
****Exercise 1. Title: Using the AR(p) model to Understand the Prop-
erties of a Series***
This exercise is loosely based on Geweke (1988). Let yt for t = 1; ::; T

indicate observations on a time series variable. yt is assumed to follow an
AR(p) process:

yt = �0 + �1yt�1 + :::+ �pyt�p + �t, (1)

where �t is i.i.d. N (0; h�1). Many important properties of yt depend on the
roots of the polynomial 1�

Pp
i=1 �iz

i which we will denote by ri for i = 1; ::; p.
Geweke (1988) lets yt be the log of real GDP and sets p = 3 and, for this
choice, focusses on the features of interest: C = f� : Two of ri are complexg
and D = f� : min jrij < 1g where � = (�0; �1; �2; �3)

0. Note that C and D
are regions whose bounds are complicated nonlinear functions of �1; �2; �3.
If the AR coe¢ cients lie in the region de�ned by C then real GDP exhibits
an oscillatory response to a shock and if they lie in D then yt exhibits an
explosive response to a shock.
(a) Assuming a prior of the form:

p
�
�0; ::; �p; h

�
/ 1

h
; (2)

derive the posterior for �. To simplify things, you may ignore the (minor)
complications relating to the treatment of initial conditions. Thus, assume
the dependent variable is y = (yp+1; ::; yT )

0 and treat y1; ::; yp as �xed initial
conditions.
(b) Using an appropriate data set (e.g., the US real GDP data set provided

on the website associated with this book), write a program which calculates
the posterior means and standard deviations of � and minjrij.
(c) Extend the program of part b) to calculate the probability that yt

is oscillatory (i.e., Pr (� 2 Cjy)), the probability that yt is explosive (i.e.,
Pr (� 2 DjData)) and calculate these probabilities using your data set.
***Solution to Exercise 1.**********
(a) This model can be written as a linear regression model in matrix

notation as:

y = X� + �; (3)

where � = (�p+1; ::; �N)
0 and X is the (T � p)� (p+ 1) matrix containing an

intercept and p lags of the dependent variable. For instance, if p = 3
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X =

2664
1 y3 y2 y1
: : : :
: : : :
1 yT�1 yT�2 yT�3

3775 :
Written in this way, it can be seen that (if we condition on the initial

observations), the AR(p) model is simply the Normal linear regression model.
The easiest to way to answer this exercise is to note that the prior in (17.2)
is the standard noninformative prior for the Normal linear regression model
and is a limiting case of the natural conjugate prior. Thus, the answer to this
exercise is exactly the same as the answer to Exercise 10.1 with particular
prior hyperparameter values used. In particular, you can set � = 0 and
Q�1 = cI. The noninformative prior in (17.2) is obtained by letting the
scalar c go to zero. Alternatively, multiplying the Normal linear regression
model likelihood in (10.4) by the prior in (17.2) yields the relevant posterior.
Manipulations exactly analogous to the solution to Exercise 10.1 can be done
to con�rm that the posterior is Normal-Gamma. To be precise, the posterior
for � and h is NG

�
�;Q; s�2; �

�
where � = T;

Q = (X 0X)
�1
;

� = (X 0X)
�1
X 0y

and �s2 are the standard OLS residuals (denoted SSE in the introductory
material of Chapter 10).
Using the properties of the Normal-Gamma distribution (see Theorem 8

of the Appendix), it follows that the marginal posterior for � is multivariate
t:

�jy � t
�
�; s2Q; �

�
(4)

(b) From part a), the posterior for � has a convenient form and means
and standard deviations can be calculated using analytical formulae based on
(17.4). That is, using the properties of the t distribution, we haveE (�jy) = �
and var (�jy) = �s2

��2Q. However, minjrij is a complicated nonlinear func-
tion of � and no analytical results exist for its posterior mean and variance.
However, Monte Carlo integration (see Exercise 11.3) can be done by ran-
domly drawing from (17.4), using a subroutine to calculate the solutions to
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1�
Pp

i=1 �iz
i = 0 and, from these, evaluating minjrij at each of the draws.

