
Problem Set 2: Bayesian Theory in the Linear
Regression Model

This problem sheet solves a series of Bayesian problems relating to the linear
regression model (in matrix notation). Let me offer a quick review of this model.
The linear regression model is the workhorse of econometrics. In addition to
being important in its own right, this model is an important component of
other, more complicated, models. The linear regression model posits a linear
relationship between the dependent variable yi and a k−vector of explanatory
variables, xi, where i = 1, .., N indexes the relevant observational unit (e.g.
individual, firm, time period, etc.). In matrix notation, the linear regression
model can be written as:

y = Xβ + ε, (1)

where y = (y1, .., yN )
′ is an N−vector

X =


x′1
.
.
x′N

 ,
is an N × k matrix and ε = (ε1, .., εN )

′ is an N−vector of errors. Assumptions
about ε and X define the likelihood function. The questions in this problem
sheet we will assume that ε and X satisfy what we will refer to as the classical
assumptions. With regards to the explanatory variables, we assume that they
are not random.
With regards to the errors, we assume they are independently Normally

distrubuted with mean 0 and common variance σ2. That is,

ε ∼ N
(
0N , σ

2IN
)

(2)

where 0N is an N−vector of zeroes, IN is the N ×N identity matrix and N ()
denotes the multivariate Normal distribution (see Appendix B to the textbook).
It proves more convenient to work with the error precision, h ≡ σ−2, and, thus,
the Normal linear regression model depends on the parameter vector

(
β′, h

)′
.

Using the properties of the multivariate Normal distribution, it follows that
p (y|β, h) = fN

(
y|Xβ, h−1IN

)
and, thus, the likelihood function is given by:

p (y|β, h) ≡ h
N
2

(2π)
N
2

exp

[
−h

2
(y −Xβ)

′
(y −Xβ)

]
. (3)

It is often convenient to write the likelihood function in terms of ordinary least
squares (OLS) quantities:

β̂ = (X ′X)
−1
X ′y

and
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SSE =
(
y −Xβ̂

)′ (
y −Xβ̂

)
.

This can be done by using the fact that

(y −Xβ)
′
(y −Xβ) = SSE +

(
β − β̂

)′
X ′X

(
β − β̂

)
and, thus,

p (y|β, h) ≡ h
N
2

(2π)
N
2

exp

[
−h

2

{
SSE +

(
β − β̂

)′
X ′X

(
β − β̂

)}]
. (4)

Exercise 1
For the Normal linear regression model under the classical assumptions, use

a Normal-Gamma prior (i.e.the prior for β and h is NG
(
β,Q, s−2, ν

)
, see the

textbook Appendix B). Derive the posterior for β and h and, thus, show that
the Normal-Gamma prior is a conjugate prior for this model.

Solution to Exercise 1
Using Bayes’rule and the properties of the Normal-Gamma density:

p (β, h|y) ∝ p (β, h) l (β, h)

∝ fN
(
β|β, h−1Q

)
fG
(
h|s−2, ν

)
fN
(
y|Xβ, h−1IN

)
,

where fG () denotes the Gamma density (see the textbook’s Appendix B). This
question can be solved by plugging in the forms for each of the densities in the
above expressions, rearranging them (using some theorems in matrix algebra)
and recognizing that the result is the kernel of Normal-Gamma density (details
are provided below). Since the posterior and prior are both Normal-Gamma,
conjugacy is established. The steps are elaborated in the remainder of this
solution.
Begin by writing out each density (ignoring integrating constants not in-

volving the parameters) and using the expression for the likelihood function in
(4):

p (β, h|y) ∝
{
h
k
2 exp

[
−h

2

(
β − β

)′
Q−1

(
β − β

)]}
{
h
ν−2
2 exp

[
−hνs

2

2

]}{
h
N
2 exp

[
−h

2

{
SSE +

(
β − β̂

)′
X ′X

(
β − β̂

)}]}
= h

ν+k−2
2 exp

[
−h

2

{
νs2 + SSE +

(
β − β

)′
Q−1

(
β − β

)
+
(
β − β̂

)′
X ′X

(
β − β̂

)}]
,

where ν = ν+N. In this expression, β enters only in the terms in the exponent,(
β − β

)′
Q−1

(
β − β

)
+
(
β − β̂

)′
X ′X

(
β − β̂

)
. Tedious, but straightfoward ma-

trix manipulations allus to write this term as:
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(
β − β

)′
Q−1

(
β − β

)
+
(
β − β̂

)′
X ′X

(
β − β̂

)
=

(
β̂ − β

)′
X ′XQQ−1

(
β̂ − β

)
+
(
β − β

)′
Q
−1 (

β − β
)
,

where

Q =
(
Q−1 +X ′X

)−1
and

β = Q
(
Q−1β +X ′Xβ̂

)
.

