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Introduction

There are many popular time series models and all cannot be covered
in a short course.

In this course, will focus on models popular with empirical
macroeconomists, characterized by:

i) Multivariate in nature (macroeconomists interested in relationships
between variables, not properties of a single variable).

ii) Allow for parameters to change (e.g. over time, across business
cycle, etc.).

We will not cover univariate time series nor nonlinear time series
models such as Markov switching, TAR, STAR, etc.

See Bayesian Econometric Methods Chapters 17 and 18 for treatment
of some of these models.

We will discuss state space models (which can be used to model
nonlinearities).
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Time Series Modelling for Empirical Macroeconomics

Vector Autoregressive (VAR) models popular way of summarizing
inter-relationships between macroeconomic variables.

Used for forecasting, impulse response analysis, etc.

Economy is changing over time. Is model in 1970s same as now?

Thus, time-varying parameter VARs (TVP-VARs) are of interest.

Great Moderation of business cycle leads to interest in modelling error
variances

TVP-VARs with multivariate stochastic volatility is our end goal.

Begin with Bayesian VARs

A common theme: These models are over-parameterized so need
shrinkage to get reasonable results (shrinkage = prior).
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Bayesian VARs

One way of writing VAR(p) model:

yt = a0 +
p

∑
j=1
Ajyt−j + εt

yt is M × 1 vector
εt is M × 1 vector of errors
a0 is M × 1 vector of intercepts
Aj is an M ×M matrix of coeffi cients.

εt is i.i.d. N (0,Σ).
Exogenous variables or more deterministic terms can be added (but
we don’t to keep notation simple).
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Several alternative ways of writing the VAR (and we will use some
alternatives below).

One way: let y be MT × 1 vector (y = (y ′1, .., y ′T )) and ε stacked
conformably

xt =
(
1, y ′t−1, .., y

′
t−p
)

X =


x1
x2
...
xT


K = 1+Mp is number of coeffi cients in each equation of VAR and X
is a T ×K matrix.

The VAR can be written as:

y = (IM ⊗ X ) α+ ε

ε ∼ N (0,Σ⊗ IM ).
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Another way of writing VAR:

Let Y and E be T ×M matrices placing the T observations on each
variable in columns next to one another.

Then can write VAR as
Y = XA+ E

In first VAR, α is KM × 1 vector of VAR coeffi cients, here A is K ×M
Relationship between two: α = vec (A)

We will use both notations below (and later on, when working with
restricted VAR need to introduce yet more notation).
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Likelihood Function

Likelihood function can be derived and shown to be of a form that
breaks into two parts (see Bayesian Econometric Methods Exercise
17.6)

First of these parts α given Σ and another for Σ

α|Σ, y ∼ N
(

α̂,Σ⊗
(
X ′X

)−1)
Σ−1 has Wishart form

Σ−1|y ∼ W
(
S−1,T −K −M − 1

)
where Â = (X ′X )−1 X ′Y is OLS estimate of A, α̂ = vec

(
Â
)
and

S =
(
Y − XÂ

)′ (
Y − XÂ

)
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Digression

Remember regression models had parameters β and σ2

There proved convenient to work with h = 1
σ2

In VAR proves convenient to work with Σ−1

In regression h typically had Gamma distribution

With VAR Σ−1 will typically have Wishart distribution
Wishart is matrix generalization of Gamma

Details see appendix to textbook.

If Σ−1 is W (C , c) then “Mean” is cC and c is degrees of freedom.

Note: easy to take random draws from Wishart.
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Prior Issue 1

VARs are not parsimonious models: α contains KM parameters

For a VAR(4) involving 5 dependent variables: 105 parameters.

Macro data sets: number of observations on each variable might be a
few hundred.

Without prior information, hard to obtain precise estimates.

Features such as impulse responses and forecasts will tend to be
imprecisely estimated.

Desirable to “shrink” forecasts and prior information offers a sensible
way of doing this shrinkage.

Different priors do shrinkage in different ways.

() Bayesian VARs 9 / 99



Prior Issue 2

Some priors lead to analytical results for the posterior and predictive
densities.

Other priors require MCMC methods (which raise computational
burden).

E.g. recursive forecasting exercise typically requires repeated
calculation of posterior and predictive distributions

In this case, MCMC methods can be very computationally demanding.

May want to go with not-so-good prior which leads to analytical
results, if ideal prior leads to slow computation.
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Prior Issue 3

Priors differ in how easily they can handle extensions of the VAR
defined above.

Restricted VARs: different equations have different explanatory
variables.

TVP-VARs: Allowing for VAR coeffi cients to change over time.

Heteroskedasticity

Such extensions typically require MCMC, so no need to restrict
consideration to priors which lead to analytical results in basic VAR
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The Minnesota Prior

The classic shrinkage priors developed by researchers (Litterman,
Sims, etc.) at the University of Minnesota and the Federal Reserve
Bank of Minneapolis.

They use an approximation which simplifies prior elicitation and
computation: replace Σ with an estimate, Σ̂.
Original Minnesota prior simplifies even further by assuming Σ to be a
diagonal matrix with σ̂ii = s2i
s2i is OLS estimate of the error variance in the i

th equation

If Σ not diagonal, can use, e.g., Σ̂ = S
T .
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Minnesota prior assumes

α ∼ N (αMin,VMin)

Minnesota prior is way of automatically choosing αMin and VMin
Note: explanatory variables in any equation can be divided as:

own lags of the dependent variable

the lags of the other dependent variables

exogenous or deterministic variables
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αMin = 0 implies shrinkage towards zero (a nice way of avoiding
over-fitting).

When working with differenced data (e.g. GDP growth), Minnesota
prior sets αMin = 0

When working with levels data (e.g. GDP growth) Minnesota prior
sets element of αMin for first own lag of the dependent variable to 1.

Idea: Centred over a random walk. Shrunk towards random walk
(specification which often forecasts quite well)

Other values of αMin also used, depending on application.
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Prior mean: “towards what should we shrink?”

Prior variance: “by how much should we shrink?”

Minnesota prior: VMin is diagonal.

Let V i denote block of VMin for coeffi cients in equation i

V i ,jj are diagonal elements of V i
A common implementation of Minnesota prior (for r = 1, .., p lags):

V i ,jj =


a1
r 2 for coeffi cients on own lagsa2σii
r 2σjj

for coeffi cients on lags of variable j 6= i
a3σii for coeffi cients on exogenous variables

Typically, σii = s2i .

() Bayesian VARs 15 / 99



Problem of choosing KM (KM+1)
2 elements of VMin reduced to simply

choosing , a1, a2, a3.

