
Bayesian Inference in the Normal Linear Regression
Model
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Bayesian Analysis of the Normal Linear Regression Model

Now see how general Bayesian theory of overview lecture works in
familiar regression model

Reading: textbook chapters 2, 3 and 6

Chapter 2 presents theory for simple regression model (no matrix
algebra)

Chapter 3 does multiple regression

In lecture, I will go straight to multiple regression

Begin with regression model under classical assumptions (independent
errors, homoskedasticity, etc.)

Chapter 6 frees up classical assumptions in several ways

Lecture will cover one way: Bayesian treatment of a particular type of
heteroskedasticity
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The Regression Model

Assume k explanatory variables, xi1,..,xik for i = 1, ..,N and
regression model:

yi = β1 + β2xi2 + ...+ βkxik + εi .

Note xi1 is implicitly set to 1 to allow for an intercept.

Matrix notation:

y =


y1
y2
.
.
yN


ε is N × 1 vector stacked in same way as y
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β is k × 1 vector
X is N × k matrix

X =


1 x12 . . x1k
1 x22 . . x2k
. . . . .
. . . . .
1 xN2 . . xNk


Regression model can be written as:

y = X β+ ε.
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The Likelihood Function

Likelihood can be derived under the classical assumptions:
ε is N(0N , h−1IN ) where h = σ−2.
All elements of X are either fixed (i.e. not random variables).
Exercise 10.1, Bayesian Econometric Methods shows that likelihood
function can be written in terms of OLS quantities:

ν = N − k,
β̂ =

(
X ′X

)−1 X ′y
s2 =

(
y − X β̂

)′ (
y − X β̂

)
ν

Likelihood function:

p(y |β, h) = 1

(2π)
N
2{

h
k
2 exp

[
− h2

(
β− β̂

)′
X ′X

(
β− β̂

)]}{
h

ν
2 exp

[
− hν
2s−2

]}
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The Prior

Common starting point is natural conjugate Normal-Gamma prior

β conditional on h is now multivariate Normal:

β|h ∼ N(β, h−1V )

Prior for error precision h is Gamma

h ∼ G (s−2, ν)

β,V , s−2 and ν are prior hyperparameter values chosen by the
researcher

Notation: Normal-Gamma distribution

β, h ∼ NG
(

β,V , s−2, ν
)
.
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The Posterior

Multiply likelihood by prior and collecting terms (see Bayesian
Econometrics Methods Exercise 10.1).

Posterior is
β, h|y ∼ NG

(
β,V , s−2, ν

)
where

V =
(
V−1 + X ′X

)−1
,

β = V
(
V−1β+ X ′X β̂

)
ν = ν+N

and s−2 is defined implicitly through

νs2 = νs2 + νs2 +
(

β̂− β
)′ [

V +
(
X ′X

)−1]−1 (
β̂− β

)
.
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Marginal posterior for β: multivariate t distribution:

β|y ∼ t
(

β, s2V , ν
)
,

Useful results for estimation:

E (β|y) = β

var(β|y) = νs2

ν− 2V .

Intuition: Posterior mean and variance are weighted average of
information in the prior and the data.
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A Noninformative Prior

Noninformative prior sets ν = 0 and V is big (big prior variance
implies large prior uncertainty).
But there is not a unique way of doing the latter (see Exercise 10.4 in
Bayesian Econometric Methods).
A common way: V−1 = cIk where c is a scalar and let c go to zero.
This noninformative prior is improper and becomes:

p (β, h) ∝
1
h
.

With this choice we get OLS results.

β, h|y ∼ NG
(

β,V , s−2, ν
)

where
V =

(
X ′X

)−1
β = β̂

ν = N

νs2 = νs2.
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Model Comparison

Case 1: M1 imposes a linear restriction and M2 does not (nested).

Case 2: M1 : y = X1β(1) + ε1 and M2 : y = X2β(2) + ε2, where X1
and X2 contain different explanatory variables (non-nested).

