
Exercise 1: Drawing from Standard Distributions. Simulation-based in-
ference via the Metropolis-Hastings algorithm or Gibbs sampler requires the
researcher to be able to draw from standard distributions. In this exercise
we discuss how MATLAB can be used to obtain draws from a variety of
standard continuous distributions. Speci�cally, we obtain draws from the
Uniform, Normal, Student-t, Beta, Exponential and Chi-squared distribu-
tions, using MATLAB (see the Appendix for de�nitions of these distribu-
tions). This exercise is designed to be illustrative - MATLAB is capable of
generating variates from virtually any distribution that an applied researcher
will encounter (and the same applies to other relevant computer languages
such as Gauss).

Exercise 0.0.1 Using MATLAB, obtain sets of 10, 100 and 100,000 draws
from the Uniform, standard Normal, Student-t(3) (denoted t (0; 1; 3) in the
notation of the Appendix), Beta(3,2), Exponential with mean (denoted Ex-
ponential(5) below) and �2 (3) distributions. For each sample size calculate
the mean and standard deviation and compare these quantities to the known
means and standard deviations from each distribution.

************Solution*************

Our MATLAB program for implementing this exercise is provided on the
website associated with this book. Table 11.1 below gives a tabular summary
of these results.
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Table 11.1: Simulation Results
Uniform Standard Normal

Mean Std. Mean Std
True Value .500 (1=

p
12) 0 1

N = 10 .482 .314 .204 .870
N = 100 .489 .303 .059 1.06
N = 100; 000 .500 .289 -.001 .999

Student-t(3) Beta(3,2)
Mean Std. Mean Std

True Value 0
p
3 .6 .2

N = 10 .002 .920 .616 .181
N = 100 -.167 1.46 .585 .193
N = 100; 000 .003 1.70 .600 .199

Exponential(5) �2 (3)
Mean Std. Mean Std

True Value 5 5 3
p
6

N = 10 3.42 3.35 2.98 2.55
N = 100 4.61 4.75 2.85 2.43
N = 100; 000 5.01 5.02 3.00 2.45

For the largest sample size, N = 100; 000, our simulated means and
standard deviations are virtually identical to the known means and stan-
dard deviations. It is also worth noting that the Exponential(5) and �2 (3)
distributions are equivalent to the G(1; 5) and G(3=2; 2) distributions, re-
spectively (see the Appendix). The MATLAB routine for drawing from the
�exible Gamma distribution is �gamrnd,� thus providing an alternate way
for obtaining draws from the Exponential and Chi-squared distributions.
Exercise 2: a) Generate an arti�cial data set of size N = 100 from the

Normal linear regression model with an intercept and one other explanatory
variable. Set the intercept (�1) to 0, the slope coe¢ cient (�2) to 1:0 and
h = 1:0. Generate the explanatory variable by taking random draws from
the U (0; 1) distribution.

Exercise 0.0.2 b) Calculate the posterior mean and standard deviation for
the slope coe¢ cient, �2, for this data set using a Normal-Gamma prior with
� = (0; 1)0 ; V = I2; s

�2 = 1; � = 1.
c) Calculate the Bayes factor comparing the model M1 : �2 = 0 with

M2 : �2 6= 0.
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d) Carry out a prior sensitivity analysis by setting V = cI2 and repeating
parts b) and c) for values of c = 0:01; 1:0; 100:0; 1 � 106. How sensitive is
the posterior to changes in prior information? How sensitive is the Bayes
factor?
e) Repeat part b) using Monte Carlo integration for various values of R.

How large does R have to be before you reproduce the results of the previous
parts to two decimal places?
f) Calculate the numerical standard errors associated with the posterior

mean of the slope coe¢ cient for the models. Does the nse seem to give a
reliable guide to the accuracy of the approximation provided by Monte Carlo
integration?

**********Solution********
(a) A program to generate arti�cial data as described in this exercise has

the following form:

� Step 1: Set N , �1; �2 and h to the required values (i.e. 100; 0; 1; 1,
respectively).

� Step 2: Take a draw of the explanatory variable, xi, from the U (0; 1)
distribution.

� Step 3: Take a draw of the error, "i, from the N (0; 1).

� Step 4: Set the dependent variable to �1 + �2xi + "i.

� Step 5: Repeat Steps 2 through 4 N times and save all the values of
the dependent and explanatory variables.