Property: as lag length increases, coeffi cients are increasingly shrunk
towards zero

Property: by setting a1 > a2 own lags are more likely to be important
than lags of other variables.

See Litterman (1986) for motivation and discussion of these choices
(e.g. explanation for how σii

σjj
adjusts for differences in the units that

the variables are measured in).

Minnesota prior seems to work well in practice.

Recent paper by Giannone, Lenza and Primiceri (in ReStat) develops
methods for estimating prior hyperparameters from the data
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Posterior Inference with Minnesota Prior

Simple analytical results involving only the Normal distribution.

α|y ∼ N
(
αMin,VMin

)
VMin =

[
V−1Min +

(
Σ̂−1 ⊗

(
X ′X

))]−1
αMin = VMin

[
V−1MinαMin +

(
Σ̂−1 ⊗ X

)′
y
]
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Natural conjugate prior

A drawback of Minnesota prior is its treatment of Σ.
Ideally want to treat Σ as unknown parameter

Natural conjugate prior allows us to do this in a way that yields
analytical results.

But (as we shall sell) has some drawbacks.

In practice, noninformative limiting version of natural conjugate prior
sometimes used (but noninformative prior does not do shrinkage)
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An examination of likelihood function (see also similar derivations for
Normal linear regression model where Normal-Gamma prior was
natural conjugate) suggests VAR natural conjugate prior:

α|Σ ∼ N (α,Σ⊗ V )

Σ−1 ∼ W
(
S−1, ν

)
α,V , ν and S are prior hyperparameters chosen by the researcher.

Noninformative prior: ν = 0 and S = V−1 = cI and let c → 0.
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Posterior when using natural conjugate prior

Posterior has analytical form:

α|Σ, y ∼ N
(
α,Σ⊗ V

)
Σ−1|y ∼ W

(
S
−1
, ν
)

where
V =

[
V−1 + X ′X

]−1
A = V

[
V−1A+ X ′XÂ

]
S = S + S + Â′X ′XÂ+ A′V−1A− A′

(
V−1 + X ′X

)
A

ν = T + ν
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Remember: in regression model joint posterior for (β, h) was
Normal-Gamma, but marginal posterior for β had t-distribution

Same thing happens with VAR coeffi cients.

Marginal posterior for α is a multivariate t-distribution.

Posterior mean is α

Degrees of freedom parameter is ν

Posterior covariance matrix:

var (α|y) = 1
ν−M − 1S ⊗ V

Posterior inference can be done using (analytical) properties of
t-distribution.

Predictive inference can also be done analytically (for one-step ahead
forecasts)
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Problems with Natural Conjugate Prior

Natural conjugate prior has great advantage of analytical results, but
has some problems which make it rarely used in practice.

To make problems concrete consider a macro example:

The VAR involves variables such as output growth and the growth in
the money supply

Researcher wants to impose the neutrality of money.

Implies: coeffi cients on the lagged money growth variables in the
output growth equation are zero (but coeffi cients of lagged money
growth in other equations would not be zero).
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Problem 1: Cannot simply impose neutrality of money restriction.

The (IM ⊗ X ) form of the explanatory variables in VAR means every
equation must have same set of explanatory variables.

But if we do not maintain (IM ⊗ X ) form, don’t get analytical
conjugate prior (see Kadiyala and Karlsson, JAE, 1997 for details).
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Problem 2: Cannot “almost impose”neutrality of money restriction
through the prior.

Cannot set prior mean over neutrality of money restriction and set
prior variance to very small value.

To see why, let individual elements of Σ be σij .

Prior covariance matrix has form Σ⊗ V
This implies prior covariance of coeffi cients in equation i is σiiV .

Thus prior covariance of the coeffi cients in any two equations must be
proportional to one another.

So can “almost impose” coeffi cients on lagged money growth to be
zero in ALL equations, but cannot do it in a single equation.

Note also that Minnesota prior form VMin is not consistent with
natural conjugate prior.
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Some interesting approaches I will not discuss

Choosing prior hyperparameters by using dummy observations
(fictitious prior data set), see Sims and Zha (1998, IER).

Using prior information from macro theory (e.g. DSGE models), see
Ingram and Whiteman (1994, JME) and Del Negro and Schorfheide
(2004, IER).

Villani (2009, JAE): priors about means of dependent variables

Useful since researchers often have prior information on these.

Write VAR as:
Ã (L) (yt − ã0) = εt

Ã (L) = I − Ã1L− ..− ÃpLp , L is the lag operator
ã0 are unconditional means of the dependent variables.

Gibbs sampling required.
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A Macroeconomic Example

Hybrid New Keynesian Phillips Curve (NKPC) Model

Inflation (πt) and yt is output gap or unemployment rate

πt = βbπt−1 + βf Et−1 (πt+1) + γyt + εt .

Et−1 (πt+1) is expectation at t − 1 of inflation at t + 1
Note: Adding equation for yt will give a multivariate model.

No feedback from πt to yt
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Relating the NKPC to a VAR

To take NKPC to data need to find rational expectations solution to
get rid of Et−1 (πt+1) term in NKPC

Since no feedback from πt to yt can show solution is:

πt = a1πt−1 + a2yt−1 + ut

where a1 = f1(βb , βf ) and a2 = f2(βb , βf ,γ, ρ) for functions f1 and f2
Case 1: suppose yt is

yt = ρyt−1 + vt

These 2 equations form a restricted VAR (reduced form model)

Rational expectations macro models often lead to restricted VARs
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Problem: VAR has 3 parameters, a1, a2, and ρ, but structural model
has 4 (βf , βb ,γ, and ρ)

Identification issues in rational expectations/DSGE models can be
important.

Case 2: suppose yt is

yt = ρ1yt−1 + ρ2yt−2 + vt

Identification problem is now solved since reduced form VAR now has
4 parameters a1, a2, ρ1 and ρ2
But is this solution a good one? Identification depends on lag length.
What if ρ2 is near zero?

Summary: macro theory can often lead to restricted VARs, but
identification can be a worry
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The Independent Normal-Wishart Prior

Natural conjugate prior had α|Σ being Normal and Σ−1 being
Wishart and VAR had same explanatory variables in every equation.

Want more general setup without these restrictive features.

Can do this with a prior for VAR coeffi cients and Σ−1 being
independent (hence name “independent Normal-Wishart prior”)

And using a more general formulation for the VAR
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To allow for different equations in the VAR to have different
explanatory variables, modify notation.

To avoid, use “β”notation for VAR coeffi cients now instead of α.