Both cases can be handled by defining models as (for j = 1, 2):

Mj : yj = Xjβ(j) + εj

Non-nested model comparison involves y1 = y2.

Nested model comparison defines M2 as unrestricted regression. M1

imposes the restriction can involve a redefinition of explanatory and
dependent variable.
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Example: Nested Model Comparison

M2 is unrestricted model

y = β1 + β2x2 + β3x3 + ε

M1 restricts β3 = 1, can be written:

y − x3 = β1 + β2x2 + ε

M1 has dependent variable y − x3 and intercept and x2 are
explanatory variables
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Marginal likelihood is (for j = 1, 2):

p(yj |Mj ) = cj

( |V j |
|V j |

) 1
2 (

νj s2j
)− νj

2

cj is constant depending on prior hyperparameters, etc.

PO12 =
c1
(
|V 1 |
|V 1 |

) 1
2 (

ν1s21
)− ν1

2 p(M1)

c2
(
|V 2 |
|V 2 |

) 1
2 (

ν2s22
)− ν2

2 p(M2)

Posterior odds ratio depends on the prior odds ratio and contains
rewards for model fit, coherency between prior and data information
and parsimony.
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Model Comparison with Noninformative Priors

Important rule: When comparing models using posterior odds ratios,
it is acceptable to use noninformative priors over parameters which
are common to all models. However, informative, proper priors should
be used over all other parameters.

If we set ν1 = ν2 = 0. Posterior odds ratio still has a sensible
interpretation.

Noninformative prior for h1 and h2 is fine (these parameters common
to both models)

But noninformative priors for β(j)’s causes problems which occur
largely when k1 6= k2. (Exercise 10.4 of Bayesian Econometric
Methods)

E.g. noninformative prior for β(j) based on V
−1
j = cIkj and letting

c → 0. Since |V j | = 1
c kj
terms involving kj do not cancel out.

If k1 < k2, PO12 becomes infinite, while if k1 > k2, PO12 goes to
zero.
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Prediction

Want to predict:
y ∗ = X ∗β+ ε∗

Remember, prediction is based on:

p (y ∗|y) =
∫ ∫

p (y ∗|y , β, h) p(β, h|y)dβdh.

The resulting predictive:

y ∗|y ∼ t
(
X ∗β, s2

{
IT + X

∗VX ∗′
}
, ν
)

Model comparison, prediction and posterior inference about β can all
be done analytically.

So no need for posterior simulation in this model.

However, let us illustrate Monte Carlo integration in this model.
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Monte Carlo Integration

Remember the basic LLN we used for Monte Carlo integration

Let β(s) for s = 1, ..,S be a random sample from p(β|y) and g (.) be
any function and define

ĝS =
1
S

S

∑
r=1

g
(

β(s)
)

then ĝS converges to E [g(β)|y ] as S goes to infinity.
How would you write a computer program which did this?
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Step 1: Take a random draw, β(s) from the posterior for β using a
random number generator for the multivariate t distribution.

Step 2: Calculate g
(

β(s)
)
and keep this result.

Step 3: Repeat Steps 1 and 2 S times.

Step 4: Take the average of the S draws g
(

β(1)
)
, ..., g

(
β(S )

)
.

These steps will yield an estimate of E [g(β)|y ] for any function of
interest.

Remember: Monte Carlo integration yields only an approximation for
E [g(β)|y ] (since you cannot set S = ∞).
By choosing S , can control the degree of approximation error.

Using a CLT we can obtain 95% confidence interval for E [g(β)|y ]
Or a numerical standard error can be reported.

() Bayesian Methods for Regression 16 / 53



Empirical Illustration

Data set on N = 546 houses sold in Windsor, Canada in 1987.

yi = sales price of the i th house measured in Canadian dollars,

xi2 = the lot size of the i th house measured in square feet,

xi3 = the number of bedrooms in the i th house,

xi4 = the number of bathrooms in the i th house,

xi5 = the number of storeys in the i th house.
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Example uses informative and noninformative priors.