(b and c) A program to calculate the posterior mean and standard devi-
ation of the regression coe¢ cients involves �rst setting the prior hyperpara-
meters to their required values and then evaluating the formulae in Chapter
10, Exercise 10.1. A program to calculate the marginal likelihood evaluates
the formula from Chapter 10 (see, e.g., the formula for the Bayes factor in
Exercise 10.4 and remember that the Bayes factor is the ratio of marginal
likelihoods). A simple way to calculate the Bayes factor comparing the two
models is simply to run the program with the arti�cial data set and then run
it again with the only explanatory variable being an intercept. Again, the
programs are provided at the end of the chapter.
The answer to part d) below provides empirical results.

3



(d) The prior sensitivity analysis can be done by running the program
above for c = 0:01; 1:0; 100:0; 1 � 106: In order to calculate the Bayes factor
the program can be run twice for each value of c, once with the entire arti�cial
data set (i.e. k = 2) and once with X containing only an intercept (i.e.
k = 1). Our results will di¤er from yours since you will have generated a
di¤erent arti�cial data set than us. Table 11.2 presents the posterior means
and standard deviation. The results for c = 1 complete the answer to part
b).

Table 11.2: Results of Prior Sensitivity Analysis for �2
Posterior Mean Posterior Stand. Dev.

c = 0:01 1:015 0:079
c = 1:0 1:066 0:289
c = 100 1:074 0:312
c = 106 1:074 0:312

Table 11.3: Bayes factors for �2 = 0
Bayes factor

c = 0:01 4:7� 10�7
c = 1:0 0:008
c = 100 0:096
c = 106 9:251

These tables show some interesting patterns. Note, �rst, that the poste-
rior mean and standard deviation are more robust to changes in the prior than
are the Bayes factors (a standard �nding in empirical Bayesian work). In fact,
except for the case where the prior is extremely informative (as in c = 0:01),
the posterior means and standard deviations are virtually the same for all
prior choices. The Bayes factors vary from strong evidence against �2 = 0
through strong evidence in favor of �2 = 0. This motivates the common belief
that prior elicitation is more important when the researcher is interested in
model comparison than when she is interested in estimating parameters in a
single model. In general, as the prior for �2 gets more noninformative (i.e. c
gets larger), the Bayes factor indicates more support for the restricted model
(i.e. �2 = 0). It can be shown that a noninformative prior (i.e. c!1) will
yield an in�nite Bayes factor and, thus, the restricted model will always be
supported, regardless of the data evidence. This is referred to as Bartlett�s
paradox [see Poirier (1995), page 390].
Secondly, our prior is centered over the value used to generate the arti�cial

data. Thus, prior and likelihood information are not in con�ict. In this
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case, having a more informative prior (i.e. setting c to a small value) will
ensure more accurate estimation (i.e. the posterior standard deviation of
�2 decreases as c decreases). The reader interested in further investigation
might want to experiment with di¤erent priors which are in con�ict with the
likelihood (e.g. what happens if � = (0; 0)0? what happens if � = (0;�1)0?,
etc.).
(e and f) Monte Carlo integration for � can be done in two ways. The

researcher can directly draw from the posterior for � using the multivariate
t-distribution (see the Appendix to this book). Alternatively, the researcher
can draw from the posterior of h (which is Gamma) and then draw from
p (�jy; h) (which is Normal). Here we adopt the �rst approach. This re-
quires computer code for randomly drawing from the t-distribution. This is
available in many places. For instance, for MATLAB James LeSage�s Econo-
metrics Toolbox [see LeSage (1999)] provides code for drawing from many
common distributions including the t-distribution.
The structure of computer code which does Monte Carlo integration to

carry out posterior inference on � is:

� Step 1: Do all the preliminary things to create all the variables used in
the Monte Carlo procedure (i.e load in the data, specify prior hyper-
parameters and evaluate the posterior mean, scale matrix and degrees
of freedom for the multivariate t posterior (see code for part c)).

� Step 2: Draw from the multivariate t posterior for �.

� Step 3: Repeat Step 2 R times and average the draws of � (this gives
you the Monte Carlo estimate of the posterior mean) and average the
draws of �2 (this gives you the Monte Carlo estimate of E

�
�2jy

�
which,

along with the posterior mean, can be used to calculate the posterior
variance and standard deviation).

MATLAB code for performing these calculations, and those for part f
are provided on the website associated with this book. The formula for the
numerical standard error is derived in Exercise 11.1. As described there, this
depends only on the Monte Carlo estimate of var (�2jy) (which was calledb�2 in Exercise 11.1) and R: These are readily available in the Monte Carlo
integration procedure (see code in part e)).
Table 11.4 presents the posterior mean and standard deviation for �2

calculated analytically (see part b)) and using Monte Carlo integration with
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di¤erent numbers of replications. In addition, for Monte Carlo estimates we
present the nse for E (�2jy).

