
Problem Sheet 1: Bayesian Theory
In the lectures, we showed how Bayesians use rules of conditional probability

to learn about parameters in the model. In particular, the posterior is propor-
tional to the prior times the likelihood function. Some questions in this problem
sheet gives you some priors and likelihoods and asks you to work out posteriors.
This allows you to get familiar with working with many common probability
density functions. Appendix B of the textbook book contains definitions and
properties of these and many more common distributions. The general solution
strategy is to multiply the prior and the likelihood together. The result will be
proportional to the posterior. One then examines (usually after re-arranging)
this posterior to see if it belongs to any common class of distributions.
As another hint, note that when working with probability density functions

we can usually ignore constant terms which do not involve the random variable.
So, for instance, if x is a random variable with p.d.f. p(x) then full knowledge
of p(x) is not always required. Writing p(x) = cf (x), where c does not depend
on x, for most derivations knowledge of f (x) is all that is required. f (x) is
referred to as the kernel and c the integrating constant. So, for instance, you
often see proofs where the researcher derives f (x) and then says "this is the
kernel of a Normal (or Gamma, etc.) p.d.f., hence it follows that x has a Normal
distribution".

Exercise 1
Given the parameter θ where 0 < θ < 1, consider T i.i.d. Bernoulli random

variables Yt (t = 1, 2, · · · , T ) each with:

p(yt|θ) =

{
θ if yt = 1

1− θ if yt = 0.
(1)

The likelihood function is, thus,
T∏
t=1

p(yt|θ), which is

p(y|θ) = θm(1− θ)T−m, (2)

where m = Ty is the number of successes (i.e., yt = 1) in T trials. Suppose
prior beliefs concerning θ are represented by a Beta distribution (see definition
in textbook Appendix B) with p.d.f.

p(θ) ∝ θα−1(1− θ)δ−1, 0 < θ < 1, (3)

where α > 0 and δ > 0 are known. This class of priors can represent a wide
range of prior opinions. Find the posterior density of θ.

Solution to Exercise 1
The posterior is obtained by multiplying (2) by (3):

p(θ|y) ∝ θα−1(1− θ)δ−1θm(1− θ)T−m

= θα(1− θ)δ−1, 0 < θ < 1.
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where

α = α+m,

δ = δ + T −m,

Examing the form for the posterior, it can be seen to be a Beta p.d.f. with
parameters α and δ. Note, that, since prior and posterior both have Beta p.d.f.’s,
that the conjugate family of prior distributions for a Bernoulli likelihood is the
Beta family of p.d.f.’s

Exercise 2
A laboratory blood test is 95 percent effective in detecting a certain disease

when it is, in fact, present. However, the test also yields a “false positive”result
for one percent of the healthy persons tested. If .1 percent of the population
actually has the disease, what is the probability that a person has the disease
given that her test result is positive?

Solution to Exercise 2
This problem can be solved by using Bayes’ theorm. Let D denote the

presence of the disease, Dc its absence and + denote a positive test result.
Then P (+|D) = .95, P (+|Dc) = .01 and P (D) = .001. Then according to
Bayes Theorem

P (D|+) =
P (D)P (+|D)

P (+)
=

.001(.95)

.001(.95) + .999(.01)
= .0868.

Exercise 3
Consider a random sample yt (t = 1, 2, · · ·T ) from a N(θ1, θ

−1
2 ) population.

For reasons that will become clear as we proceed, it is convenient to work in
terms of θ2, the reciprocal of the variance (called the precision). Assume θ2 is
known. Suppose prior beliefs for θ1 are represented by the Normal distribution

θ1 ∼ N(µ, h−1), (4)

where µ and h > 0 are given. Find the posterior density of θ1 as well as the
marginal likelihood.