Each equation (for m = 1, ..,M) of the VAR is:

ymt = z ′mtβm + εmt ,

If we set zmt =
(
1, y ′t−1, .., y

′
t−p
)′ for m = 1, ..,M then exactly same

VAR as before.

However, here zmt can contain different lags of dependent variables,
exogenous variables or deterministic terms.
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Vector/matrix notation:
yt = (y1t , .., yMt )

′, εt = (ε1t , .., εMt )
′

β =

 β1
...

βM



Zt =


z ′1t 0 · · · 0

0 z ′2t
. . .

...
...

. . . . . . 0
0 · · · 0 z ′Mt


β is k × 1 vector, Zt is M × k where k = ∑M

j=1 kj .
εt is i.i.d. N (0,Σ).
Can write VAR as:

yt = Ztβ+ εt
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Stacking:

y =

 y1
...
yT



ε =

 ε1
...

εT



Z =

 Z1
...
ZT


VAR can be written as:

y = Zβ+ ε

ε is N (0, I ⊗ Σ).
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Thus, VAR can be written as a Normal linear regression model with
error covariance matrix of a particular form (SUR form).

Independent Normal-Wishart prior:

p
(

β,Σ−1
)
= p (β) p

(
Σ−1

)
where

β ∼ N
(

β,V β

)
and

Σ−1 ∼ W
(
S−1, ν

)
V β can be anything the researcher chooses (not restrictive Σ⊗ V
form of the natural conjugate prior).

β and V β could be set as in the Minnesota prior.

A noninformative prior obtained by setting ν = S = V−1β = 0.
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Posterior inference in the VAR with independent
Normal-Wishart prior

p
(

β,Σ−1|y
)
does not have a convenient form allowing for analytical

results.
But Gibbs sampler can be set up.
Conditional posterior distributions p

(
β|y ,Σ−1

)
and p

(
Σ−1|y , β

)
do

have convenient forms

β|y ,Σ−1 ∼ N
(

β,V β

)
where

V β =

(
V−1β +

T

∑
t=1
Z ′tΣ

−1Zt

)−1
and

β = V β

(
V−1β β+

T

∑
i=1
Z ′tΣ

−1yt

)
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Σ−1|y , β ∼ W
(
S
−1
, ν,
)

where
ν = T + ν

S = S +
T

∑
t=1
(yt − Ztβ) (yt − Ztβ)′

Remember: for any Gibbs sampler, the resulting draws can be used to
calculate posterior properties of any function of the parameters (e.g.
impulse responses), marginal likelihoods (for model comparison)
and/or to do prediction.
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Prediction in VARs

I will use prediction and forecasting to mean the same thing

Goal predict yτ for some period τ using data available at time τ − 1
For the VAR, Zτ contains information dated τ − 1 or earlier.
For predicting at time τ given information through τ − 1, can use:

yτ|Zτ, β,Σ ∼ N (Ztβ,Σ)

This result and Gibbs draws β(s),Σ(s) for s = 1, ..,S allows for
predictive inference.

E.g. predictive mean (a popular point forecast) could be obtained as:

E (yτ|Zτ) =
∑S
s=1 Ztβ

(s)

S

Other predictive moments can be calculated in a similar fashion
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Prediction in VARs

Or can do predictive simulation:

For each Gibbs draw β(s),Σ(s) simulate one (or more) y (s)τ

Result will be y (s)τ for s = 1, ..,S draws

Plot them to produce predictive density

Average them to produce predictive mean

Take their standard deviation to produce predictive standard deviation

etc.
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Prediction in VARs

Preceding material was about predicting yτ using data available at
time τ − 1
This is one-period ahead forecasting

But what about h-period ahead forecast

h is the forecast horizon

E.g. with quarterly data forecasting a year ahead h = 4

Can do direct or iterated forecasting
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Direct Forecasting in VARs

Direct forecasting is straightforward: simply redefine Zτ

Above defined each equation using zmτ =
(
1, y ′τ−1, .., y

′
τ−p
)′

Replace this by zmτ =
(
1, y ′τ−h, .., y

′
τ−p−h+1

)′
Then your model is always predicting yτ using data available at time
τ − h
All posterior and predictive formulae are as above

If forecasting (e.g.) for h = 1, 2, 3, 4 must re-estimate model for each
h
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Iterated Forecasting in VARs

Estimate the model once using zmτ =
(
1, y ′τ−1, .., y

′
τ−p
)′

Remember result that

yτ|Zτ, β,Σ ∼ N (Ztβ,Σ) (**)

When forecasting yτ using information available at time τ − h for
h > 1 you face a problem using (**)
Use h = 2 and p = 2 to illustrate
In the model, yτ depends on yτ−1 and yτ−2
But as a forecaster, you do not know yτ−1 yet
E.g. suppose you have data through 2015Q4
When forecasting 2016Q1 (h = 1) will have data for 2015Q4 and
2015Q3
So Zt is known for h = 1
But when forecasting 2016Q2 (h = 2) will not have data for 2016Q1
and not know Zt
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Iterated Forecasting in VARs

Solution to problem:

Do predictive simulation beginning with h = 1

Use draw of y (s)τ−1 (along with yt−2, β(s),Σ(s)) to plug into (**)
This is called iteration

For h > 2 just keep on iterating

Strategy above will provide you with draws y (s)τ−1 and y
(s)
τ−2

For h = 3 can use these to define appropriate Zt for use in (**)

etc.

Which of iterated or direct forecasting is better?

This seems to depend on the data set being used
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Recursive and Rolling Forecasts

Data runs from t = 1, ..,T

E.g. annual data set from 1960 through 2015

Sometimes researcher is interested in out-of-sample forecasting:

Forecasting 2016 (or 2017, 2018, etc.)

2016 is not yet observed = out of sample

Sometimes researcher wants to know how well model might have
forecast in past

E.g. given data I had in 1995 how well would I have forecast 1996?

In general, given data available at time τ − h, how well would I
forecast τ?

Pseudo out-of-sample forecast evaluation
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Recursive and Rolling Forecasts

For pseudo out—of-sample forecast evaluation proceed as follows:

choose a forecast evaluation period: τ = τ0, ..,T

E.g. 1970 to 2015

Note τ0 > 1 since you need at least some data to sensibly estimate
the VAR

Recursive forecasting involves:

use data for t = 1, .., τ − h to forecast yτ

Repeat for τ = τ0, ..,T

Note: can be computationally demanding (esp. if MCMC and
predictive simulation used)

Repeatedly estimate model on “expanding window”of data

() Bayesian VARs 43 / 99



Recursive and Rolling Forecasts

Recursive forecasting uses all data available at τ − h to forecast
But what if parameter change has occurred (e.g. 1960s data
irrelevant for 1990s forecasting)?