Textbook discusses how you might elicit a prior.

Our prior implies statements of the form ”if we compare two houses
which are identical except the first house has one bedroom more than
the second, then we expect the first house to be worth $5, 000 more
than the second”. This yields prior mean, then choose large prior
variance to indicate prior uncertainty.

The following tables present some empirical results (textbook has lots
of discussion of how you would interpret them).

95% HPDI = highest posterior density interval

Shortest interval [a, b] such that:

p
(
a ≤ βj ≤ b|y

)
= 0.95.
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Prior and Posterior Means for β
(standard deviations in parentheses)
Prior Posterior

Informative
Using Noninf

Prior
Using Inf
Prior

β1
0

(10, 000)
−4, 009.55
(3, 593.16)

−4, 035.05
(3, 530.16)

β2
10
(5)

5.43
(0.37)

5.43
(0.37)

β3
5, 000
(2, 500)

2, 824.61
(1, 211.45)

2, 886.81
(1, 184.93)

β4
10, 000
(5, 000)

17, 105.17
(1, 729.65)

16, 965.24
(1, 708.02)

β5
10, 000
(5, 000)

7, 634.90
(1, 005.19)

7, 641.23
(997.02)
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Model Comparison involving β

Informative Prior

p
(

βj > 0|y
)

95% HPDI
Posterior Odds
for βj = 0

β1 0.13 [−10, 957, 2, 887] 4.14
β2 1.00 [4.71, 6.15] 2.25× 10−39
β3 0.99 [563.5, 5, 210.1] 0.39
β4 1.00 [13, 616, 20, 314] 1.72× 10−19
β5 1.00 [5, 686, 9, 596] 1.22× 10−11

Noninformative Prior

p
(

βj > 0|y
)

95% HPDI
Posterior Odds
for βj = 0

β1 0.13 [−11, 055, 3, 036] –
β2 1.00 [4.71, 6.15] –
β3 0.99 [449.3, 5, 200] –
β4 1.00 [13, 714, 20, 497] –
β5 1.00 [5, 664, 9, 606] –
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Posterior Results for β2 Calculated Various Ways

Mean
Standard
Deviation

Numerical St.
Error

Analytical 5.4316 0.3662 –
Number
of Reps
S = 10 5.3234 0.2889 0.0913
S = 100 5.4877 0.4011 0.0401
S = 1, 000 5.4209 0.3727 0.0118
S = 10, 000 5.4330 0.3677 0.0037
S = 100, 000 5.4323 0.3664 0.0012
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Summary

So far we have worked with Normal linear regression model using
natural conjugate prior

This meant posterior, marginal likelihood and predictive distributions
had analytical forms

But with other priors and more complicated models do not get
analytical results.

Next we will present some popular extensions of the regression model
to introduce another tool for posterior computation: the Gibbs
sampler.

The Gibbs sampler is a special type of Markov Chain Monte Carlo
(MCMC) algorithm.
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Normal Linear Regression Model with Independent
Normal-Gamma Prior

Keep the Normal linear regression model (under the classical
assumptions) as before.

Likelihood function presented above

Parameters of model are β and h.

() Bayesian Methods for Regression 23 / 53



The Prior

Before we had conjugate prior where p (β|h) was Normal density and
p (h) Gamma density.

Now use similar prior, but assume prior independence between β and
h.

p (β, h) = p (β) p (h) with p (β) being Normal and p (h) being
Gamma:

β ∼ N
(

β,V
)

and
h ∼ G (s−2, ν)

Key difference: now V is now the prior covariance matrix of β, with
conjugate prior we had var(β|h) = h−1V .
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The Posterior

The posterior is proportional to prior times the likelihood.

The joint posterior density for β and h does not take form of any
well-known and understood density —cannot be directly used for
posterior inference.