This will produce a random sample from the posterior of minjrij which can
be used to calculate its posterior mean and standard deviation (or any other
function of its posterior). A program which does this is available on the
website associated with this book.
Using the log of the quarterly US real GDP series provided on the website,

which runs from 1947Q1 through 2005Q2, we obtain the results in Table 17.1.
The Monte Carlo integration program was run for 10; 000 replications.

Table 17.1: Posterior Results for AR(3) Model
Parameter Mean Standard Dev.

�0 0:010 0:004
�1 1:300 0:066
�2 �0:196 0:108
�3 �0:104 0:066

minjrij 1:002 0:002

(c) Pr (� 2 Cjy) and Pr (� 2 DjData) can also be calculated in the Monte
Carlo integration program. Formally, since Pr (� 2 Cjy) = E [I (� 2 Cjy)]
and Pr (� 2 Djy) = E [I (� 2 Djy)], where I (:) is the indicator function, the
probabilities can be written as expected values of functions of the model para-
meters. In our computer code, calculating these expected values is equivalent
to simply calculating the proportion of draws from the posterior which are in
C (or D). Our Monte Carlo integration program, using 10; 000 replications,
calculates Pr (� 2 Cjy) = 0:021 and Pr (� 2 Djy) = 0:132. Thus, it is very
unlikely that real GDP exhibits oscillatory behavior and only slightly more
likely that it is explosive.

****Exercise 2. Title: The Threshold Autoregressive Model***
Dynamics of many important macroeconomic variables can potentially

vary over the business cycle. This has motivated the development of many
models where di¤erent autoregressive representations apply in di¤erent regimes.
Threshold autoregressive (TAR) models are a class of simple and popular
regime-switching models. Potter (1995) provides an early exposition of these
models in macroeconomics and Geweke and Terui (1993) is an early Bayesian
treatment. This exercise asks you to derive Bayesian methods for a simple
variant of a TAR model.
Consider a two regime TAR for a time series variable yt for t = p+1; ::; T

(where t = 1; ::; p are used as initial conditions):
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yt = �10 + �11yt�1 + :::+ �1pyt�p + �t if yt�1 � �
yt = �20 + �21yt�1 + :::+ �2pyt�p + �t if yt�1 > �

; (5)

where �t is i.i.d. N (0; h�1). We will use the notation � = (�01; �
0
2)
0 where

�j =
�
�j0; �j1; :::; �jp

�0
for j = 1; 2. For all parts of this question, you

may proceed conditionally on the �rst p observations and, thus, ignore the
(minor) complications caused by initial conditions [see Exercise 17.1 (a) for
more detail].
(a) Assume that � is known (e.g., � = 0) and Normal-Gamma priors

are used (i.e., the joint prior for � and h is NG
�
�;Q; s�2; �

�
), derive the

posterior for the model de�ned by (17.5).
(b) Using an appropriate data set (e.g., the real GDP data set available

on the website associated with this book), write a program and carry out
Bayesian inference in the TAR model using your results from part (a). Note:
When working with GDP, TAR models are usually speci�ed in terms of GDP
growth. Hence, if you are working with a GDP series, you should de�ne yt
as its �rst di¤erence.
(c) Repeat parts (a) and (b) assuming that � is an unknown parameter.

****Solution to Exercise 2
(a) The solution to this question follows immediately from noting that

the TAR with known � can be written as a Normal linear regression model.
That is, analogously to the solution to Exercise 17.1(a), we can write the
TAR as:

y = X� + �;

where y = (yp+1; ::; yT )
0, � = (�p+1; ::; �N)

0 andX is the (T � p)�2 (p+ 1)ma-
trix with tth row given by [Dt; Dtyt�1; ::; Dtyt�p; (1�Dt) ; (1�Dt) yt�1; ::; (1�Dt) yt�p],
where Dt is a dummy variable which equals 1 if yt�1 � � and equals 0 if
yt�1 > � . Thus, we can immediately use the results from Exercise 10.1 to �nd
that the joint posterior for � and h is NG

