
Bayesian Methods for Regression Models with Fat Data

() Regression with Fat Data 1 / 51



Bayesian Methods for Regression with Fat Data Overview

Reading: Handout “Bayesian Methods for Fat Data”on course
website

Big Data is hot topic that may revolutionize empirical work and
change the way we do econometrics

Hal Varian, “Big Data: New Tricks for Econometrics,” Journal of
Economic Perspectives, 2014

“Big”Data may be “tall” or “fat”

Tall Data = data with many observations

Fat Data = data with many variables

In macroeconomics, Fat Data is becoming common and this is what I
will cover in this course
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Bayesian Methods for Regression with Fat Data Overview

For many countries can easily get data for over 100 variables
With globalization may want to work with several countries (so even
more variables)
US: FRED-MD: A Monthly Database for Macroeconomic Research
(Federal Reserve Bank of St. Louis)
134 variables (output, prices, consumption, interest rates, stock
prices, money, housing, unemployment, wages, etc. etc. etc.)
Why work with all of them?
When forecasting (e.g. inflation, GDP growth, unemployment) the
more information the better
When estimating a model want to avoid omitted variables bias
E.g. even if you have DSGE model with inflation, interest rates and
unemployment do not model just these 3 variables
If other variables have important explanatory power and you omit
them, model is mis-specified
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Bayesian Methods for Regression with Fat Data Overview

In this lecture will show some Fata Data methods in context of
regression, but they also can be used with other models
To illustrate use a classic cross-country growth regression data set:
Why do some countries grow faster than others?
Numerous potential explanations (e.g. education, investment,
governance, institutions, trade, colonialism, etc. etc.)
Dependent variable: average growth in GDP per capita from
1960-1992
K = 41 explanatory variables (all normalized by subtracting of mean
and dividing by st. dev.)
But data set has only N = 72 countries
Fata Data: large number of explanatory variables relative to number
of observations
In other Fat Data applications can have K > N (e.g. stock returns
for large K companies observed only for a few months).
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Bayesian Methods for Regression with Fat Data Overview

Why not just use conventional methods?

Intuition:

N reflects amount of information in the data

K reflects dimension of things trying to estimate with that data

If K is large relative to N you are trying to do too much with too
little information

If K < N a method such as least squares will produce numbers, but
very imprecise estimation (e.g. wide confidence intervals)

If K > N least squares will fail

Bayesian prior information (if you have it), gives you more information
to surmount this problem

E.g. E (β|y) using natural conjugate prior will exist even if K > N
and var (β|y) will be reduced through use of prior information

() Regression with Fat Data 5 / 51



Bayesian Methods for Regression with Fat Data Overview

Why not do hypothesis testing to reduce K?

Pre-test problem (also called multiple testing or multiple comparisons
problem)

The unrestricted regression will have K = 41

There are 41 different restricted regressions which drop one of the
explanatory variables

There are K (K−1)
2 restricted regressions with drop two of the

explanatory variables

etc. etc. etc.

In total there are 2K = 2, 199, 023, 255, 552 possible regression
models involving some combination of the explanatory variables

Jargon: this is the model space

Which one to choose?
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Bayesian Methods for Regression with Fat Data Overview

Sequential hypothesis testing methods often used in smaller problems
Let us suppose you can come up with a sequence of hypothesis tests
to navigate through your huge model space
E.g. do a hypothesis test to decide whether to drop a variable, then
do a second hypothesis test using the restricted regression
But significance levels no longer valid (or must be adjusted) when
more than one test is done
E.g. one t-test using standard critical value has 5% level of
significance. But if you do two t-tests sequentially second one no
longer has 5% level of significance
Maybe minor issue in small data problems, but with Fat Data
problems number of sequential hypothesis tests may be HUGE, true
level of significance vastly different from nominal one (or necessary
adjustments become huge)
Bottom line: not easy to do hypothesis testing to select a more
parsimonious model