E.g. Recursive forecasts in 1990s will be contaminated with 1960s
data

Best solution: build parameter/regime change into your model (more
in future on this)

Rolling forecasts: same as recursive forecasts but use data from
t = τ − h− τ1, .., τ − h to estimate VAR for forecasting yτ

Fixed window of data (always use most recent τ1 observations)
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Evaluating Forecasts

Suppose you have produced forecasts somehow (direct or
iterated/recursive or rolling) for τ = τ0, ..,T and have
Predictive densities p (yτ|Zt )
Predictive means (point forecasts): E (yτ|Zt )
Note: in past point forecasts popular, now huge interest in
uncertainty about future (e.g. Bank of England inflation fan charts)
Predictive densities (or density forecasts) hot topic
Usually will have forecasts from several models (e.g. comparing VAR
to other modelling approaches)
How do you decide whether your forecasts are good?
Large literature exists on forecast evaluation
Necessary to distinguish between random variable and its realization
E.g. if yit is random variable and yRit is the observed value (e.g.
observed inflation in 2015)
Here I will define two common approaches
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Mean Squared Forecast Error (MSFE)

MSFE is the most common way of measuring performance of point
forecasts for a variable in the VAR (e.g. yit = inflation)

MSFE =
∑T

τ=τ0

(
yRit − E (yiτ|Zt )

)2
T − τ0 + 1

Many related variants such as Mean Absolute Forecast Error (MAFE):

MAFE =
∑T

τ=τ0

∣∣yRit − E (yiτ|Zt )∣∣
T − τ0 + 1

() Bayesian VARs 46 / 99



Predictive Likelihoods

Most common way of evaluating performance of entire predictive
density is with predictive likelihood

Predictive likelihood is predictive density evaluated at the actual
realization

Predictive likelihood for variable i at time τ: p
(
yiτ = yRiτ|Zτ

)
Common to present cumulative sums of log predictive likelihoods as
measure of forecast performance:

T

∑
τ=τ0

log
[
p
(
yiτ = yRiτ|Zτ

)]
Can show if τ0 = 1, cumulative sums of predictive likelihoods equal
to log marginal likelihood

Have interpretation similar to marginal likelihoods over forecast
evaluation period
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Stochastic Search Variable Selection (SSVS) in VARs

There are many approaches which seek parsimony/shrinkage in VARs,
take SSVS as a representative example

SSVS is usually done in VAR where every equation has same
explanatory variables

Hence, return to our initial notation for VARs where X contains
lagged dependent variable, α are VAR coeffi cients, etc.

SSVS can be interpreted as a prior shrinks some VAR coeffi cients to
zero

Or as a model selection device (select the model with explanatory
variables with non-zero coeffi cients)

Or as a model averaging device (which averages over models with
different non-zero coeffi cients).

Can be implemented in various ways, here we follow George, Sun and
Ni (2008, JoE)
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Remember: of basic idea for a VAR coeffi cient, αj

SSVS is hierarchical prior, mixture of two Normal distributions:

αj |γj ∼
(
1− γj

)
N
(
0, κ20j

)
+ γjN

(
0, κ21j

)
γj is dummy variable.

γj = 1 then αj has prior N
(
0, κ21j

)
γj = 0 then αj has prior N

(
0, κ20j

)
Prior is hierarchical since γj is unknown parameter and estimated in a
data-based fashion.

κ20j is “small” (so coeffi cient is shrunk to be virtually zero)

κ21j is “large” (implying a relatively noninformative prior for αj ).
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Below we describe a Gibbs sampler for this model which provides
draws of γ and other parameters

SSVS can select a single restricted model.

Run Gibbs sampler and calculate Pr
(
γj = 1|y

)
for j = 1, ..,KM

Set to zero all coeffi cients with Pr
(
γj = 1|y

)
< a (e.g. a = 0.5).

Then re-run Gibbs sampler using this restricted model

Alternatively, if the Gibbs sampler for unrestricted VAR is used to
produce posterior results for the VAR coeffi cients, result will be
Bayesian model averaging (BMA).
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Gibbs Sampling with the SSVS Prior

SSVS prior for VAR coeffi cients, α, can be written as:

α|γ ∼ N (0,DD)

γ is a vector with elements γj ∈ {0, 1},
D is diagonal matrix with (j , j)th element dj :

dj =
{

κ0j if γj = 0
κ1j if γj = 1

“default semi-automatic approach” to selecting κ0j and κ1j

Set κ0j = c0
√
v̂ar(αj ) and κ1j = c1

√
v̂ar(αj )

v̂ar(αj ) is estimate from an unrestricted VAR

E.g. OLS or a preliminary Bayesian estimate from a VAR with
noninformative prior

Constants c0 and c1 must have c0 � c1 (e.g. c0 = 0.1 and c1 = 10).
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We need prior for γ and a simple one is:

Pr
(
γj = 1

)
= q

j
Pr
(
γj = 0

)
= 1− q

j

q
j
= 1

2 for all j implies each coeffi cient is a priori equally likely to be
included as excluded.

Can use same Wishart prior for Σ−1

Note: George, Sun and Ni also show how to do SSVS on off-diagonal
elements of Σ
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Gibbs sampler sequentially draws from p (α|y ,γ,Σ) , p (γ|y , α,Σ) and
p
(
Σ−1|y ,γ, α

)
α|y ,γ,Σ ∼ N(αα,V α)

where
V α = [Σ−1 ⊗ (X ′X ) + (DD)−1]−1

αα = V α[(ΨΨ′)⊗ (X ′X )α̂]

Â = (X ′X )−1X ′Y

α̂ = vec(Â)
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p (γ|y , α,Σ) has γj being independent Bernoulli random variables:

Pr
(
γj = 1|y , α,Σ

)
= qj

Pr
(
γj = 0|y , α,Σ

)
= 1− qj

where

qj =

1
κ1j

exp

(
−

α2j
2κ21j

)
q
j

1
κ1j

exp

(
−

α2j
2κ21j

)
q
j
+
1

κ0j
exp

(
−

α2j
2κ20j

)(
1− q

j

)
p
(
Σ−1|y ,γ, α

)
has similar Wishart form as previously, so I will not

repeat here.
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Illustration of Bayesian VAR Methods in a Small VAR

Data set: standard quarterly US data set from 1953Q1 to 2006Q3.

Inflation rate ∆πt , the unemployment rate ut and the interest rate rt
yt = (∆πt , ut , rt )

′.

These three variables are commonly used in New Keynesian VARs.

The data are plotted in Figure 1.

