithm and  ( \Φ)×  (Φ) is the posterior evaluated at each draw. Geweke (1998)

recommends using a truncated normal distribution for  (Φ). This distribution is truncated at the tails to ensure

that  (Φ) is bounded from above, a requirement in Gelfand and Dey (1994). In particular, Geweke (1998) suggest

using

 (Φ) =
1

 (2)
2

¯̄̄
Σ̂
¯̄̄−12

exp

∙
−05

³
Φ − Φ̂

´
Σ̂−1

³
Φ − Φ̂

´0¸
× 

³
Φ ∈ Θ̂

´
(8.2)

where Φ̂ is the posterior mean, Σ̂ is the posterior covariance and k is the number of parameters. The indicator

function 
³
Φ ∈ Θ̂

´
takes a value of 1 if∙³

Φ− Φ̂
´
Σ̂−1

³
Φ− Φ̂

´0¸
≤ 21− ()

where 21− () is the inverse 
2 cumulative distribution function with degrees of freedom  and probability  Thus

21− () denotes the value that exceeds 1− % of the samples from a 2 distribution with  degrees of freedom. The

indicator function 
³
Φ ∈ Θ̂

´
therefore removes ‘extreme’ values of Φ  For more details, see Koop (2003) page 104.

In figures 30 and 31 we estimate the marginal likelihood for a linear regression model via the Gelfand and Dey

method. The model is exactly used in the appendix to Chapter 1 and is based on artifical data. A simple random walk

Metropolis Hastings algorithm is used to approximate the posterior on lines 35 to 62 and we save the log posterior

evaluated at each draw and each draw of the parameters. Lines 65 and 66 calculate the posterior mean and variance.

We set 1−  = 01 on line 68. In practice, different value of 1−  can be tried to check robustness of the estimate.

On line 70 we evaluate the inverse 2 CDF. Line 71 to 78, loop through the saved draws of the parameters. On 73 we

calculate
³
Φ− Φ̂

´
Σ̂−1

³
Φ− Φ̂

´0
 If this is less than or equal to 21− () we evaluate

(Φ)

 ( \Φ)× (Φ) in logs, adding
the constant lpost_mode to prevent overflow.
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Figure 30. Matlab code to calculate the marginal likelihood via the Gelfand and Dey Method
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Figure 31. Matlab code to calculate the marginal likelihood via the Gelfand and Dey Method (continued)
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