() Regression with Fat Data 7 / 51



Bayesian Methods for Regression with Fat Data Overview

Over-fitting: data typically contains measurement error (noise)

Regression methods seek to find pattern in the data

With large data sets, often not a problem (things average out over
large number of observations)

But with Fat Data, easy to “fit the noise” rather than pattern in the
data

Good in-sample fit, but bad out-of-sample forecasting
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Summary: New Tricks for Econometrics

Conventional statistical methods (least squares, maximum likelihood,
hypothesis testing) do not work

New methods are called for and many of these are Bayesian

This lecture provides introduction to new methods including:

i) Bayesian Model Averaging (BMA) and Bayesian Model Selection
(BMS)

ii) Stochastic search variable selection (SSVS)

iii) Least absolute shrinkage and selection operator (LASSO)
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Bayesian Model Averaging
Overview

BMA can be used with any set of models
Proved useful with Fat Data problems.
Model selection: choose a single model and present estimates or
forecasts based on it
Model averaging: take a weighted average of estimates or forecasts
from all models with weights given by p(Mr |y)
Let Mr for r = 1, ..,R denote R models.
If φ is a parameter to be estimated (or a function of parameters) or a
variable to be forecast, then the rules of probability imply:

p (φ|y) =
R

∑
r=1

p (φ|y ,Mr ) p (Mr |y)

Allows for a formal treatment of model uncertainty.
Model selection: choose a single model and act as though it were true
BMA incorporates uncertainty about which model generated the data.
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The Model Space

Let Xr is a N × kr matrix containing some (or all) columns of X , then
each model is

y = αιN + Xr βr + ε

ιN is a N × 1 vector of ones so as to say each model contains an
intercept

Other assumptions as for Normal linear regression model under
classical assumptions.

2K possible choices for Xr and, thus, the number of models, R = 2K .

Computational concerns: estimating every model will be impossible

E.g. if each model could be estimated in 0.001 seconds, over 100
years to estimate them all

Use natural conjugate prior to make estimation of each model as fast
as possible
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BMA Priors

We want a prior for model r that is:

Informative (so as to provide valid marginal likelihoods for model
comparison)

Objective (requiring minimal subjective input)

Automatic (does not have to be individually chosen for each of the
many models)

g-prior is commonly used:

Prior mean shrinks coeffi cients towards zero:

β
r
= 0

Prior covariance matrix is h−1V r where

V r =
(
gX ′rXr

)−1
g is a scalar
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The g-prior

The g-prior was suggested in Zellner (1986)
Justification:
Under non-informative prior h−1 (X ′rXr )

−1 is posterior covariance
matrix
Amount of information in data for estimating βr (information matrix)

Prior covariance matrix h−1 (gX ′rXr )
−1 says:

Prior information that βr = 0 takes same form as data information
g controls relative strengths of the prior and data information.
g = 1: prior and data are given equal weight.
g = 0.01: prior information receives one per cent of the weight as
data
There exist commonly-used rules of thumb for choosing g
Or g can be treated as unknown parameter with own prior and
estimated
Noninformative prior for h typically used
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BMA Posterior

With natural conjugate prior, analytical results for Mr

Posterior is Normal-Gamma

Marginal likelihood (for producing posterior model probs) analytical

Predictive density is t-distribution

Exact formulae given in Handout

Key thing: for each model, everything we need can be calculated
quickly

But even with this, doing BMA with 2K models for K > 20 or so too
computationally demanding
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BMA Computation

Previously we talked about posterior simulation as tool for learning
about complicated posteriors

For BMA can do model simulation

A popular algorithm is Markov Chain Monte Carlo Model
Composition (MC3)

Similar to a random walk Metropolis-Hastings algorithm, but models
are drawn instead of parameters
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MC-cubed

M (s) for s = 1, ..,S are drawn models

Averaging estimates/forecasts over drawn models will converge to the
true BMA posterior or predictive estimates as S → ∞.
if φ is parameter of interest, then

φ̂ =
1
S

S

∑
s=1

E
(

φ|y ,M (s)
)

will converge to E (φ|y).
Frequencies with which models are drawn can be used to calculate
Bayes factors.