However, conditional posterior for β (i.e. conditional on h) takes a
simple form:

β|y , h ∼ N
(

β,V
)

where
V =

(
V−1 + hX ′X

)−1
β = V

(
V−1β+ hX ′y

)
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Conditional posterior for h takes simple form:

h|y , β ∼ G (s−2, ν)

where
ν = N + ν

and

s2 =
(y − X β)′ (y − X β) + νs2

ν

Econometrician is interested in p (β, h|y) (or p (β|y)), NOT the
posterior conditionals, p (β|y , h) and p (h|y , β).
Since p (β, h|y) 6= p (β|y , h) p (h|y , β), the conditional posteriors do
not directly tell us about p (β, h|y).
But, there is a posterior simulator, called the Gibbs sampler, which
uses conditional posteriors to produce random draws, β(s) and h(s) for
s = 1, ..,S , which can be averaged to produce estimates of posterior
properties just as with Monte Carlo integration.
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The Gibbs Sampler

Gibbs sampler is powerful tool for posterior simulation used in many
econometric models.

We will motivate general ideas before returning to regression model

General notation: θ is a p−vector of parameters and p (y |θ) , p (θ)
and p (θ|y) are the likelihood, prior and posterior, respectively.

Let θ be partitioned into blocks as θ =
(

θ′(1), θ
′
(2), .., θ

′
(B )

)′
. E.g. in

regression model set B = 2 with θ(1) = β and θ(2) = h.
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Intuition: i) Monte Carlo integration takes draws from p (θ|y) and
averages them to produce estimates of E [g (θ) |y ] for any function of
interest g (θ).

ii) In many models, it is not easy to draw from p (θ|y). However, it
often is easy to draw from p

(
θ(1)|y , θ(2), .., θ(B )

)
,

p
(

θ(2)|y , θ(1), θ(3).., θ(B )
)
, ..., p

(
θ(B )|y , θ(1), .., θ(B−1)

)
.

Note: Preceding distributions are full conditional posterior
distributions since they define a posterior for each block conditional
on all other blocks.

iii) Drawing from the full conditionals will yield a sequence
θ(1), θ(2), .., θ(s) which can be averaged to produce estimates of
E [g (θ) |y ] in the same manner as Monte Carlo integration.
This is called Gibbs sampling
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More motivation for the Gibbs sampler

Regression model with B = 2: β and h

Suppose that you have one random draw from p (β|y). Call this draw
β(0).

Since p (β, h|y) = p (h|y , β) p (β|y), a draw from p
(
h|y , β(0)

)
is a

valid draw of h. Call this h(1).

Since p (β, h|y) = p (β|y , h) p (h|y), a random draw from

p
(

β|y , h(1)
)
is a valid draw of β. Call this β(1)

Hence,
(

β(1), h(1)
)
is a valid draw from p (β, h|y).

You can continue this reasoning indefinitely producing
(

β(s), h(s)
)
for

s = 1, ..,S
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Hence, if you can successfully find β(0), then sequentially drawing
p (h|y , β) and p (β|y , h) will give valid draws from posterior.

Problem with above strategy is that it is not possible to find such an
initial draw β(0).

If we knew how to easily take random draws from p (β|y), we could
use this and p (h|β, y) to do Monte Carlo integration and have no
need for Gibbs sampling.

However, it can be shown that subject to weak conditions, the initial
draw β(0) does not matter: Gibbs sampler will converge to a sequence
of draws from p (β, h|y).
In practice, choose β(0) in some manner and then run the Gibbs
sampler for S replications.

Discard S0 initial draws (“the burn-in”) and remaining S1 used to
estimate E [g (θ) |y ]
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Why is Gibbs sampling so useful?

In Normal linear regression model with independent Normal-Gamma
prior Gibbs sampler is easy

p (β|y , h) is Normal and p (h|y , β) and Gamma (easy to draw from)
Huge number of other models have hard joint posterior, but easy
posterior conditionals

tobit, probit, stochastic frontier model, Markov switching model,
threshold autoregressive, smooth transition threshold autoregressive,
other regime switching models, state space models, some
semiparametric regression models, etc etc etc.

Also models of form I will now discuss
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Regression Models with General Error Covariance

y = X β+ ε.