We use unrestricted VAR with intercept and 4 lags
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We consider 6 priors:

Noninformative: Noninformative version of natural conjugate prior

Natural conjugate: Informative natural conjugate prior with
subjectively chosen prior hyperparameters

Minnesota: Minnesota prior

Independent Normal-Wishart: Independent Normal-Wishart prior with
subjectively chosen prior hyperparameters

SSVS-VAR: SSVS prior for VAR coeffi cients and Wishart prior for Σ−1

SSVS: SSVS on both VAR coeffi cients and error covariance

() Bayesian VARs 57 / 99



Point estimates for VAR coeffi cients often are not that interesting,
but Table 1 presents them for 2 priors

With SSVS priors, Pr
(
γj = 1|y

)
is the “posterior inclusion

probability” for each coeffi cient, see Table 2

Model selection using Pr
(
γj = 1|y

)
> 1

2 restricts 25 of 39
coeffi cients to zero.
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Table 1. Posterior mean of VAR Coeffi cients for Two Priors
Noninformative SSVS - VAR
∆πt ut rt ∆πt ut rt

Intercept 0.2920 0.3222 -0.0138 0.2053 0.3168 0.0143
∆πt−1 1.5087 0.0040 0.5493 1.5041 0.0044 0.3950
ut−1 -0.2664 1.2727 -0.7192 -0.142 1.2564 -0.5648
rt−1 -0.0570 -0.0211 0.7746 -0.0009 -0.0092 0.7859
∆πt−2 -0.4678 0.1005 -0.7745 -0.5051 0.0064 -0.226
ut−2 0.1967 -0.3102 0.7883 0.0739 -0.3251 0.5368
rt−2 0.0626 -0.0229 -0.0288 0.0017 -0.0075 -0.0004
∆πt−3 -0.0774 -0.1879 0.8170 -0.0074 0.0047 0.0017
ut−3 -0.0142 -0.1293 -0.3547 0.0229 -0.0443 -0.0076
rt−3 -0.0073 0.0967 0.0996 -0.0002 0.0562 0.1119
∆πt−4 0.0369 0.1150 -0.4851 -0.0005 0.0028 -0.0575
ut−4 0.0372 0.0669 0.3108 0.0160 0.0140 0.0563
rt−4 -0.0013 -0.0254 0.0591 -0.0011 -0.0030 0.0007
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Table 2. Posterior Inclusion Probabilities for
VAR Coeffi cients: SSVS-VAR Prior

∆πt ut rt
Intercept 0.7262 0.9674 0.1029
∆πt−1 1 0.0651 0.9532
ut−1 0.7928 1 0.8746
rt−1 0.0612 0.2392 1
∆πt−2 0.9936 0.0344 0.5129
ut−2 0.4288 0.9049 0.7808
rt−2 0.0580 0.2061 0.1038
∆πt−3 0.0806 0.0296 0.1284
ut−3 0.2230 0.2159 0.1024
rt−3 0.0416 0.8586 0.6619
∆πt−4 0.0645 0.0507 0.2783
ut−4 0.2125 0.1412 0.2370
rt−4 0.0556 0.1724 0.1097
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Impulse Response Analysis

Impulse response analysis is commonly done with VARs
Given my focus on the Bayesian econometrics, as opposed to
macroeconomics, I will not explain in detail
The VAR so far is a reduced form model:

yt = a0 +
p

∑
j=1
Ajyt−j + εt

where var (εt ) = Σ
Macroeconomists often work with structural VARs:

C0yt = c0 +
p

∑
j=1
Cjyt−j + ut

where var (ut ) = I
ut are shocks which have an economic interpretation (e.g. monetary
policy shock)
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Macroeconomist interested in effect of (e.g.) monetary policy shock
now on all dependent variables in future = impulse response analysis

Need to restrict C0 to identify model.

We assume C0 lower triangular

This is a standard identifying assumption used, among many others,
by Bernanke and Mihov (1998), Christiano, Eichanbaum and Evans
(1999) and Primiceri (2005).

Allows for the interpretation of interest rate shock as monetary policy
shock.

Aside: sign-restricted impulse responses of Uhlig (2005) are
increasingly popular
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Figures 2 and 3 present impulse responses of all variables to shocks

Use two priors: the noninformative one and the SSVS prior.

Posterior median is solid line and dotted lines are 10th and 90th

percentiles.

Priors give similar results, but a careful examination reveals SSVS
leads to slightly more precise inferences (evidenced by a narrower
band between the 10th and 90th percentiles) due to the shrinkage it
provides.
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Impulse Responses for Noninformative Prior
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Impulse Responses for SSVS Prior
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Illustration of Bayesian Methods in Larger VARs

This illustration is based on my paper: “Forecasting with Medium and
Large Bayesian VARs,” Journal of Applied Econometrics, 2013.

VARs have a long and successful tradition in the forecasting literature

VARs are parameter-rich models and shrinkage can greatly improve
forecast performance

Bayesian methods popular since prior information offers a formal way
of shrinking forecasts.

Number of dependent variables is in VARs is usually small (e.g. 2 or
3)

However, Banbura, Giannone and Reichlin (2010, JAE) started a
literature working with larger Bayesian VARs.

Other recent examples include Carriero, Clark and Marcellino (2011,
Cleveland Fed), Carriero, Kapetanios and Marcellino (2009, JoF),
Giannone, Lenza, Momferatou and Onorante (2010, ECB), Gefang
(2013, JoF) and Korobilis (2013, JAE)
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BGR “medium”VAR has 20 dep vars and “large”VAR has 130

Usually, when working with so many macroeconomic variables, factor
methods are used

We will discuss factor methods in later lecture

However, BGR find that medium and large Bayesian VARs can
forecast better than factor methods

Perhaps Bayesian VARs should be used even when researcher has
dozens or hundreds of variables?

Dimensionality of α is key

Large VAR with quarterly data might have n = 100 and p = 4 so α
contains over 40000 coeffi cients.

With monthly data it would have over 100000 coeffi cients.

For a medium VAR, α might have about 1500 coeffi cients with
quarterly data.

Σ is parameter rich: n(n+1)2 elements.
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Number of parameters may far exceed the number of observations.

In theory, this is no problem for Bayesian methods.

These combine likelihood function with prior.

Even if parameters in likelihood function are not identified, combining
with prior will (under weak conditions) lead to valid posterior density

But how well do they work in practice?

Role of prior information becomes more important as likelihood is less
informative
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Reminder: Natural conjugate priors for VARs

BGR work with a natural conjugate prior which provides analytical
results for predictive density.