Table 11.4: Posterior results for �2
Posterior Mean Posterior Stand. Dev. NSE for E (�2jy)

Analytical 1:066 0:289 ��
R = 10 1:121 0:341 0:108
R = 100 1:029 0:289 0:029
R = 1000 1:069 0:292 0:009
R = 10000 1:067 0:288 0:002
R = 1000000 1:066 0:289 3� 10�3

The row labeled �Analytical� presents the correct posterior mean and
standard deviation (these numbers are taken from Table 11.2 with c = 1).
Since Monte Carlo integration depends on random number generation, no
two Monte Carlo procedures will yield exactly the same results. Hence, your
numbers may be di¤erent from ours. However, the following patterns should
be evidence. First, as the number of replications increases, the approximation
error associated with the Monte Carlo integration gets smaller. Secondly, it
seems that roughly 1000 replications are required to obtain results accurate
to two decimal places. However, thirdly, a better way of gauging the accuracy
of the Monte Carlo approximation is through the numerical standard error
which does seem quite reliable (in the sense that, for each value of R, the
Monte Carlo estimate is within one or two numerical standard standard errors
of the true posterior mean).
******************************************************************************************************
Exercise 3: Gibbs Sampling from The Bivariate Normal. The purpose of

this question is to learn about the properties of the Gibbs sampler in a very
simple case.

Exercise 0.0.3 Assume that you have a model which yields a bivariate Nor-
mal posterior, �

�1
�2

�
� N

��
0
0

�
;

�
1 �
� 1

��
;

where j�j < 1 is the (known) posterior correlation between �1 and �2.
(a) Write a program which uses Monte Carlo integration to calculate the

posterior means and standard deviations of �1 and �2.
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(b) Write a program which uses Gibbs sampling to calculate the posterior
means and standard deviations of �1 and �2.
(c) Set � = 0 and compare the programs from parts a) and b) for a given

number of replications (e.g. R = 100) and compare the accuracy of the two
algorithms.
(d) Repeat part c) of this question for � = :5; :9; :99 and :999. Discuss

how the degree of correlation between �1 and �2 a¤ects the performance of the
Gibbs sampler. Make graphs of the Monte Carlo and Gibbs sampler replica-
tions of �1 (i.e. make a graph with x-axis being replication number and y-axis
being �1). What can the graphs you have made tell you about the properties
of Monte Carlo and Gibbs sampling algorithms?
(e) Repeat parts c) and d) more replications (e.g. R = 10; 000) and

discuss how Gibbs sampling accuracy improves with number of replications.

Solution (a and b)
A MATLAB program for these parts of the question is provided on the

website associated with this book. Monte Carlo and Gibbs sampling algo-
rithms have the same general structure: an initial part where quantities are
initialized (in this question, this means a value for � is set and all the sums
used to calculate Monte Carlo and Gibbs estimates are initialized at zero),
then a loop (in Matlab this is a �for loop�, in other languages often called a
�do loop�) which repeatedly draws from the posterior (in the case of Monte
Carlo integration) or the posterior conditionals (in the case of Gibbs sam-
pling) and sums the draws, then the program ends with the �nal calculations
(e.g. dividing sums by number of replications to get Monte Carlo or Gibbs
estimates) and printing out/graphing of results.
The Monte Carlo integration algorithm requires the program to take ran-

dom draws from the bivariate Normal posterior given in the question. The
Gibbs sampling algorithm requires the posterior conditionals. Using the
properties of the multivariate Normal distribution (see Theorem 3 of the
Appendix) it follows immediately that:

�1j�2; y � N
�
��2; 1� �2

�
and

�2j�1; y � N
�
��1; 1� �2

�
.

Of course, in practice there would be no need to do either Gibbs sampling
or Monte Carlo integration since the true mean and standard deviation of �1
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and �2 are given in the question. However, the purpose of this question is to
compare posterior simulation algorithms and it is useful to know what the
true answer should be when doing such comparisons.
(c and d) Table 11.7 provides Monte Carlo integration and Gibbs sampler

results for �1 and �2 for all the posteriors speci�ed in the question. With the
Gibbs sampler, we discard an initial 100 burn-in replications to remove the
e¤ect of initial conditions. We stress that since posterior simulation depends
on random number generation, you may get di¤erent numbers from us. And
a posterior simulation algorithm run twice will not yield the same answer,
especially with a small number of replications such as R = 100. With these
quali�cations in mind, the patterns in Table 11.7 are clear. For Monte Carlo
integration, the degree of accuracy does not depend upon �. But for Gibbs
sampling, it does.
When � = 0, Gibbs sampling is equivalent to Monte Carlo integration