If MC3 algorithm draws Mi A times and Mj B times, then
A
B converges to Bayes factor comparing Mi to Mj .

In practice, discard initial draws as burn-in
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MC-cubed: How are models drawn?

Want to draw s = 1, ..,S and suppose you have drawn M (s−1)

Candidate model, M∗, is proposed drawn randomly (with equal
probability) from a set of models including:

i) M (s−1)

ii) all models which delete one explanatory variable from M (s−1)

iii) all models which add one explanatory variable to M (s−1).

Candidate model accepted with probability:

α
(
M (s−1),M∗

)
= min

[
p(y |M∗)p(M∗)

p(y |M (s−1))p(M (s−1))
, 1
]

If M∗ is accepted then M (s) = M∗, else M (s) = M (s−1).

Can prove MC-cubed will converge to true BMA posterior/predictive
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BMA Application

Cross-country growth regression data set with N = 72 and K = 41

Use common recommendation to set g = 1
N if N > K

2 or g = 1
K 2 if

N ≤ K 2

Run MC-cubed algorithm for 2, 200, 000 draws, discarding first
200, 000 as burn-in

Is this enough draws?

Convergence diagnostic: calculate posterior model probabilities
analytically and using MC3 and compare

Next table indicates convergence

Note that best model receives less than 1% of posterior model

Model selection puts all weight on this single model – ignoring huge
amount of model uncertainty
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Posterior Model Probabilities
for Top 10 Models
p (Mr |y)
Analytical

p (Mr |y)
MC3 estimate

1 0.0087 0.0089
2 0.0076 0.0077
3 0.0051 0.0050
4 0.0034 0.0035
5 0.0031 0.0032
6 0.0029 0.0029
7 0.0027 0.0025
8 0.0027 0.0027
9 0.0027 0.0026
10 0.0024 0.0022
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BMA Application

Next table presents results:

Posterior mean and standard deviation for each explanatory variable
using BMA and BMS

Rule of thumb: if an estimate (posterior mean) more than two
standard deviations from zero likely to be important

Column labelled ”Prob.”= probability that the corresponding
explanatory variable should be included.

= proportion of models drawn by MC3 which contain the
corresponding explanatory variable

BMS ensures parsimony by choosing 14 variables

By ignoring model uncertainty estimates are more precise (smaller st.
dev.)

BMA ensures parsimony by averaging over many small models

Average number of exp. vars in a model drawn by MC3 is 11.4
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Point Estimates and Standard Devs of Regression Coeffi cients

(Mean and standard deviations multiplied by 100)

BMA BMS

Explanatory Variable Prob. Mean. St. Dev. Mean St. Dev.

Primary School Enrolment 0.207 0.104 0.234 0.048 0.018
Life expectancy 0.933 0.961 0.392 0.090 0.020
GDP level in 1960 0.999 −1.425 0.278 −1.463 0.193

Fraction GDP in Mining 0.459 0.147 0.181 0.322 0.108
Degree of Capitalism 0.457 0.151 0.183 0.387 0.094

No. Years Open Economy 0.513 0.260 0.283 0.557 0.138
% Pop. Speaking English 0.069 −0.011 0.047 — —

% Pop. Speak. For. Lang. 0.068 0.012 0.059 — —

Exchange Rate Distortions 0.082 −0.017 0.070 — —

Equipment Investment 0.923 0.552 0.236 0.548 0.128
Non-equipment Investment 0.434 0.136 0.174 0.347 0.099

St. Dev. of Black Mkt. Prem. 0.048 −0.006 0.037 — —

Outward Orientation 0.037 −0.003 0.029 — —
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Point Estimates and Standard Devs of Regression Coeffi cients

(Mean and standard deviations multiplied by 100)

BMA BMS

Explanatory Variable Prob. Mean. St. Dev. Mean St. Dev.