Natural conjugate prior has the form:

α|Σ ∼ N (α,Σ⊗ V )

Σ−1 ∼ W
(
S−1, ν

)
Traditional Minnesota prior replaces Σ with an estimate, Σ̂.
Assumes Σ to be a diagonal matrix with elements s2i
s2i is OLS estimate of error variance in AR(p) model for i

th variable.

Wishing to allow for correlations between the errors, BGR treats Σ as
unknown matrix with prior inspired by Minnesota prior
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Posterior is:
α|Σ,Y ∼ N

(
α,Σ⊗ V

)
Σ−1|Y ∼ W

(
S
−1
, ν
)

Key thing: analytical formulae exist for posterior and predictive density

Can choose prior hyperparameters to shrink forecasts towards a
random walk or white noise

λ is a single scalar used to control degree of shrinkage

BGR use prior which coincides with traditional Minnesota prior except:

Σ is treated as unknown

A single λ is used for shrinkage instead of the two (traditionally: less
shrinkage on own lags than other lags).
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Benefit 1 of natural conjugate prior: analytical results are available
(no posterior simulation required)

Benefit 2: For large Bayesian VARs: the Σ⊗ V form for posterior
covariance matrix of α enormously simplifies computation.

Posterior covariance involves inverting an nK × nK matrix

With natural conjugate prior, this can be done by inverting Σ
(n× n) and V (K ×K ) – much much easier for large VARs

But there are disadvantages of natural conjugate prior relating to
Σ⊗ V form.

E.g. Prior variance of the coeffi cients on the same explanatory
variable in any two equations must be proportional to one another

So cannot shrink own lags differently than other lags as in Minnesota
prior
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Main thing I investigate in this application is use of SSVS methods

Another thing is the following:

Use Minnesota prior with two prior hyperparameters controlling
shrinkage (λ1 and λ2)

Traditional Minnesota prior has Σ being diagonal

We do this, but also modification of standard Minnesota prior where
upper-left hand block of Σ (corresponding to a reduced set of
important variables which are the ones being forecast) is not diagonal.

Minnesota and BGR prior involve choosing prior hyperparameters in
some way (i.e. prior means, shrinkage parameters, prior for Σ).
Note: Prior for Σ depends on data (s2i ) which may offend Bayesian
purists
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Non-conjugate SSVS Prior

How well do SSVS methods work in large VARs?

In this lecture I described George, Ni and Sun (2008) implementations

This used a non-conjugate prior

They used MCMC methods drawing from p (α|Y ,Σ,γ) ,
p (γ|Y ,Σ, α) and p (Σ|Y , α,γ)
Easy forms for all, but a key stumbling block:

var (α|Y ,Σ,γ) = [Σ−1 ⊗ (X ′X ) +D−1]−1

Inversion of a Kn×Kn matrix must be done for each MCMC draw.
For medium VARs slow but feasible

For large VARs it is infeasible.
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Conjugate SSVS Prior

There also is a conjugate SSVS prior developed by Brown, Vannucci
and Fearn (1998, JRSS, B)

Big advantage: does not require inversion of Kn×Kn matrix at each
MCMC draw.

But has some other drawbacks:

With non-conjugate γ has Kn elements (each individual coeffi cient is
either included/excluded)

With conjugate we have γ̃ with K elements (coeffi cients on a single
explanatory variables are either included/excluded in all equations)

With conjugate we cannot do SSVS on off-diagonal elements of Σ
Posterior simulation only involves drawing from p (γ̃|Y ) (much easier
than with non-conjugate, but still much more computationally
demanding than BGR and Minnesota prior)
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Combining Minnesota Prior with SSVS prior

SSVS priors require choice of prior variances in Normal mixture prior

George, Sun and Ni (2008) want κ20j very small and κ21j large and
recommend a “semi-automatic”way of choosing them

We use this approach

However, the Minnesota prior is Normal and the second element in
the SSVS mixture prior also Normal

Why not simply use Minnesota prior for second Normal?

SSVS can either choose to shrink any coeffi cient to zero or to use the
Minnesota prior.

We also use this Minnesota+SSVS approach
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Data

See paper for details, updated version of data set used in Stock and
Watson (2008)
168 US variables from 1959Q1 through 2008Q4
Variables all transformed to stationarity (usually by differencing or log
differencing)
Variables are divided into four groups:
First group: three main variables we are interested in forecasting
(output, prices and interest rates)
Second group: 17 variables commonly used for forecasting first group
(partly motivated by the monetary model of Christiano, Eichenbaum
and Evans (1999) and partly includes variables found to be useful for
forecasting in other studies)
Third group: 20 variables sometimes used in forecasting exercises
(this includes most of remaining aggregate variables)
Fourth group: Remaining 128 variables (mostly components making
up the aggregate variables already included in the other groups)
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Small VARs use first group (n = 3)

Medium VARs use first two groups (n = 20)

Medium-large VARs use first three groups (n = 40)

Large VARs use all groups (n = 168).
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Other Modelling Choices

Lag length is four in all VARs

For Minnesota priors (and combination Minnesota plus SSVS priors)
have to choose prior shrinkage parameter(s) λ (or λ1 and λ2).

We follow BGR:

Estimate VARs on a training sample (data through 1969Q4)

Do forecasting exercise within this training sample.

For the small VAR no shrinkage is done (λ→ ∞).
In medium, medium-large and large VARs, λ (or λ1 and λ2) chosen
to yield sum of MSFEs for three main variables in training sample as
close as possible to the small VAR.
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Forecast Metrics

Rolling and recursive forecast exercises

Rolling forecasts: use a window of ten years

We obtain predictive density for yτ+h using data available through
time τ for h = 1 and 4

τ = τ0, ..,T − h where τ0 is 1969Q4

Use MSFEs to assess performance of point forecasts

Use cumulative sums of log predictive likelihoods to assess
performance of predictive densities

Forecast GDP growth, inflation and the interest rate

We present MSFE as a proportion of the MSFE produced by random
walk forecasts
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Factor Methods

Compare our Bayesian VAR approaches to each other and to factor
methods (described in later lecture)

Add lags of factors to the small VAR involving

Factors constructed using principal components based on the
remaining 165 variables.