Thus, β enters only through the term
(
β − β

)′
Q
−1 (

β − β
)
and we can establish

that the kernel of β|y, h is given by:

p (β|y, h) ∝ exp

[
−h

2

(
β − β

)′
Q
−1 (

β − β
)]
.

Since this is the kernel of a Normal density we have established that β|y, h ∼
N
(
β, h−1Q

−1)
.

We can derive p (h|y) by using the fact that

p (h|y) =

∫
p (β, h|y) dβ =

∫
p (h|y) p (β|y, h) dβ.

Since p.d.f.s integrate to one we can integrate out the component involving
Normal density for p (β|y, h) and we are left with:

p (h|y) ∝ h
ν−2
2 exp

[
−h

2

{
νs2 + SSE +

(
β̂ − β

)′
X ′XQQ−1

(
β̂ − β

)}]
= h

ν−2
2 exp

[
−h

2
νs2
]
.

But this is the kernel of a Gamma density and we have established that h|y ∼
G
(
s−2, ν

)
.

Since β|y, h is Normal and h|y is Gamma, it follows immediately that the
posterior for β and h is NG

(
β,Q, s−2, ν

)
. Since prior and posterior are both

Normal-Gamma, conjugacy has been established.

Exercise 2
Suppose you have a Normal linear regression model with partially informa-

tive natural conjugate prior where prior information is available only on J ≤ k
linear combinations of the regression coeffi cients and the prior for h is the stan-
dard noninformative one: p (h) ∝ 1

h . Thus, Rβ|h ∼ N(r, h−1V r), where R is a
known J×k matrix with rank(R) = J , r is a known J-vector and V r is a J×J
positive definite matrix. Show that the posterior is given by
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β, h|y ∼ NG
(
β̃, Ṽ , s̃−2, ν̃

)
,

where

Ṽ =
(
R′V −1r R+X ′X

)−1
,

β̃ = Ṽ
(
R′V −1r β +X ′Xβ̂

)
,

ν̃ = N

and

νs2 = νs2 +
(
β̃ − β̂

)′
X ′X

(
β̃ − β̂

)
+
(
Rβ̂ − r

)′
V −1r

(
Rβ̂ − r

)
.

Solution to Exercise 2
Partition X = [X1, X2] and R = [R1, R2] where X1 is N × (k − J), X2 is

N × J , R1 is J × (k − J) and R2 is J × J . Partion β =
(
β′1, β

′
2

)′
conformably.

The linear regression model in (1) can be written as:

y = Zγ + ε,

where Z = XA−1 and γ = Aβ for any k × k nonsingular matrix A. If we take

A =

[
Ik−J 0(k−J)×J
R1 R2

]
then

Z = XA−1 = [Z1, Z2]

=
[
X1 −X2R

−1
2 R1, X2R

−1
2

]
and γ = [γ′1, γ

′
2]
′

=
[
β′1, (Rβ)

′]′. In words, we have transformed the model
so that the only prior information γ2 = Rβ. The remainder of the proof is
essentially the same as for Question 1. Assuming a Normal-Gamma natural
conjugate prior for γ and h leads to a Normal-Gamma posterior. Taking nonin-
formative limiting cases for the priors for γ1 and h and then transforming back
to the original parameterization (e.g. using β = A−1γ and X = ZA) yields the
expressions given in the question.

Exercise 3
Problems with Bayes Factors using Noninformative Priors.
Suppose you have two Normal linear regression models:

4



Mj : y = Xjβ + εj ,

where j = 1, 2, Xj is an N × kj matrix of explanatory variables, βj is a kj-
vector of regression coeffi cients and εj is an N -vector of errors distributed
as N

(
0N , h

−1
j IN

)
. If natural conjuage priors are used for both models (i.e.

βj , hj |Mj ∼ NG
(
β
j
, Q

j
, s−2j , νj

)
), then the posterior is βj , hj |y,Mj ∼ NG

(
βj , Qj , s

−2
j , νj

)
(where βj , Qj , s

−2
j and νj are as given in the solution to Question1) and the

Bayes factor comparing M2 to M1 is given by:

BF21 =
c2

(
|Q2|
|Q

2
|

) 1
2 (
ν2s

2
2

)− ν22
c1

(
|Q1|
|Q

1
|

) 1
2 (
ν1s

2
1

)− ν12 .
where

cj =
Γ
(
νj
2

) (
νjs

2
j

) νj
2

Γ
(
νj
2

)
π
N
2

.

a) Consider a noninformative prior created by letting νj → 0, Q−1
j

= cIkj
and letting c→ 0 for j = 1, 2. Show that the Bayes factor reduces to:

0 if k2 > k1[
|X′2X2|
|X′1X1|

]− 1
2
(
SSE2
SSE1

)−N2
if k2 = k1

∞ if k2 < k1

.

b) Consider a noninformative prior created by setting νj → 0, Q−1
j

=(
c

1
kj

)
Ikj and letting c→ 0 for j = 1, 2. Show that the Bayes factor reduces to:[

|X ′2X2|
|X ′1X1|

]− 1
2
(
SSE2
SSE1

)−N2
.

c) Consider a noninformative prior created by setting νj → 0, Q−1
j

=(
c

1
kj

)
X ′jXj and letting c → 0 for j = 1, 2. Show that the Bayes factor re-

duces to: (
SSE2
SSE1

)−N2
.