Solution to Exercise 3
This can be interpreted as a simplied version of the simple regression model:

it has only an intercept and the error variance is known. For later notational
convenience, let

h = [θ−12 /T ]−1 = Tθ2 (5)

h = h+ h (6)

µ = h
−1

(hµ+ hy). (7)
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It is useful to employ two identities so we can write things in terms of OLS
quantities. The first identity is

T∑
t=1

(yt − θ1)2 =

T∑
t=1

(yt − y)2 + T (y − θ1)2 = νs2 + T (y − θ1)2 (8)

where

ν = T − 1 (9)

s2 = ν−1
T∑
t=1

(yt − y)2. (10)

The second identity is:

h(θ1 − µ)2 + h(y − θ1)2 = (θ1 − µ)2 + (h−1 + h−1)−1(y − µ)2. (11)

Now we apply Bayes Theorem to find the posterior density of θ1. Using
identity (8) and letting φ(yt|θ1, θ−12 ) denote the Normal p.d.f. with mean θ1
and variance θ−12 , write the likelihood function as

p (y|θ1) =

T∏
t=1

φ(yt|θ1, θ−12 ) (12)

= (2πθ−12 )−T/2 exp

(
T∑
t=1

(yt − θ1)2
)

= (2πθ−12 )−T/2 exp

(
− h

2T
νs2 + T (y − θ1)2

)
= c1φ(y|θ1, h−1),

where

c1 = (2π)ν/2T (−1/2)θ
ν/2
2 exp

(
−1

2
θ2νs

2

)
(13)

does not depend on θ1. Note that the factorization in (13) demonstrates that
y is a suffi cient statistic for θ1 (i.e. the likelihood for θ1 can be written so that
data information enters only through y). Also note that density φ(y|θ1, h−1)
corresponds to the sampling density of the sample mean, given θ1.

Let us now multiply prior times likelihood

p(θ1)p (y|θ1) = φ(θ1|µ, h−1)c1φ(y|θ1, h−1) (14)

= c1(2πh
−1)−1/2 exp

(
−1

2
h(θ1 − µ)2 + h(y − θ1)2

)
= c1(2πh

−1)−1/2 exp

(
−1

2
(θ1 − y)2 + (h−1 + h−1)−1(y − µ)2

)
= c1φ

(
y|µ, h−1 + h−1

)
φ(θ1|µ, h

−1
). (15)
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Equation (15) can be used to obtain both posterior and marginal likelihood.
Since posterior is proportional to prior times likelihood and θ1 only enters in
the term φ(θ1|µ, h

−1
) it follows that the posterior density of θ1 is

p(θ1|y) = φ
(
θ1|µ, h

−1)
. (16)

Remembering that the marginal likelihood, p(y), is the integral of prior times
likelihood we can use (15) as follows:

p(y) =

∫ ∞
−∞

p(θ1)p (y|θ1) dθ1 (17)

= c1φ
(
y|µ, h−1 + h−1

) ∫ ∞
−∞

φ(θ1|µ, h
−1

)dθ1 (18)

= c1φ
(
y|µ, h−1 + h−1

)
. (19)

Note that, to move from (18) to (19) we are using the fact that p.d.f.’s must
integrate to 1.
The interpretation of quantities (6) and (7) is now clear: they are the pos-

terior precision and posterior mean, respectively. Note that it is the additivity
of precisions in these equations that motivates working with precisions rather
than variances. Because posterior density (16) and prior density (4) are both
members of the Normal family, it follows that the conjugate prior for the case
of random sampling from a Normal population with known variance is itself a
Normal density (Note: As we shall see in the next exercise, this no longer holds
true when the variance in unknown).

Exercise 4
Consider Exercise 3, but with the population precision θ2 also unknown.

