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Abstract

In this paper, a novel way of modeling uncertainty on demand in the single-
item dynamic lot sizing problem is proposed and studied. The uncertainty
is not related to the demand quantity, but rather to the demand timing, i.e.,
the demand fully occurs in a single period of a given time interval with a
given probability and no partial delivery is allowed. The problem is first mo-
tivated and modeled. Our modeling naturally correlates uncertain demands
in different periods contrary to most of the literature in lot sizing. Dynamic
programs are then proposed for the general case of multiple demands with
stochastic demand timing and for several special cases. We also show that the
most general case where the backlog cost depends both on the time period
and the stochastic demand is NP-hard.

Keywords: Production, Lot Sizing, Dynamic Programming, Stochastic
Demand Timing

1. Introduction

This paper tackles a single-item dynamic lot sizing problem, i.e., quan-
tities to be produced or replenished on a finite planning horizon discretized
in periods must be determined to satisfy time-varying demands. The total
cost, which combines fixed setup costs and variable inventory and production
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costs, is to be minimized. Because we consider uncertainty, backlog costs as-
sociated with delaying the satisfaction of uncertain demands in a period are
also included in the total cost.

Handling the uncertainty of parameters in planning problems is a chal-
lenging task. A straightforward way (though naive and often costly) is to use
buffers to cover for random events, such as safety stocks to cover for larger
demands than expected in production and inventory planning. Another clas-
sical and more complex approach is to explicitly consider the probability dis-
tributions of the stochastic parameters and to minimize the total expected
cost. Most of the literature in lot sizing investigates deterministic problems,
see, e.g., Brahimi et al. (2017) for an excellent review of single-item problems,
Doostmohammadi & Akartunalı (2018) for a recent theoretical overview on
complex multi-item problems, and Meistering & Stadtler (2017) for a recent
overview of problems with rolling schedules. Recent surveys on stochastic
lot sizing can be found in Tempelmeier (2013) and Aloulou et al. (2014). In
stochastic lot sizing problems, the total expected (discounted or not) cost is
often minimized (or respectively, profit maximized). A set of scenarios can be
used to model the problem effectively, as in Guan & Miller (2008) to design
a polynomial time algorithm for the most simplistic case of a single item, or
as in Golari et al. (2017) to develop a sophisticated decomposition approach
for real-world problems with multi-stage decision making. An alternative to
expected cost is to use service levels, modeled through chance constraints, as
in Tempelmeier (2007).

In their survey, Brahimi et al. (2017) show (see Table 2) that the vast
majority of the research literature in single-item stochastic dynamic lot sizing
investigate stochastic demands with a particular focus on volumes. Stochas-
tic demands have been taken in account in some lot sizing models with pricing
decisions (Thomas, 1974; Federgruen & Heching, 1999), and stochastic costs
and yield have also been studied in combination with stochastic demands,
e.g., in Huang & Ahmed (2010). On the other hand, stochastic lead times
have very rarely been considered. In their work, Huang & Küçükyavuz (2008)
address the single-item problem with stochastic lead times and propose a dy-
namic programming algorithm that is polynomial in the size of the scenario
tree to solve the problem, which was later improved by Jiang & Guan (2011).
It is also noteworthy to remark the approximation algorithms proposed by
Levi & Shi (2013) for lot sizing problems with stochastic lead times.

We note that robust optimization approaches have also been used to
handle demand uncertainties in lot sizing since the earlier works of Ben-Tal
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et al. (2005) and Bertsimas & Thiele (2006). The exact min-max decompo-
sition approach of Bienstock & Özbay (2008) is further extended by Attila
et al. (2021) to include uncertainties in returns in a remanufacturing setting.
Though limited due to its static nature, Wei et al. (2011) propose a robust
LP formulation, and the general dynamic programming framework of Agra
et al. (2016) is shown to work effectively in lot sizing problems. Distribu-
tionally robust optimization has also been shown to be an effective tool for
two-stage decision making in practice (Zhang et al., 2016). However, even
more noticeable than the stochastic lot sizing literature, the focus has been
solely on uncertainties in the volume of demand. A recent review of the
broad field of robust optimization can be found in Gorissen et al. (2015).

Our problem setting significantly differs from previous studies, and partly
answers one of the main criticisms associated with the modeling of stochastic
demands in lot sizing problems, namely that uncertain demands in different
periods are uncorrelated. Stochastic demands are usually considered as in-
dependent random variables, which is unrealistic in many practical settings,
where an increase of the demand in one period is often associated with a
decrease of the demand in another period. In our modeling, we consider that
the demands are deterministic in terms of volumes but that their timing
might be stochastic. More precisely, a given demand quantity might occur
in a window of multiple periods, with a given probability to fully occur in
each of these periods. Hence, stochastic demands are naturally correlated
due to the fact that the total demand on the horizon is deterministic while
the occurrences of the demands are stochastic.