Before assumed ε was N(0N , h−1IN ).

Many other models involve

ε ∼ N(0N , h−1Ω)

for some positive definite Ω.
E.g. heteroskedasticity, autocorrelated errors, Student-t errors,
random effects panel data models, SUR models, ARMA models, etc.
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Standard theorem in matrix algebra:

An N ×N matrix P exists with the property that PΩP ′ = IN .
Multiply both sides of regression model by P:

y † = X †β+ ε†

where y † = Py , X † = PX and ε† = Pε.

It can be verified that ε† is N
(
0N , h−1IN

)
.

Hence, transformed model is identical to Normal linear regression
model.
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If Ω is known, Bayesian analysis of regression model with general
error covariance matrix is straightforward (simply work with
transformed model).

If Ω is unknown, often can use Gibbs sampling

Gibbs sampler could draw from p (β|y , h,Ω), p (h|y , β,Ω) and
p (Ω|y , β, h)
Note: what if p (Ω|y , β, h) does not have a convenient form to draw
from?

Metropolis-Hastings algorithms are popular (to be discussed below,
see pages 92-99 of textbook)

“Metropolis-within-Gibbs”algorithms popular.
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Example: use an independent Normal-Gamma prior for β and h

At this stage use general notation, p (Ω) , to indicate the prior for Ω.
Thus prior used is

p (β, h,Ω) = p (β) p (h) p (Ω)

where:
β ∼ N

(
β,V

)
and

h ∼ G (s−2, ν)
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Exercise 13.1 of Bayesian Econometric Methods shows:

β|y , h,Ω ∼ N
(

β,V
)

where
V =

(
V−1 + hX ′Ω−1X

)−1
β = V

(
V−1β+ hX ′Ω−1X β̂ (Ω)

)
h|y , β,Ω ∼ G (s−2, ν),

where β̂ (Ω) is the GLS estimator

ν = N + ν

and

s2 =
(y − X β)′Ω−1 (y − X β) + νs2

ν
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Posterior for Ω conditional on β and h:

p (Ω|y , β, h) ∝
p (Ω) |Ω|−

1
2
{
exp

[
− h2 (y − X β)′Ω−1 (y − X β)

]}
Often p (Ω|y , β, h) take an easy form (e.g. with autocorrelated
errors).

Gibbs sampler: p (β|y , h,Ω) is Normal, p (h|y , β,Ω) is Gamma and
p (Ω|y , β, h)
We will use Gibbs samplers for VARs and state space models shortly
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Prediction Using the Gibbs Sampler

Want to predict T unobserved values y ∗ = (y ∗1 , .., y
∗
T )
′, which are

generated as:
y ∗ = X ∗β+ ε∗

ε∗ is N
(
0, h−1Ω

)
We want p (y ∗|y) but cannot be derived analytically.
But we do know y ∗ is N

(
X ∗β, h−1Ω

)
Predictive features of interest can be written as E [g (y ∗) |y ] for some
function g (.).

E.g. Predictive mean of y ∗i implies g (y
∗) = y ∗i
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But, using LLN, if we can find y ∗(s) for s = 1, ..,S which are draws
from p (y ∗|y), then

ĝY =
1
S

S

∑
s=1

g
(
y ∗(s)

)
will converge to E [g (y ∗) |y ].
The following strategy provides draws of y ∗.

For every β(s), h(s),Ω(s) from Gibbs sampler, take a draw (or several)

of y ∗(s) from p
(
y ∗|β(s), h(s),Ω(s)

)
(a Normal density)

We now have draws β(s), h(s),Ω(s) and y ∗(s) for s = 1, ..,S which we
can use for posterior or predictive inference.

Why are these the correct draws? Use rules of conditional probability
(see pages 72-73 of textbook for details).
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Heteroskedasticity of an Unknown Form: Student-t Errors

We will give one example which illustrates a few general concepts.

It turns out that heteroskedasticity of an unknown form in Normal
linear regression model is, in a sense, equivalent to a regression model
with Student-t errors.