Suppose the joint prior distribution for θ = [θ1, θ2]
′ is the Normal-Gamma

distribution, denoted θ ∼ NG(µ, q, s−2, ν) with density

fNG(θ|µ, q, s−2, ν) = φ(θ1|µ, θ−12 q)γ(θ2|s−2, ν) (20)

=

(
(2πθ−12 )−1/2 exp

[
−1

2
θ2q
−1(θ1 − µ)2

])

∗

([ 2

νs2

]ν/2
Γ(ν/2)

)−1
θ
(ν−2)/2
2 exp

(
−1

2
θ2νs

2

)
∝ θ

(ν−1)/2
2 exp

(
−1

2
θ2[νs

2 + q−1(θ1 − µ)2]

)
,

where µ.,q, s2 and ν are known positive constants and γ(θ2|s−2, ν) is notation
for the Gamma p.d.f.. Find the posterior density of θ.

Solution to Exercise 4
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Dropping irrelevant constants not depending on θ1 and θ2, the posterior is
proportion to the likelihood (12) tiomes the prior in (20):

p(θ|y) ∝ p(θ)p (y|θ1) (21)

∝
[
φ(θ1|µ, θ−12 q)γ(θ2|s−2, ν)

] [
c1(θ2)φ(y|θ1, h−1)

]
∝ θ

(ν−1)/2
2 exp

(
−θ2

2
[νs2 + q−1(θ1 − µ)2]

)
θ
(ν+1)/2
2 exp

(
−θ2

2
[νs2 + T (y − θ1)2]

)
∝ θ

v/2
2 exp

(
−θ2

2
[νs2 + νs2 + q−1(θ1 − µ)2 + T (y − θ1)2]

)
, (22)

where
ν = ν + T. (23)

Using identity (11) with h = q−1θ2 and h = Tθ2, the last two terms in square
brackets in (22) can be written as

q−1(θ1 − µ)2 + T (y − θ1)2 = q−1(θ1 − µ)2 + (q + T−1)−1(y − µ)2, (24)

where
q = (q−1 + T )−1, (25)

and
µ = q(q−1µ+ Ty). (26)

The letting

s2 = ν−1
[
νs2 + νs2 + (q + T−1)−1(y − µ)2

]
(27)

= ν−1
[
νs2 + νs2 + q−1qT (y − µ)2

]
, (28)

it follows from (23) through (28) that posterior density (22) can be written

p(θ|y) ∝ θ
v/2
2 exp

(
−θ2

2
[q−1(θ1 − µ)2 + νs2]

)
(29)

∝ θ
1/2
2 exp

[
−θ2

2
q−1(θ1 − µ)2

]
θ
(ν−2)/2
2 exp

[
−θ2

2
νs2
]

(30)

Comparing the formula for the Normal-Gamma p.d.f. (see equation 20 or Ap-
pendix B of the textbook) and (2.35), it can be seen that posterior density
p(θ|y) corresponds to the kernel of a NG(µ, q, s−2, ν) distribution, with updat-
ing formulas (23) and (25) through (27). Because both prior and posterior are
Normal-Gamma densities, the Normal Gamma is the conjugate prior for random
sampling from a Normal population with unknown mean and variance.

Exercise 5
Natural conjugate priors have the desirable feature that prior information

can be viewed as “fictitious sample information”in that it is combined with the
sample in exactly the same way that additional sample information would be
combined. To clarify this point, reconsider Exercises 1, 3 and 4.
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(a) Using the setup and results from Exercise 1 show that a Beta prior
distribution with parameters α and δ can be interpreted as the information
contained in a sample of size T = α + δ − 2 with α − 1 successes from the
Bernoulli process of interest. (Of course if α and δ are not integers, then this
interpretation must be loosely made).
(b) Using the setup and results from Exercise 3 (known variance) show that a

Normal prior distribution (4) can be interpreted in terms of “equivalent sample
information.”