�
�;Q; s�2; �

�
, where � = T �p+�,

Q =
�
Q�1 +X 0X

��1
;

� = Q
�
Q�1� +X 0Xb��

and
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s2 =
�s2 + SSE +

�b� � ��0X 0XQQ�1
�b� � ��

�
:

Note that, in the preceding equation, we are using the same notation de�ned
at the beginning of Chapter 10 where b� is the standard OLS estimate and
SSE the accompanying sum of squared residuals.
(b) A MATLAB program which provides the solution to this part of the

exercise is available on the website associated with this book. The basic
structure of this program is that it loads in the data, speci�es prior hyper-
parameters then evaluates the formulae provided in the solution to part (a).
For US real GDP growth from 1947Q2 through 2005Q2, we obtain the fol-
lowing results relating to the posteriors of � and �2 = 1

h
. We set p = 2 and

use the noninformative variant of the Normal-Gamma prior. Furthermore,
we set � to the mean of yt�1 and thus the two regimes can be interpreted as
"below average growth" and "above average growth" regimes.

Table 17.2: Posterior Results for TAR Model
Parameter Mean Standard Dev.

�10 0:572 0:100
�11 0:289 0:129
�12 0:008 0:092
�20 0:213 0:232
�21 0:394 0:130
�22 0:218 0:093
�2 0:879 0:083

(c) When � is treated as an unknown parameter, then we need methods
of working with the posterior: p (�; h; � jy). This can be done by noting that
the rules of conditional probability imply:

p (�; h; � jy) = p (�; hj� ; y) p (� jy) :
The �rst component on the right hand side of this equation, p (�; hj� ; y),

can be analyzed using the methods of parts (a) and (b). That is, conditioning
upon � is equivalent to assuming it known and the answer to part (a) shows
how to analyze the posterior for � and h for known � . Hence, we can focus
on the second component: p (� jy). But, the intuition that conditioning on
� is equivalent to assuming it known, can be carried further to provide us
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with a way of obtaining p (� jy). Note �rst that, for a given value for � , the
marginal likelihood can be calculated in the standard way:

p (yj�) =
Z Z

L (�; hj�) p (�; hj�) d�dh; (6)

where L (�; hj�) is the likelihood function for a given value of � . However,
as we have seen from part (a), the TAR model (conditional on �) is simply
a Normal linear regression model. Thus, using the Normal-Gamma natural
conjugate prior, standard textbook expressions exist for (17.6) �conditional
on � [see, e.g., Exercise 10.4 or Koop (2003), page 41 or Poirier (1995), page
543]. If we use the notation from the solution to part (a), then we can draw
on these earlier derivations to write (17.6) as:

p (yj�) =
�
�
�
2

�
(�s2)

�
2

�
�
�
2

�
�
T�p
2

�
jQj
jQj

� 1
2 �
�s2
�� �

2 ; (7)

although we stress that X depends on � (and, thus, so will Q and s2) and,
hence, (17.7) will be di¤erent for every possible value of � .
Since Bayes�theorem implies:

p (� jy) / p (yj�) p (�) ; (8)

we can combine (17.7) with a prior for � in order to obtain the marginal
posterior p (� jy). Of course, any prior for � can be used. A common choice is
a restricted noninformative one. This treats every possible value for � as, a
priori, equally likely which implies each regime contains a minimum number
of observations (e.g., 15% of the observations).
Note that, even though yt�1 is a continuous variable, � will be a discrete

random variable since there are a �nite number of ways of dividing a given
data set into two regimes. Hence, in practice, posterior inference in the TAR
with an unknown threshold can be performed by evaluating (17.7) and, thus,
(17.8) for every allowable threshold value. This provides us with p (� jy). If
interest centers on � and/or h, then we can obtain their posterior properties
by taking a weighted average over all possible thresholds, using p (� jy) as
weights. The validity of this procedure follows from the fact that, if � 2
f� 1; ::; �T �g denotes the set of possible threshold values, then