Black Market Premium 0.179 −0.040 0.097 — —

Area 0.030 −0.001 0.021 — —

Latin America 0.215 −0.082 0.191 — —

Sub-Saharan Africa 0.738 −0.473 0.347 −0.543 0.124
Higher Education Enrolment 0.046 −0.008 0.056 — —

Public Education Share 0.032 −0.001 0.024 — —

Revolutions and Coups 0.031 −0.001 0.023 — —

War 0.075 −0.014 0.062 — —
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Posteror Estimates and Standard Devs of Regression Coeffi cients

Bayesian Model Averaging Single Best Model

Explanatory Variable Prob. Mean St. Dev. Mean St. Dev.

Political Rights 0.094 −0.028 0.107 — —

Civil Liberties 0.131 −0.050 0.015 −0.284 0.176
Latitude 0.041 0.001 0.052 — —

Age 0.085 −0.015 0.058 — —

British Colony 0.041 −0.003 0.032 — —

Fraction Buddhist 0.196 0.047 0.109 — —

Fraction Catholic 0.128 −0.011 0.121 — —

Fraction Confucian 0.990 0.493 0.127 0.503 0.090
Ethnolinguistic Fractionalization 0.060 0.010 0.056 — —

French Colony 0.049 0.007 0.040 — —
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Posteror Estimates and Standard Devs of Regression Coeffi cients

Bayesian Model Averaging Single Best Model

Explanatory Variable Prob. Mean St. Dev. Mean St. Dev.

Fraction Hindu 0.126 −0.035 0.120 — —

Fraction Jewish 0.037 −0.002 0.028 — —

Fraction Muslim 0.640 0.025 0.023 0.295 0.093
Primary Exports 0.100 −0.029 0.105 −0.352 0.136
Fraction Protestant 0.455 −0.143 0.178 −0.277 0.098

Rule of Law 0.489 0.244 0.279 0.563 0.134
Spanish Colony 0.058 0.010 0.068 — —

Population Growth 0.037 0.005 0.048 — —

Ratio Workers to Population 0.045 −0.005 0.043 — —

Size of Labor Force 0.075 0.018 0.097 — —

() Regression with Fat Data 24 / 51



Variable Selection and Shrinkage Using Hierarchical Priors

Any sort of prior information can be used to overcome lack of data
information with Fat Data regression

But what if researcher does not have such prior information?

Hierarchical priors are a common alternative

A simple example: g-prior but treat g as unknown parameter with its
own prior

But more sophisticated methods are growing in popularity (in many
models, not only regression)

I introduce two popular ones: LASSO and SSVS

Many others (and not all Bayesian)

Korobilis, D. (2013). Hierarchical shrinkage priors for dynamic
regressions with many predictors. International Journal of Forecasting
29, 43-59.
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SSVS: Overview

To show main ideas assume (for now) β is a scalar

Remember prior shrinkage can be done through prior variance:
β ∼ N(0,V )
If V is small, then strong prior information β is near 0.

E.g. V = 0.0001 then Pr (−0.0196 ≤ β ≤ 0.0196)
If V is big then prior becomes more non-informative

If V = 100 then Pr (−19.6 ≤ β ≤ 19.6)
Note: exactly what “small” and “large”means depends on the
empirical application and units of measurement of data
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SSVS: Overview

SSVS prior:

β|γ ∼ (1− γ)N
(
0, τ20

)
+ γN

(
0, τ21

)
τ0 is small and τ1 is large

γ = 0 or 1.

If γ = 0, tight prior shrinking coeffi cient to be near zero

If γ = 1, non-informative prior and β estimated in a data- based
fashion.

SSVS treats γ as unknown and estimates it

Data choose whether to select a variable or omit it (in the sense of
shrinking its coeffi cient to be very near zero).
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SSVS: Overview

prior for β is hierarchical: depends on γ which has its own prior.

Gibbs sampler takes draw of γ and, conditional on these, results for
independent Normal-Gamma prior used to draw β and h.