(c) Using the setup and results from Exercise 4 (unknown variance) show
that a fictitious sample interpretation of prior (20) can also be given.
Solution to Exercise 5
(a) Such an interpretation follows directly from comparing (2) with (3) and

remember that m is the number of successes.
(b) Define

T ≡ θ−12
h−1

=
h

θ2
. (31)

and write the prior variance as

h−1 =
θ−12
T
. (32)

Similarly, using (6) define

T ≡ θ−12

h
−1 =

h

θ2
= T + T, (33)

and note that posterior mean (7) can be written

µ =
Tµ+ Ty

T
−1 . (34)

Hence, prior distribution (4) can be interpreted as the information contained in a
sample of size T from the underlying N(θ1, θ

−1
2 ) population yielding a “sample”

mean µ and a variance in this prior mean equaling (32). Given this interpreta-
tion, (33) and (34) can be viewed as formulae for pooling the information from
the actual sample and the fictitious prior sample.
(c) Let

T =
1

q
. (35)

represent the prior sample size and let

T =
1

q
= T + T (36)

represent the total sample size. Then again posterior mean (26) can be written
as the weighted average (34).
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Exercise 6
Consider the Normal-Gamma prior density of (20). Find the marginal prior

distribution of θ1. Repeat the exercise for the Normal-Gamma posterior density
of (30).
Solution to Exercise 6
The marginal p.d.f. of θ1 is obtained by integrating out θ2 from the joint

p.d.f. (20). Note that the last line of (20) is the kernel of a γ(a, b) density for
θ2 given all other quantities, where

a =
ν + 1

νs2

[
1 +

1

ν

(
(θ1 − µ)2

s2q

)]−1
,

b = ν + 1.

Thus, integrating (20) with respect to θ2 is proportional to the integrating
constant of a γ(a, b) density. This can be found in the textbook Appendix B.
Thus,

p(θ1|µ, q, s2, ν) ∝ Γ(b/2)

(
2a

b

)b/2
∝
[

1 +
1

ν

(
(θ1 − µ)2

s2q

)]−1
, (37)

which is the kernel of a t(θ1|µ, s2q, ν + 1) distribution. The derivation for the

marginal posterior is exactly the same, except that all hyperparameters have
upper bars. That is, we end up witht(θ1|µ, q, s−2, ν + 1).

Exercise 7

Consider a random sample Yt (t = 1, 2, · · · , T ) from a multivariate N(µ,Σ)
distribution where µ is an M × 1 vector and Σ is an M ×M positive definite
matrix. Define Y = [Y1, Y2, · · · , YT ] and

Y =
1

T

T∑
t=1

Yt,

and

S =
1

T

T∑
t=1

(Yt − Y )(Yt − Y )′.

Suppose m and µ are both M × 1, T > 0 and ω > M are both scalars, and S
is a M ×M positive definite matrix. Consider the natural conjugate priors for
the following three cases.
(a) Suppose µ is unknown, Σ−1 is known and the prior distribution for µ

is multivariate Normal with prior density p(µ) = φ(µ|µ,Σ). Find the posterior
distribution for µ
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(b) Suppose both µ and Σ−1 are unknown with so-called Normal-Wishart
prior distribution

p(µ,Σ−1) = p(µ|Σ−1)p(Σ−1)
= φ(µ|µ, T−1Σ)W (Σ−1|S−1ω).

Find the posterior distribution for µ and Σ−1. Also find the marginal posterior
distributions for µ and Σ−1.

Solution to Exercise 7
This exercise repeats Exercises 3 and 4 for the matrix case and introduces you

to the Wishart distribution, which is the matrix generalization of the Gamma.
The likelihood function is common to parts a) and b) of the question. Simi-
lar to previous exercises, we are using the notation "φ(µ|µ,Σ)" to denote the
multivariate Normal p.d.f.. Using the definition of the multivariate Normal
distribution we have:

p(y|µ,Σ−1) =

T∏
t=1

(2π)−M/2|Σ−1|(1/2) exp

[
−1

2
(yt − µ)′Σ−1(yt − µ)

]
(38)