since, in this case, �1 and �2 are independent of one another and drawing from
the posterior conditionals is equivalent to drawing from the two marginal
distributions which is equivalent to drawing from the joint distribution (due
to independence). Table 11.7 indicates that for � = 0, Gibbs sampling is
roughly as accurate as Monte Carlo integration. However, as � becomes
bigger and bigger, Gibbs sampling becomes less and less accurate. Note, in
particular, that the posterior standard deviations become much smaller than
their true values when � is large.
The reason for the poor performance of Gibbs sampling when �1 and �2

are highly correlated with one another is that the sequence of Gibbs draws
becomes highly correlated as well. This can be seen in Figure 11.1 (or inferred
from the equations for the conditional posteriors given above) which plots
the draws of �1 for � = 0:999. The Monte Carlo integration draws are
purely random draws from the posterior, but the Gibbs sampling draws are
highly correlated with one another (i.e. the smooth, trendlike behavior of the
Gibbs draws indicates strong serial correlation). Intuitively, R random draws
from a distribution are typically going to contain more information than R
correlated draws (i.e. if two draws are highly correlated with one another,
the second draw will contain mostly the same information as the �rst) and,
thus, Monte Carlo integration is to be preferred to Gibbs sampling (in the
few cases where the researcher has the choice between the two).
Graphs of the Gibbs sampler and Monte Carlo integration draws (not

presented here) for other values of � exhibit the expected patterns. When
� = 0, the graph of the Gibbs and Monte Carlo draws have the same erratic
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random pattern. However, as � increases, the graphs of Monte Carlo draws
remain random, but the Gibbs draws become smoother and smoother (ex-
hibiting greater serial correlation) until we reach the extreme case presented
in Figure 11.1.

Table 11.7: Posterior Means and Standard Deviations of �1 and �2 with R = 100
E (�1jy)

p
var (�1jy) E (�2jy)

p
var (�2jy)

True Value 0:00 1:00 0:00 1:00
Monte Carlo Integration

� = 0:00 0:07 1:02 0:16 1:13
� = 0:50 0:02 0:89 0:06 0:94
� = 0:90 0:03 0:95 �0:06 0:97
� = 0:99 �0:07 1:09 0:06 1:08
� = 0:999 0:02 1:00 0:02 1:02

Gibbs Sampling
� = 0:00 0:14 1:16 0:06 1:09
� = 0:50 0:19 1:03 0:24 0:99
� = 0:90 0:42 0:78 0:29 0:83
� = 0:99 �0:42 0:64 �0:40 0:63
� = 0:999 0:61 0:17 0:62 0:16
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(e) Table 11.8 is the same as Table 11.7, except that the program was run
using R = 10; 000 draws. With this larger number of draws, Monte Carlo
integration is now quite accurate for all posteriors. The performance of the
Gibbs sampler is much improved as well. However, for high values of �, the
accuracy of the Gibbs sampler is still quite poor (depending on the degree of
accuracy desired). We ran the program with R = 100; 000 for the posterior
with � = 0:999 and even with this many draws we found the posterior mean
of �1 to be 0:09 and posterior standard deviation of 0:93 (still quite far from
the true values).
These �ndings highlight the importance of choosing a su¢ cient number

of draws for the Gibbs sampler. For Monte Carlo integration, a reliable
rule of thumb is that R = 10; 000 will yield an estimate of a parameter�s
posterior mean with error that is 1% of its posterior standard deviation.
This is usually accurate enough for empirical work. For Gibbs sampling, no
such rule of thumb exists (as is demonstrated by this question) and careful
use of Gibbs sampling convergence diagnostics is required [see, e.g., Koop
(2003), pages 64-68].
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Table 11.8: Posterior Means and Standard Deviations of �1 and �2 with R = 10; 000
E (�1jy)

p
var (�1jy) E (�2jy)

p
var (�2jy)

True Value 0:00 1:00 0:00 1:00
Monte Carlo Integration

� = 0:00 0:01 0:99 �0:01 1:00
� = 0:50 0:01 1:00 0:02 1:00
� = 0:90 0:00 1:00 0:00 0:99
� = 0:99 �0:01 1:00 0:00 1:00
� = 0:999 �0:02 0:99 �0:02 0:99

Gibbs Sampling
� = 0:00 0:00 0:99 0:01 1:00
� = 0:50 �0:03 0:99 �0:02 1:00
� = 0:90 0:04 0:99 0:05 1:00
� = 0:99 �0:07 0:95 �0:07 0:95
� = 0:999 �0:32 0:87 �0:32 0:87
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