If γ = 1 use N
(
0, τ21

)
prior, else use N

(
0, τ20

)
Output from this GIbbs sampler can be used to:

Do something similar to BMA: averages over restricted (when γ = 0
is drawn) and unrestricted (γ = 1) models

Do BMS (variable selection):

If Pr (γ = 1|y) > 1
2 choose unrestricted model, else choose restricted

model

Can use threshold other than 1
2
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SSVS in Multiple Regression

We have posterior results for regression model with prior

N
(

β,V
)

SSVS prior makes specific choices for β and V
β = 0 so as to shrink coeffi cients towards zero

V = DD

D is diagonal matrix with elements

di =
{

τ0i if γi = 0
τ1i if γi = 1

We now have i = 1, ..,K
γi ∈ {0, 1} indicating whether each variable is excluded
Small/large prior variances, τ20i and τ21i , for each variable
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SSVS: Gibbs Sampler

Conditional on draw of γ we are in familiar world

Use independent Normal-Gamma posterior for β and h

What about γ?

Needs a prior

A simple choice is:

Pr (γi = 1) = qi
Pr (γi = 0) = 1− qi

Non-informative choice is q
i
= 1

2 (each coeffi cient is a priori equally
likely to be included as excluded)
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SSVS: Gibbs Sampler

Can show conditional posterior distribution is Bernoulli:

Pr (γi = 1|y ,γ) = qi ,
Pr (γi = 0|y ,γ) = 1− qj ,

where

qj =

1
τ1j

exp

(
−

γ2j
2τ21j

)
q
j

1
τ1j

exp

(
−

γ2j
2τ21j

)
q
j
+

1
τ0j

exp

(
−

γ2j
2τ20j

)(
1− q

j

) .
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SSVS: Choosing Small and Large Prior Variances

Researcher must choose τ20i and τ21i
Want τ20i to imply virtually all of prior probability is attached to
region where βi is so small as to be negligible

Approximate rule of thumb: 95% of the probability of a distribution
lies within two standard deviations from its mean.

E.g. is τ0i = 0.01 small?

Expresses a prior belief that βi is less than 0.02 in absolute value.

Is βi = 0.02 a “small” value or not?

Depends on empirical application at hand and units dependent and
explanatory variables are measured in

Sometimes researcher can subjectively make good choices for τ0i

But often not, want a method of choosing them that does not require
(much) prior input from researcher
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SSVS: Choosing Small and Large Prior Variances

Common to use “default semi-automatic approach”

Choose τ20i and τ21i based on initial estimation procedure.

Use initial estimates (e.g. OLS) from regression with all exp vars:

produce σ̂i —the standard error of βi .

Set τ0i =
1
c × σ̂i and τ1i = c × σ̂i for large value for c (e.g. c = 10

or 100).

Basic idea: σ̂i is estimate of the standard deviation of βi
Question: how do we choose small value for prior variance of βi?

Answer: choose one which is small relative to its standard deviation
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SSVS Application

Use cross-country growth data set.

Default semi-automatic prior elicitation approach with c = 10.

110, 000 draws of which first 10, 000 are discarded as the burn-in.

Single Best Model results use SSVS but with γi not drawn, but fixed

Set γi = 1 if Pr (γi = 1|y) > 1
2 and set γi = 0 otherwise.

Pr (γi = 1|y) obtained using an initial run of MCMC algorithm.
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SSVS Application

Following tables show SSVS results similar to BMA results

Similar estimates and standard deviations for β.

Variable selection results also show high degree of similarity.

SSVS is selecting 11 variables which is slightly more parsimonious
than the 14 selected by BMS.

Note: in Single Best Model results posterior means of variables not
selected very near to zero and st devs very small

Default semi-automatic approach’s “small” prior variance is shrinking
to zero

Note: variable selection (which ignores model uncertainty) leads to
estimates which are usually larger in absolute value and are more
precise

() Regression with Fat Data 35 / 51



SSVS Point Estimates and Standard Devs of Regression Coeffi cients

(Mean and standard deviations multiplied by 100)

SSVS Single Best Model

Explanatory Variable Pr (γ = 1|y) Mean St. Dev. Mean St. Dev.