This is a simple example of a mixture model.

Mixture models are very popular right now in many fields as a way of
making models more flexible (e.g. non-Normal errors,
“nonparametric” treatment of regression line, etc.).
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Heteroskedasticity of an Unknown Form: Student-t Errors

Heteroskedasticity occurs if:

Ω =


ω1 0 . . 0
0 ω2 0 . .
. 0 . . .
. . . . 0
0 . . 0 ωN


In other words, var (εi ) = h−1ωi for i = 1, ..,N.
With N observations and N + k + 1 parameters to estimate (i.e. β, h
and ω = (ω1, ..,ωN )

′), treatment of heteroskedasticity of unknown
form may sound like a diffi cult task.
Solution: use a hierarchical prior (ωi s drawn from some common
distribution —parameters of that distribution estimated from the
data).
Hierarchical priors are commonly used as a way of making flexible,
parameter-rich models more amenable to statistical analysis.
Allows us to free up the assumption of Normal errors
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A Hierarchical Prior for the Error Variances

We begin by eliciting p (ω).

Work with error precisions rather than variances and, hence, we define
λ ≡ (λ1,λ2, ..,λN )′ ≡

(
ω−11 ,ω

−1
2 , ..,ω

−1
N

)′
.

Consider the following prior for λ:

p (λ) =
N

∏
i=1
fG (λi |1, νλ) (**)

Note fG is the Gamma p.d.f.

The prior for λ depends on a hyperparameter, νλ, and assumes each
λi comes from the same distribution.

In other words, λi s are i.i.d. draws from the Gamma distribution.

This assumption (or something similar) is necessary to deal with the
problems caused by the high-dimensionality of λ.
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A Hierarchical Prior for the Error Variances

Why should the λi s be i.i.d. draws from the Gamma distribution with
mean 1.0?

Can prove this model is exactly the same as the linear regression
model with i.i.d. Student-t errors with νλ degrees of freedom
(Bayesian Econometric Methods Exercise 15.1).

In other words, if we had begun by assuming:

p (εi ) = ft
(
εi |0, h−1, νλ

)
for i = 1, ..,N, we would have ended up with exactly the same
posterior.
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A Hierarchical Prior for the Error Variances

Note: we now have model with more flexible error distribution, but we
are still our familiar Normal linear regression model framework.

Note: a popular way of making models/distributions more flexible is
through: mixture of Normals distributions.

Our treatment here is an example of a scale mixture of Normals.

If νλ is unknown, need a prior p (νλ).

Note that now the prior for λ is specified in two steps, the first being
(**), the other being p (νλ).

Alternatively, the prior for λ can be written as p (λ|νλ) p (νλ).

Priors written in two (or more) steps in this way are referred to as
hierarchical priors.
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Bayesian Computation with Student-t Model

Geweke (1993, Journal of Applied Econometrics) develops a Gibbs
sampler for taking draws of the parameters in the model: β, h,λ and
νλ.

p (β|y , h,λ) and p (h|y , β,λ) are as discussed previously
Focus on p (λ|y , β, h, νλ) and p (νλ|y , β, h,λ).
Bayesian Econometric Methods, Exercise 15.1 derives posterior
conditionals for λi s as

p (λi |y , β, h, νλ) = fG

(
λi |

νλ + 1
hε2i + νλ

, νλ + 1
)

p (νλ|y , β, h,λ) depends on p (νλ). Geweke uses a particular prior
density and derives a method of drawing from this density (thus
completing the Gibbs sampler).
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The Metropolis-Hastings Algorithm

This is another popular class of algorithms useful when Gibbs
sampling is not easy

For now, I leave the regression model and return to our general
notation:

θ is a vector of parameters and p (y |θ) , p (θ) and p (θ|y) are the
likelihood, prior and posterior, respectively.

Metropolis-Hastings algorithm takes draws from a convenient
candidate generating density.