Use three factors and implement variants where we include one and
four lags of these factors

We use noninformative prior
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Summary of Forecasting Approaches

1 Minnesota Prior as in BGR
2 Traditional Minnesota Prior (Σ diagonal)
3 Traditional Minnesota Prior (Σ not diagonal)
4 SSVS Conjugate prior (semi-automatic selection of prior
hyperparameters)

5 SSVS Conjugate prior + Minnesota Prior
6 SSVS Non-conjugate prior (semi-automatic selection of prior
hyperparameters)

7 SSVS Non-conjugate prior + Minnesota Prior
8 Factor methods with one lag of factors
9 Factor methods with four lags of factors
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Computational constraints: doing posterior simulation at each point
in time in a recursive forecasting exercise very computationally
demanding

Remember, too, the need to invert huge-dimensional matrices when
constructing posterior covariance matrix with non-conjugate SSVS

These constraints mean:

For Minnesota priors we present results for small, medium,
medium-large and large VARs

For conjugate SSVS we present results for small, medium and
medium-large VARs

For non-conjugate SSVS we present results for small and medium
VARs

For factor methods we use all 168 variables
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Forecasting Results

We are forecasting three variables (output=GDP, inflation=CPI and
interest rates=FFR), at two horizons (h = 1 and 4) and are doing
recursive and rolling forecasts.

Thus 12 tables in paper

Begin with table which summarizes which approach is best in each of
the 12 cases
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Method GDP CPI FFR
Using MSFE to Measure Forecast Performance
h = 1
rec.

Minn. Prior as
BGR n = 40

Minn. Pri. Σ not
diag., n = 20

Minn. Pri. as
BGR, n = 40

h = 4
rec.

Minn. Prior as
BGR, n = 168

SSVS No-con+
Min Prior n = 3

SSVS No-conj.
sem-auto n = 3

h = 1
roll.

SSVS Conj. +
Min Pri n = 40

Minn. Prior
Σ diag, n = 40

SSVS Conj +
Min Pri, n = 20

h = 4
roll.

Min Pr, Σ not
diag, n = 168

Minn. Pri Σ not
diag n = 168

SSVS Nonconj
sem-auto n = 3

Using Pred. Likes. to Measure Forecast Performance
h = 1
rec.

Minn. Pri as
BGR, n = 40

Minn. Prior
Σ diag., n = 20

SSVS Conj. +
Minn. Pri n = 20

h = 4
rec.

SSVS Noncon
sem-auto n = 3

SSVS Noncon+
Min Prior, n = 3

SSVS Noncon +
Minn. Pri, n = 3

h = 1
roll.

Min Prior Σ not
diag, n = 168

SSVS Non-conj
semi-auto n = 3

SSVS Conj
semiauto n = 20

h = 4
roll.

Min Prior Σ not
diag, n = 168

SSVS Conj.
semi-auto n = 3

SSVS Non-conj
semiauto n = 3
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General Discussion of Results

No one single forecasting method predominates in all cases.

In practice some approaches doing well in some cases, but not
necessarily in others.

Nevertheless, a few interesting stories emerge:

Factor methods never lead to the best forecast performance.

In all cases, most of our ways of implementing VARs lead to better
(and often much better) forecast performance than factor models

Recommendation: working with high-dimensional Bayesian VARs is an
alternative worth considering.
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Who wins our 24 forecast “races”?

24 arises since 12 cases can be evaluated either using MSFEs or sums
of log predictive likelihoods

SSVS approaches have 13 “wins”

Minnesota prior approaches win 11 times

In terms of VAR dimensionality, large, medium-large and medium
VARs each win five times and small VARs win nine times

Fairly even split. Cannot recommend (e.g.) “you should always use
SSVS”or “you should always work with large VARs”
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More Detailed Discussion of Results

Recursive and rolling results qualitatively similar so only present
recursive here

Factor model with four lags always does worse than one lag so omit

Small VARs often forecast well, but in many cases, reading across
rows in tables find improvements in forecasts

But improvements tend to be small or non-existent when we move
beyond n = 20

This is consistent with BGR findings
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Exceptions to previous pattern usually with h = 4

Here small VARs with SSVS priors often yield best forecasting
performance.

Pattern: SSVS methods forecast better than Minnesota priors in
small VARs, but pattern is not always continued with medium and
medium-large VARs.

Minnesota priors: BGR’s specification often works well.

However, often an alternative forecasts slightly better than BGR.

Traditional Minnesota prior had different degrees of shrinkage for
coeffi cients on own lags than on other lags — this often improves
forecast performance.

Our version of Minnesota prior which allows upper left 3× 3 block of
Σ to be unrestricted often forecasts quite well.

Combining SSVS with Minnesota often works well (may be a good
conservative choice)
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Table 1: GDP Forecasting for h = 1 MSFE’s above pred. likes
n = 3 n = 20 n = 40 n = 168

Minn. Prior
as in BGR

0.6504
−206.37

0.5552
−192.29

0.5084
−186.60

0.5225
−223.78

Minn. Prior
Σ diagonal

0.7065
−211.85

0.5774
−204.84

0.6381
−205.52

0.5631
−202.39

Minn. Prior
Σ not diagonal

0.7065
−205.97

0.5489
−195.40

0.5402
−193.49

0.5305
−192.81

SSVS Conjugate
semi-automatic

0.6338
−200.66

0.6776
−199.90

0.6983
−197.66 n.a.

SSVS Conjugate
plus Minn. Prior

0.6062
−198.77

0.5577
−192.53

0.5368
−192.4 n.a.

SSVS Non-conj.
semi-automatic

0.6061
−198.40

0.6407
−205.12 n.a. n.a.

SSVS Non-conj.
plus Minn. Prior

0.6975
−204.71

0.6466
−203.92 n.a. n.a.

Factor Model
p = 1

n.a. n.a. n.a.
0.6441
−195.10
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Table 2: CPI Forecasting for h = 1, MSFE’s above pred. likes
n = 3 n = 20 n = 40 n = 168

Minn. Prior
as in BGR

0.3471
−201.23

0.3029
−195.90

0.3172
−210.09

0.3309
−322.27

Minn. Prior
Σ diagonal

0.3317
−190.85

0.2756
−182.18

0.3252
−200.55

0.2834
−184.78

Minn. Prior
Σ not diagonal

0.3317
−203.95

0.2664
−184.06

0.2718
−188.27

0.3019
−197.45

SSVS Conjugate
semi-automatic

0.3138
−187.82

0.2724
−191.15

0.3061
−197.66 n.a.

SSVS Conjugate
plus Minn. Prior

0.3086
−186.70

0.3088
−197.64

0.3601
−222.30 n.a.

SSVS Non-conj.
semi-automatic

0.3197
−193.92

0.3161
−196.47 n.a. n.a.

SSVS Non-conj.
plus Minn. Prior

0.3252
−191.45

0.2910
−187.58 n.a. n.a.