Primary School Enrolment 0.256 0.111 0.204 2× 10−5 0.002
Life expectancy 0.956 0.991 0.365 1.124 0.236
GDP level in 1960 1.000 −1.410 0.286 −1.299 0.202

Fraction GDP in Mining 0.664 0.204 0.179 0.258 0.107
Degree of Capitalism 0.575 0.170 0.176 0.240 0.108

No. Years Open Economy 0.553 0.248 0.267 0.459 0.141
% Pop. Speaking English 0.171 −0.024 0.071 −2× 10−5 0.001
% Pop. Speak. For. Lang. 0.174 0.024 0.086 7× 10−6 0.001
Exchange Rate Distortions 0.215 −0.038 0.103 −3× 10−5 0.001
Equipment Investment 0.917 0.486 0.230 0.538 0.141

Non-equipment Investment 0.584 0.171 0.175 0.282 0.109
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SSVS Point Estimates and Standard Devs of Regression Coeffi cients

(Mean and standard deviations multiplied by 100)

SSVS Single Best Model

Explanatory Variable Pr (γ = 1|y) Mean St. Dev. Mean St. Dev.

St. Dev. of Black Mkt. Prem. 0.138 −0.012 0.054 −2× 10−5 0.001
Outward Orientation 0.129 −0.013 0.055 −7× 10−6 0.001
Black Market Premium 0.340 −0.068 0.116 −1× 10−5 0.001

Area 0.080 −0.001 0.035 3× 10−6 0.001
Latin America 0.285 −0.105 0.205 −6× 10−5 0.003

Sub-Saharan Africa 0.699 −0.447 0.362 −0.378 0.135
Higher Education Enrolment 0.120 −0.022 0.100 −9× 10−6 0.002
Public Education Share 0.119 0.005 0.047 1× 10−6 0.001
Revolutions and Coups 0.110 0.002 0.047 −9× 10−6 0.001

War 0.204 −0.034 0.094 −2× 10−5 0.001
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SSVS Posteror Estimates and Standard Devs of Regression Coeffi cients

SSVS Single Best Model

Explanatory Variable Pr (γ = 1|y) Mean St. Dev. Mean St. Dev.

Political Rights 0.130 −0.033 0.121 −1× 10−4 0.004
Civil Liberties 0.187 −0.070 0.181 −2× 10−4 0.004
Latitude 0.104 0.006 0.086 3× 10−5 0.002
Age 0.237 −0.041 0.093 −2× 10−5 0.001

British Colony 0.084 −0.005 0.051 −5× 10−5 0.002
Fraction Buddhist 0.324 0.076 0.132 3× 10−5 0.001
Fraction Catholic 0.216 −0.023 0.158 −2× 10−5 0.002
Fraction Confucian 0.972 0.483 0.154 0.542 0.098

Ethnolinguistic Fractionalization 0.141 0.023 0.085 1× 10−5 0.002
French Colony 0.138 0.017 0.067 3× 10−5 0.001
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SSVS Posteror Estimates and Standard Devs of Regression Coeffi cients

SSVS Single Best Model

Explanatory Variable Pr (γ = 1|y) Mean St. Dev. Mean St. Dev.