p (�; hjy) =
T �X
i=1

p (�; hj� = � i; y) p (� = � ijy) :
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Thus, insofar as we are willing to use the Normal-Gamma natural con-
jugate prior, Bayesian inference in the TAR model can be performed using
only textbook analytical results for the Normal linear regression model and
no posterior simulation is required.
A MATLAB program which extends the program part (b) to allow for

an unknown threshold is provided on the website associated with this book.
Here we note one aspect of our program which is commonly used with regime-
switching models. The assumption about the errors implies that we have
added enough lags to make to make the errors independent of one another.
Thus, ytjXt; �; h and ysjXs; �; h are independent of one another for t 6= s.
This implies that the ordering of rows in our regression model is irrelevant.
Thus, we can order all our variables (dependent and explanatory variable) by
yt�1 without changing the posterior. That is, variables can be ordered so that
the �rst observation of all variables is the one with the lowest value for GDP
growth last quarter, the second observation has the second highest value for
GDP growth last quarter, etc.. If we order our data in this way, then the
TAR is equivalent to a structural break (also called changepoint) model (see
Exercises 11.11 and 11.12). Such an ordering makes the step "evaluate (17.7)
for every allowable threshold" particularly easy.
Posterior properties of � and �2, using the US real GDP growth data,

are provided in Table 17.3. Figure 17.1 plots the posterior of � . Since we
are calculating marginal likelihoods, an informative prior is required. We use
a weakly informative prior which re�ects our belief that AR coe¢ cients are
likely to be well within the stationary region and the error variance is likely
to be approximately 1 (since our data is measured as a percentage). However,
we are quite uncertain about these prior means and, hence, attach moderately
large prior variances to them. Prior hyperparameter values consistent with
these beliefs are � = 0; Q = :25I; s2 = 1; � = 5. In a serious empirical study,
the researcher would likely elicit the prior in a more sophisticated manner
and/or carry out a prior sensitivity analysis. The posterior properties of �
and h are not that di¤erent from those found in part (b), despite the fact that
we are now averaging over all the thresholds (rather than selecting a single
value for the threshold and treating it as known). However, the posterior
for the thresholds (see Figure 17.1), is very irregular. Appreciable posterior
probability is found for many of possible thresholds. The posterior mode is
roughly the same as the average quarterly growth rate of GDP (0:85%). This
threshold value would divide the data into a "below average growth" regime
and an "above average growth" regime, as was done in part (a). But many
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other threshold values also receive some posterior support from the data.

Table 17.3: Posterior Results for TAR
Model with Unknown Threshold
Parameter Mean Standard Dev.

�10 0:542 0:119
�11 0:269 0:139
�12 0:373 0:101
�20 0:249 0:242
�21 0:384 0:127
�22 0:196 0:100
�2 0:896 0:083

***Exercise 3. Title: Extensions of the Basic Threshold Autoregressive
Model 1: Other Threshold Triggers
There are many extensions of the TAR which have been found useful

in empirical work. In Exercise 17.2, we assumed that the �rst lag of the
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dependent variable (last quarter�s GDP growth) triggered the regime switch.
However, in general, it might be another variable, z, that is the threshold
trigger and it may take longer than one period to induce the regime switch.
Thus, we use the same assumptions and de�nitions as in Exercise 17.2, except
we replace (17.5) by:

yt = �10 + �11yt�1 + :::+ �1pyt�p + �t if zt�d � �
yt = �20 + �21yt�1 + :::+ �2pyt�p + �t if zt�d > �

; (9)

where d is the delay parameter and zt�d is either an exogenous variable or a
function of the lags of the dependent variable.
(a) Assume that d is an unknown parameter with a noninformative prior

over 1; ::; p (i.e., Pr (d = i) = 1
p
for i = 1; ::; p) and Normal-Gamma priors

are used (i.e., the joint prior for � and h is NG
�
�;Q; s�2; �

�
), derive the

posterior for the model de�ned by (17.9).
(b) Using an appropriate data set (e.g., the real GDP growth data set

available on the website associated with this book), write a program and
carry out Bayesian inference for this model using your results from part (a).
Set p = 4 and

zt�d =

Pp
d=1 yt�d
d

;

so that (if you are using quarterly real GDP growth data), the threshold
trigger is average GDP growth over the last d quarters.