Factor Model
p = 1

n.a. n.a. n.a.
0.3133
−191.83
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Table 3: FFR Forecasting for h = 1, MSFE’s above pred. likes
n = 3 n = 20 n = 40 n = 168

Minn. Prior
as in BGR

0.6192
−238.40

0.5136
−229.14

0.5084
−243.71

0.5224
−266.66

Minn. Prior
Σ diagonal

0.8351
−247.02

0.5355
−238.79

0.6218
−263.05

0.5532
−239.84

Minn. Prior
Σ not diagonal

0.8351
−267.29

0.5164
−249.09

0.5530
−249.49

0.5223
−258.28

SSVS Conjugate
semi-automatic

0.7944
−247.25

0.6329
−245.25

0.5936
−256.02 n.a.

SSVS Conjugate
plus Minn. Prior

0.7554
−243.16

0.5134
−228.54

0.5354
−251.98 n.a.

SSVS Non-conj.
semi-automatic

0.8439
−252.43

0.5790
−237.16 n.a. n.a.

SSVS Non-conj.
plus Minn. Prior

0.7436
−252.68

0.5431
−228.86 n.a. n.a.

Factor Model
p = 1

n.a. n.a. n.a.
0.7360
−232.66
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Table 4: GDP Forecasting for h = 4, MSFE’s above pred. likes
n = 3 n = 20 n = 40 n = 168

Minn. Prior
as in BGR

0.7437
−220.57

0.6094
−214.71

0.5717
−214.38

0.5420
−277.46

Minn. Prior
Σ diagonal

0.7437
−219.25

0.6100
−214.02

0.5728
−210.99

0.5656
−210.06

Minn. Prior
Σ not diagonal

0.7437
−220.58

0.6214
−213.28

0.5831
−209.50

0.5780
−209.37

SSVS Conjugate
semi-automatic

0.6129
−211.36

0.6473
−212.35

0.8881
−239.87 n.a.

SSVS Conjugate
plus Minn. Prior

0.8404
−222.91

0.8357
−219.64

0.6387
−222.50 n.a.

SSVS Non-conj.
semi-automatic

0.6147
−207.80

0.7535
−293.21 n.a. n.a.

SSVS Non-conj.
plus Minn. Prior

0.8438
−221.57

0.6670
−219.01 n.a. n.a.

Factor Model
p = 1

n.a. n.a. n.a.
0.7662
−223.24
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Table 5: CPI Forecasting for h = 4, MSFE’s above pred. likes
n = 3 n = 20 n = 40 n = 168

Minn. Prior
as in BGR

0.5254
−209.51

0.5217
−219.35

0.5246
−235.65

0.5044
−262.55

Minn. Prior
Σ diagonal

0.5254
−216.43

0.5191
−217.60

0.5207
−218.45

0.5124
−216.64

Minn. Prior
Σ not diagonal

0.5254
−214.64

0.5203
−216.07

0.5214
−217.57

0.5197
−217.14

SSVS Conjugate
semi-automatic

0.4990
−211.36

0.6042
−225.02

0.6847
−253.84 n.a.

SSVS Conjugate
plus Minn. Prior

0.4759
−199.86

0.7031
−246.64

0.4853
−220.44 n.a.

SSVS Non-conj.
semi-automatic

0.5010
−208.26

0.7723
−226.36 n.a. n.a.

SSVS Non-conj.
plus Minn. Prior

0.4683
−194.39

0.4883
−201.62 n.a. n.a.

Factor Model
p = 1

n.a. n.a. n.a.
0.5608
−214.72
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Table 6: FFR Forecasting for h = 4, MSFE’s above pred. likes
n = 3 n = 20 n = 40 n = 168

Minn. Prior
as in BGR

0.6679
−243.31

0.5868
−249.63

0.5670
−264.80

0.5717
−319.40

Minn. Prior
Σ diagonal

0.6677
−281.95

0.6075
−278.11

0.5946
−273.70

0.6379
−281.92

Minn. Prior
Σ not diagonal

0.6679
−246.90

0.5882
−244.77

0.5894
−240.50

0.6362
−245.34

SSVS Conjugate
semi-automatic

0.5508
−236.00

0.5873
−249.46

0.7408
−273.60 n.a.

SSVS Conjugate
plus Minn. Prior

0.6259
−235.57

0.6716
−258.47

0.5370
−255.89 n.a.

SSVS Non-conj.
semi-automatic

0.5265
−231.16

0.8811
−268.06 n.a. n.a.

SSVS Non-conj.
plus Minn. Prior

0.6184
−228.80

0.5282
−233.67 n.a. n.a.

Factor Model
p = 1

n.a. n.a. n.a.
0.7027
−244.52

() Bayesian VARs 94 / 99



In terms of MSFEs, the advantages of unrestricted Σ (as in BGR) are
relatively small.
In terms of predictive likelihoods, allowing for unrestricted Σ can
occasionally lead to poor forecast performance.
Example: forecasting CPI for h = 1.
MSFEs say best method uses Minnesota prior with 20-variate VAR
where MSFE is 0.2664.
In large VARs, the MSFEs for Minnesota and BGR are only slightly
higher (0.2834 and 0.3309).
But in large VARs predictive likelihoods vastly different between
Minnesota prior (−184.78) and BGR (−322.27).
Figures plot cumulative sum of log pred likes and cumulative sum of
squared forecast errors for these two priors for large VAR.
Predictive likelihoods and MSFEs (point forecasts) can say very
different things
Dispersion/tail behaviour of predictives can matter.
In this case, BGR has good point forecast but is yielding unnecessarily
disperse predictive distribution due to its need to estimate many more
parameters in Σ
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Summary of Large VAR application

We consider various priors which differ in how they do shrinkage in
Bayesian VARs

Also differ in computational burden

Investigate forecast performance in a substantive empirical example
and find:

Bayesian VARs consistently out-forecast factor models even in large
VARs

Generally, improvements in forecasting are small or non-existent
beyond n = 20 or n = 40

With such medium and medium-large VARs, SSVS methods are
possible and often forecast better than Minnesota priors

Different variants of Minnesota priors are also worth considering
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Conclusion of VAR Lecture

Lecture began with summary of basic methods and issues which arise
with Bayesian VAR modelling and addressed questions such as:

Why is shrinkage necessary?

How should shrinkage be done?

With recent explosion of interest in large VARs, need for answers for
such questions is greatly increased

Many researchers now developing models/methods to address them

I have described one popular category focussing on SSVS methods

But many more exist (e.g. variants on LASSO) and are coming out
all the time

Recent survey paper: Sune Karlsson: Forecasting with Bayesian
Vector Autoregressions (to appear in Handbook of Economic
Forecasting, volume 2)
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