Fraction Hindu 0.193 −0.068 0.184 −5× 10−6 0.003
Fraction Jewish 0.135 −0.008 0.052 −1× 10−5 0.001
Fraction Muslim 0.624 0.255 0.241 0.318 0.101
Primary Exports 0.243 −0.073 0.164 −7× 10−5 0.002
Fraction Protestant 0.603 −0.189 0.187 −0.276 0.107

Rule of Law 0.485 0.215 0.264 8× 10−5 0.002
Spanish Colony 0.129 0.024 0.109 −2× 10−5 0.002

Population Growth 0.116 0.017 0.096 3× 10−6 0.002
Ratio Workers to Population 0.132 −0.013 0.071 2× 10−5 0.001

Size of Labor Force 0.141 0.046 0.167 9× 10−5 0.003
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LASSO: Theory

LASSO = Least absolute shrinkage and selection operator

Developed as a frequentist shrinkage and variable selection method
for Fat Data regression models

Frequentist intuition: OLS estimates minimize sum of squared
residuals

(y − X β)′ (y − X β)

LASSO minimizes

(y − X β)′ (y − X β) + λ
k

∑
j=1

∣∣∣βj ∣∣∣
adds penalty term which depends on magnitude of the regression
coeffi cients

Bigger values for
∣∣∣βj ∣∣∣ penalized (shrink towards zero)

λ is shrinkage parameter.
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LASSO: Theory

LASSO estimate can be given a Bayesian interpretation:
equivalent to Bayesian posterior modes if Laplace prior used for β

I will not define Laplace distribution since will not work with it
directly due to following:
Laplace distribution can be written as scale mixture of Normals (i.e. a
mixture of Normal distributions with different variances):

βi ∼ N
(
0, h−1τ2i

)
τ2i ∼ Exp

(
λ2

2

)
Exp (.) is exponential distribution (special case of Gamma)
Hierarchical prior: depends on τ2i (parameters to be estimated) which
have own prior
Note: smaller τ2i = stronger shrinkage of βi
Can show λ plays same role as frequentist λ above

() Regression with Fat Data 41 / 51



LASSO: Theory

Bayesian inference can be done using MCMC

Main idea: conditional on τ2i , prior is Normal prior

Can use standard results for Normal linear regression to obtain
p (β|y , h, τ) and p (h|y , β, τ) where τ = (τ1, .., τK )

′

All we need is new blocks in MCMC algorithm for drawing τ and λ

Details given in next slide, but note basic strategy same as for SSVS:

Use hierarchical Normal prior for β

Conditional on some other parameters (here τ, with SSVS it was γ)
obtain Normal linear regression model

So just need to work out conditional posterior for these other
parameters

Note: many variants on LASSO (elastic net LASSO) adopt similar
strategy
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LASSO: Theory

Write LASSO prior covariance matrix of β as

V = h−1DD

D is diagonal matrix with diagonal elements τi for i = 1, ..,K
Then β|y , h, τ is N

(
β,V

)
where

β =
(
X ′X + (DD)−1

)−1
X ′y

V = h−1
(
X ′X + (DD)−1

)−1
h|y , β, τ is G (s−2, ν) with

ν = N +K

s2 =
(y − X β)′ (y − X β) + β′ (DD)−1 β

ν
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LASSO: Theory

Easier to draw from 1
τ2i
for i = 1, ..,K as posterior conditionals are

independent of one another and with inverse Gaussian distributions.
Inverse Gaussian, IG (., .), is rarely used in econometrics.
Standard ways for drawing from IG exist (all we need for MCMC)

p
(
1
τ2i
|y , β, h,λ

)
is IG (c i , d i ) with d = λ2

c i =

√
λ2

hβ2i

Need prior for λ, convenient to use λ2 ∼ G
(

µ
λ
, νλ

)
With this p

(
λ2|y , τ

)
is G (µλ, νλ) with

νλ = νλ + 2K
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2∑K
i=1 τ2i +

νλ
µ

λ

() Regression with Fat Data 44 / 51



LASSO: Application

Again we will use our cross-country growth data set

All we need to choice are prior hyperparameters: µ
λ
= 0.05 and

νλ = 1.

Relatively non-informative choice

MCMC algorithm is run for 10, 000 burn in draws followed by
100, 000 included draws.

In addition to regression coeffi cient results, tables present results for
τi for i = 1, ..,K .