= (2π)−TM/2|Σ−1|(T/2) exp

[
−1

2

T∑
t=1

(yt − µ)′Σ−1(yt − µ)

]

= (2π)−TM/2|Σ−1|(T/2) exp

[
−1

2

T∑
t=1

tr
[
Σ−1(yt − µ)(yt − µ)′

]]

= (2π)−TM/2|Σ−1|(T/2) exp

[
−1

2
tr

(
Σ−1

T∑
t=1

(yt − µ)(yt − µ)′

)]
Noting the identity

T∑
t=1

(yt − µ)(yt − µ)′ = S + T (y − µ)(y − µ)′,

likelihood (38) can be written as

L(µ,Σ−1; y) = (2π)−TM/2|Σ−1|(T/2) exp

[
−1

2
tr
(
Σ−1[S + T (y − µ)(y − µ)′]

)]
.

(39)
(a) Combining multivariate Normal prior density p(µ) = φ(µ|µ,Σ) with

likelihood (39) yields

p(µ|y) ∝ exp

[
−1

2
(µ− µ)′Σ−1(µ− µ)

]
× (40)

exp

[
−1

2
tr
(
Σ−1[S + T (y − µ)(y − µ)′]

)]
∝ exp

[
−1

2

(
(µ− µ)′Σ−1(µ− µ) + (µ− y)′(TΣ−1)(µ− y)

)]
.
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Completing the square on µ, i.e., writing

(µ− µ)′Σ−1(µ− µ) + (µ− y)′(TΣ−1)(µ− y) = (41)

(µ− µ)′(Σ−1 + TΣ−1)(µ− µ) + (µ− y)′[Σ−1(Σ−1 + TΣ−1)−1TΣ−1](µ− y),

where
µ = (Σ−1 + TΣ−1)−1(Σ−1µ+ TΣ−1y), (42)

posterior kernel (40) simplifies to

p(µ|y) ∝ exp

[
−1

2
(µ− µ)′(Σ−1 + TΣ−1)(µ− µ)

]
, (43)

which is immediately recognized as a multivariate Normal kernel. Therefore,

µ|y ∼ N
(
µ, [Σ−1 + TΣ−1]−1

)
. (44)

(b) The posterior for µ and Σ−1 is

p(µ,Σ−1|y) ∝ |TΣ−1|(1/2) exp

[
−1

2
(µ− µ)′TΣ−1(µ− µ)

]
|Σ−1|(ω−M−1)/2 ∗ (45)

exp

[
−1

2
tr(Σ−1S−1

](
|Σ−1|(T/2) exp

[
−1

2
tr(Σ−1[S + T (y − µ)(y − µ)′])

])
∝ |Σ−1|(1/2) exp

[
−1

2
(µ− µ)′TΣ−1(µ− µ)

]
exp

[
−1

2
(y − µ)′TΣ−1(y − µ)

]
∗(

|Σ−1|(T+ω−M−1)/2 exp

[
−1

2
tr(Σ−1[S−1 + S])

])
.

analogous to (41)-(42) we have

(µ− µ)′TΣ−1(µ− µ) + (µ− y)′(TΣ−1)(µ− y) = (46)

(µ− µ)′[(T + T )Σ−1](µ− µ) + (µ− y)[TT (T + T−1Σ−1)](µ− y),

where

µ =
T−1µ+ Ty

T + T
. (47)

Using (46)-(47), posterior (45) simplifies to

p(µ,Σ−1|y) ∝ |ωΣ−1|(1/2) exp

[
−1

2
(µ− µ)′ωΣ−1(µ− µ)

]
∗ (48)(

|Σ−1|(T+ω−M−1)/2 exp

[
−1

2
tr(Σ−1S̃−1)

])
,

where

S̃ = S−1 + S +
TT

T + T
(y − µ)(y − µ)′. (49)

This can be seen to be of the same form as the Normal-Wishart prior distri-
bution (confirming the conjugacy of this prior).
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