Let θ∗ indicate a draw taken from this density which we denote as
q
(

θ(s−1); θ
)
.

Notation: θ∗ is a draw taken of the random variable θ whose density
depends on θ(s−1).
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We are drawing the wrong distribution, q
(

θ(s−1); θ
)
, instead of

p (θ|y)
We have to correct for this somehow.

Metropolis-Hastings algorithm corrects for this via an acceptance
probability

Takes candidate draws, but only some of these candidate draws are
accepted.
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The Metropolis-Hastings algorithm takes following form:

Step 1: Choose a starting value, θ(0).

Step 2: Take a candidate draw, θ∗ from the candidate generating
density, q

(
θ(s−1); θ

)
.

Step 3: Calculate an acceptance probability, α
(

θ(s−1), θ∗
)
.

Step 4: Set θ(s) = θ∗ with probability α
(

θ(s−1), θ∗
)
and set

θ(s) = θ(s−1) with probability 1− α
(

θ(s−1), θ∗
)
.

Step 5: Repeat Steps 1, 2 and 3 S times.

Step 6: Take the average of the S draws g
(

θ(1)
)
, ..., g

(
θ(S )

)
.
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These steps will yield an estimate of E [g(θ)|y ] for any function of
interest.

Note: As with Gibbs sampling, Metropolis-Hastings algorithm requires
the choice of a starting value, θ(0). To make sure that the effect of
this starting value has vanished, wise to discard S0 initial draws.

Intuition for acceptance probability, α
(

θ(s−1), θ∗
)
, given in textbook

(pages 93-94).

α
(

θ(s−1), θ∗
)
=

min
[

p(θ=θ∗|y )q(θ∗;θ=θ(s−1))
p(θ=θ(s−1)|y)q(θ(s−1);θ=θ∗)

, 1
]
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Choosing a Candidate Generating Density

Independence Chain Metropolis-Hastings Algorithm

Uses a candidate generating density which is independent across
draws.

That is, q
(

θ(s−1); θ
)
= q∗ (θ) and the candidate generating density

does not depend on θ(s−1).

Useful in cases where a convenient approximation exists to the
posterior. This convenient approximation can be used as a candidate
generating density.

Acceptance probability simplifies to:

α
(

θ(s−1), θ∗
)
= min

p (θ = θ∗|y) q∗
(

θ = θ(s−1)
)

p
(

θ = θ(s−1)|y
)
q∗ (θ = θ∗)

, 1

 .
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Choosing a Candidate Generating Density

Random Walk Chain Metropolis-Hastings Algorithm

Popular with DSGE —useful when you cannot find a good
approximating density for the posterior.

No attempt made to approximate posterior, rather candidate
generating density is chosen to wander widely, taking draws
proportionately in various regions of the posterior.

Generates candidate draws according to:

θ∗ = θ(s−1) + w

where w is called the increment random variable.
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Acceptance probability simplifies to:

α
(

θ(s−1), θ∗
)
= min

 p (θ = θ∗|y)
p
(

θ = θ(s−1)|y
) , 1


Choice of density for w determines form of candidate generating
density.
Common choice is Normal:

q
(

θ(s−1); θ
)
= fN (θ|θ(s−1),Σ).

Researcher must select Σ. Should be selected so that the acceptance
probability tends to be neither too high nor too low.
There is no general rule which gives the optimal acceptance rate. A
rule of thumb is that the acceptance probability should be roughly 0.5.
A common approach sets Σ = cΩ where c is a scalar and Ω is an
estimate of posterior covariance matrix of θ (e.g. the inverse of the
Hessian evaluated at the posterior mode)
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Summary

This lecture shows how Bayesian ideas work in familiar context
(regression model)

Occasionally analytical results are available (no need for posterior
simulation)

Usually posterior simulation is required.

Monte Carlo integration is simplest, but rarely possible to use it.

Gibbs sampling (and related MCMC) methods can be used for
estimation and prediction for a wide variety of models

Note: There are methods for calculating marginal likelihoods using
Gibbs sampler output
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