Solution to Exercise 3
In all cases, if ν1 = ν2 → 0 at the same rate then c1 = c2 and these

integrating constants cancel out in the Bayes factor. Furthermore, under the
various assumptions about Q−1

j
if can be seen that:
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νjs
2
j = SSEj ,

νj = N and Qj =
(
X ′jXj

)−1
for j = 1, 2. Thus, in all cases, the Bayes factor

reduces to:

BF21 =

(
|Q−1

2
|

|Q−1
1
|

) 1
2 [ |X ′2X2|
|X ′1X1|

]− 1
2
(
SSE2
SSE1

)−N2
.

In part a) |Q−1
j
| = ckj and, hence,

(
|Q−1

2
|

|Q−1
1
|

)
= ck2−k1 . If k1 = k2 then(

|Q−1
2
|

|Q−1
1
|

)
= 1 for all c. If k1 > k2 then

(
|Q−1

2
|

|Q−1
1
|

)
→∞ as c→ 0. If k1 < k2 then(

|Q−1
2
|

|Q−1
1
|

)
→ 0 as c→ 0. Thus, the result in part a) is established.

In part b) |Q−1
j
| = c and, hence,

(
|Q−1

2
|

|Q−1
1
|

)
= 1 for all c regardless of what kj

is.Thus, the result in part b) is established.

In part c) |Q−1
j
| = c |X ′jXj |and, hence,

(
|Q−1

2
|

|Q−1
1
|

)
=
|X′2X2|
|X′1X1| for all c regardless

of what kj is. Using this results, the Bayes factor simplifies to the expression
given in part c).

Exercise 4
Multicollinearity
Consider the Normal linear regression model with natural conjugate prior:

NG
(
β,Q, s−2, ν

)
.Assume in addition that Xc = 0 for some non-zero vector of

constants c. Note that this is referred to as a case of perfect multicollinearity.
It implies the matrix X is not of full rank and (X ′X)

−1 does not exist.
a) Show that, despite this pathology, the posterior exists if Q is positive

definite.

b) Define

α = c′Q−1β.

Show that, given h, the prior and posterior distributions of α are both iden-
tical and equal to:

N
(
c′Q−1β, h−1c′Q−1c

)
.

Hence, although prior information can be used to surmount the problems caused
by perfect multicollinearity, there are some combinations of the regression coef-
ficients about which learning does not occur.

Solution to Exercise 4
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part a). The solution to this question is essentially the same as to Exercise
1. The key thing to note is that, since Q is positive definite, Q−1 exists and,

hence, Q
−1
exists despite the fact that X ′X is rank deficient. In the manner,

it can be shown that the posterior for β and h is NG
(
β,Q, s−2, ν

)
with:

Q =
(
Q−1 +X ′X

)−1
,

β = Q
(
Q−1β +X ′y

)
,

νs2 = νs2 +
(
y −Xβ

)′ (
y −Xβ

)
+
(
β − β

)′
Q−1

(
β − β

)
and ν = N + ν.
part b). The properties of the Normal-Gamma distribution imply:

β|h ∼ N
(
β, h−1Q

)
.

The properties of the Normal distribution imply

α|h ≡ c′Q−1β ∼ N
(
c′Q−1β, h−1c′Q−1c

)
,

which establishes that the prior has the required form.
Using the result from part a), the relevant posterior has the form:

β|y, h ∼ N
(
β, h−1Q

)
which implies

α|y, h ∼ N
(
c′Q−1β, h−1c′Q−1QQ−1c

)
.

The mean can be written as:

c′Q−1β = c′
(
Q
−1 −X ′X

)
Q
(
Q−1β +X ′y

)
= c′Q−1β + c′X ′y − c′X ′XQ

(
Q−1β +X ′y

)
= c′Q−1β,

since Xc = 0.
The variance can be written as:

h−1c′Q−1QQ−1c = h−1c′Q−1
[(
Q−1 +X ′X

)−1
Q−1

]
c

= h−1c′Q−1
[
I −

(
Q−1 +X ′X

)−1
X ′X

]
c

= h−1c′Q−1c,

since Xc = 0. Note that this derivation uses a standard theorem in matrix
algebra that says, if G and H are k × k matrices and (G+H)

−1 exists, then
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(G+H)
−1
H = Ik − (G+H)

−1
G.

Combining these derivations, we see that the posterior is also α|y, h ∼
N
(
c′Q−1β, h−1c′Q−1c

)
as required.
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