****Solution to Exercise 3**********
(a) The solution to this exercise is a straightforward extension of the

solution to Exercise 17.2 parts (a) and (c). That is, it follows immediately
from noting that, if we condition on � and d, then this TAR model can be
written as a Normal linear regression model. Note that, since zt�d is either
exogenous or a function of lags of the dependent variable, it can also be
conditioned on in the same manner as we condition on X. As in Exercise
17.2 part (c), we can write the TAR as:

y = X� + �;

where X is the (T � p)� 2 (p+ 1) matrix with tth row given by
[Dt; Dtyt�1; ::; Dtyt�p; (1�Dt) ; (1�Dt) yt�1; ::; (1�Dt) yt�p], whereDt is

now a dummy variable which equals 1 if zt�d � � and equals 0 if zt�d > � .
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Thus, as in the solution to Exercise 17.2 (a), the posterior for � and h (now
conditional on � and d) is NG

�
�;Q; s�2; �

�
where �;Q; s�2 and � are de�ned

as in that solution except X and, thus, the posterior hyperparameters now
depend on � and d.
Analogous to the solution to Exercise 17.2 (c), we can write:

p (�; h; � ; djy) = p (�; hj� ; d; y) p (� ; djy) :

The preceding paragraph describes methods of posterior inference for p (�; hj� ; d; y)
and we can focus on p (� ; djy). But, also as in Exercise 17.2 (c), we can use
the facts that:

p (yj� ; d) =
Z Z

L (�; hj� ; d) p (�; hj� ; d) d�dh

and p (� ; djy) / p (yj� ; d) p (� ; d) to note that, by calculating the marginal
likelihoods for the Normal linear regression model (conditional on � and d)
for every possible value of � and d, we can build up the posterior p (� ; djy).
The relevant formula for the marginal likelihood is given in (17.7).
(b) A MATLAB program which extends the program of Exercise 17.4

part (c) to allow for an unknown delay (and general threshold trigger) is
provided on the website associated with this book. Since we are calculating
marginal likelihoods, we use the same weakly informative prior described
in the solution to Exercise 17.4 (c). As we stressed in that solution, in a
serious empirical study, the researcher would likely elicit the prior in a more
sophisticated manner and/or carry out a prior sensitivity analysis. Posterior
properties of � and �2, using the US real GDP growth data, are provided in
Table 17.4. Figure 17.2 plots the posterior of d. Note that, since di¤erent
values of d imply di¤erent threshold triggers (with di¤erent interpretations),
the interpretation of the threshold di¤ers across d. Hence, it would make
little sense to plot the posterior of � and, hence, we do not do so (although
one could plot p (� jy; d) for a choice of d). Interestingly, the posterior for
d allocates most of the probability to d = 2, indicating that it is not last
quarter�s GDP growth which triggers a regime shift (as the model of Exercise
17.2 implies), but rather GDP growth averaged over the past two quarters.
The �nding that GDP growth two quarters ago plays an important role in
regime shifting in US GDP has been found by others [e.g., Potter (1995)].
Note also that the solution to this question can be interpreted as a stan-

dard Bayesian posterior analysis where d is an unknown parameter whose
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posterior we have derived. Alternatively (and equivalently) it can be as an
example of Bayesian model averaging where we are presenting results (e.g.,
in Table 17.4) which are averaged over di¤erent models where the di¤erent
models are de�ned by di¤erent threshold triggers. Koop and Potter (1999)
is an empirical paper which focusses on the second interpretation.

Table 17.4: Posterior Results for TAR
Model with Unknown Threshold and Delay
Parameter Mean Standard Dev.

�10 0:255 0:226
�11 0:080 0:174
�12 �0:330 0:196
�13 �0:340 0:167
�14 �0:264 0:166
�20 0:557 0:159
�21 0:253 0:087
�22 0:270 0:080
�23 �0:110 0:076
�24 �0:008 0:072
�2 0:806 0:076
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