To gauge degree of shrinkage in LASSO prior, remember:

prior standard deviation for a regression coeffi cient is στi

We find E (σ|y) = 0.0071
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LASSO: Application

We find similar results to SSVS and BMA

Using rule of thumb where we select variables with posterior means
two posterior standard deviations from zero select nine explanatory
variables.

These variables are also selected by SSVS and BMS.

LASSO is doing a very good job at shrinking unimportant variables
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Posterior Results for Regression Coeffi cients with LASSO Prior

(Means and standard deviations of regression coeffs multiplied by 100)

Explanatory Variable E (τi |y) Posterior Mean St. Dev.

Primary School Enrolment 0.293 0.237 0.215
Life expectancy 0.932 1.218 0.182
GDP level in 1960 0.901 −1.144 0.109

Fraction GDP in Mining 0.429 0.303 0.058
Degree of Capitalism 0.158 0.094 0.110

No. Years Open Economy 0.578 0.509 0.084
% Pop. Speaking English 4× 10−4 −6× 10−5 0.003
% Pop. Speak. For. Lang. 0.122 0.069 0.093
Exchange Rate Distortions 6× 10−4 −1× 10−4 0.004
Equipment Investment 0.581 0.511 0.081

Non-equipment Investment 0.190 0.118 0.124
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Posterior Results for Regression Coeffi cients with LASSO Prior

(Means and standard deviations of regression coeffs multiplied by 100)

Explanatory Variable E (τi |y) Posterior Mean St. Dev.

St. Dev. of Black Mkt. Prem. 5× 10−4 −9× 10−5 0.003
Outward Orientation 5× 10−4 −9× 10−4 0.004
Black Market Premium 6× 10−4 −9× 10−5 0.004

Area 3× 10−4 4× 10−5 0.001
Latin America 0.005 0.002 0.017

Sub-Saharan Africa 3× 10−4 −1× 10−5 0.002
Higher Education Enrolment 6× 10−4 −1× 104 0.005
Public Education Share 3× 10−4 2× 10−5 0.001
Revolutions and Coups 0.001 3× 10−4 0.047

War 5× 10−4 1× 10−4 0.002
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Posterior Results for Regression Coeffi cients with LASSO Prior

Explanatory Variable τi Posterior Mean St. Dev.

Political Rights 5× 10−4 3× 10−5 0.002
Civil Liberties 3× 10−4 5× 10−5 0.002
Latitude 7× 10−4 2× 10−4 0.003
Age 3× 10−4 1× 10−5 0.001

British Colony 4× 10−4 2× 10−5 0.001
Fraction Buddhist 0.436 0.314 0.077
Fraction Catholic 0.373 0.253 0.130
Fraction Confucian 0.645 0.617 0.062

Ethnolinguistic Fractionalization 0.001 4× 10−4 0.004
French Colony 0.075 0.039 0.071
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Posterior Results for Regression Coeffi cients with LASSO Prior

Explanatory Variable τi Posterior Mean St. Dev.

Fraction Hindu 8× 10−4 2× 10−4 0.004
Fraction Jewish 6× 10−4 1× 10−4 0.002
Fraction Muslim 0.671 0.662 0.087
Primary Exports 6× 10−4 −6× 10−5 0.004
Fraction Protestant 0.002 −9× 10−4 0.013

Rule of Law 0.002 8× 10−4 0.009
Spanish Colony 0.007 0.003 0.021

Population Growth 0.002 5× 10−4 0.007
Ratio Workers to Population 0.001 1× 10−4 0.002

Size of Labor Force 0.349 0.217 0.057
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Summary

Applications involving Fat Data are proliferating in economics

We have shown how BMA can be used to surmount
over-parameterization problems

Challenges with BMA largely computational: How do we handle 2K

models?

An answer was MC3

Many other approaches turn model space problem (involving marginal
likelihoods, etc.) into estimation problem

SSVS and LASSO are two important such methods

Estimate one model (using hierarchical prior of particular form) and
let it do model selection or model averaging

These are just two of many such methods (hot area of literature)

Here we have used them with regression, later we will return to them
with VARs
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