Stochastic demand timing can be observed in a range of practical settings.
In particular, this happens when a client company sends orders for a product
to a supplier company, when the client company’s product inventory level is
empty. The order to the supplier is fixed, typically related to the inventory
capacity of the customer. Hence, the supplier company knows very well the
quantity that will be either picked up by or delivered to a customer, but is
not able to know exactly when, although an interval of several days is known.
This is particularly noticeable in operational or tactical production and in-
ventory planning over several weeks with periods of a day, where demand
and order quantities are well established, and is a typical context in process
industries, which satisfy the demands of other industries. For example, this
case is observed for non-mixable cement products that can be stored (see,
e.g., Christiansen et al. (2011)) or calcium carbonate slurry products (see,
e.g., Dauzère-Pérès et al. (2007)), where it is known that a vessel, a train, or
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a truck will arrive in an interval of several days to be completely filled.
Hence, order management is an interesting context, where stochastic de-

mand timing is relevant. When a company has a list of potential customers’
orders, predicted from historical data, with known quantities and time win-
dows in which they should occur with their corresponding probabilities, solv-
ing the problem studied in this paper will provide the most efficient plan to
answer these orders. Significant potential losses due to future orders can thus
be estimated, and necessary actions to avoid these losses can be taken.

More generally, manufacturers may be able to very efficiently forecast the
demand quantity from a given retailer in the upcoming weeks, which must
be delivered in a single period, but will have more difficulty to forecast the
exact timing of such demand. Stochastic demand timing as considered in
this paper models this general context.

We remark that the time windows considered in this paper are different
from the demand (or delivery) time windows introduced in Lee et al. (2001),
and from the production time windows introduced in Dauzère-Pérès et al.
(2002). Demand time windows specifically correspond to grace periods, in
which demands can be delivered without incurring holding or backlog costs,
whereas this is not the case in our problem. On the other hand, produc-
tion time windows require that each demand quantity be produced within a
specified time window, while there are no such constraints in our problem.
However, combining stochastic demand timing with demand or production
time windows could be a potential area for future investigation.

The problem is first formalized and analyzed in Section 2. Then, in
Section 3, we study the simplest possible case of stochastic demand timing,
i.e., a single interval, in order to facilitate the discussion of more complex
cases later. A polynomial dynamic program is proposed and some properties
are introduced. The general case of stochastic demand timing with multiple
intervals is then analyzed in Section 4, where some additional results are
presented and a dynamic program of exponential complexity in the worst
case is proposed. We show that this dynamic program is polynomial in the
realistic case, where production costs are time independent and the ratio
between inventory and backlog costs is time independent, and also in the
case where probability distributions are convex. We then study in Section
5 two special cases with further assumptions on the intervals of stochastic
demand timing: Firstly, in Section 5.1, we assume the intervals to be non-
overlapping, and secondly, in Section 5.2, we assume that a dominance order
exists between the intervals. Both cases are shown to be polynomial. In
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Section 6, we extend the results of the previous sections to the case where
the backlog cost depends not only on the period but also on the quantity of
stochastic demand, and establish its complexity to be NP-hard. Finally, we
conclude with key remarks and future research directions in Section 7.

2. Problem Modeling

Let us consider the single-item uncapacitated dynamic lot sizing problem
with a planning horizon of T periods in the classical deterministic sense, as
follows:

min
T∑
t=1

ftyt +
T∑
t=1

htst +
T∑
t=1

ctxt (1)

s.t. xt + st−1 − st = Dt t = 1, . . . , T (2)

xt ≤Mtyt t = 1, . . . , T (3)

yt ∈ {0, 1};xt ≥ 0; st ≥ 0 t = 1, . . . , T (4)

For any period t, variables xt and st represent production and inventory
quantities, respectively, and binary yt variables indicate whether a produc-
tion setup takes place or not. The objective (1) is to find a minimum cost
production plan, where the total cost consists of fixed setup costs ft (charged
only if production is strictly positive, i.e., yt = 1), per unit inventory holding
costs ht, and per unit production costs ct, respectively, for all periods in the
horizon. We also assume all cost parameters to be strictly positive, i.e., no
“free lunch”.The flow balance constraints (2) ensure on-time satisfaction of
demand Dt, whereas the relationship between production and setup variables
is set by (3), where Mt is an upper bound on xt, e.g., Mt =

∑T
`=tD`. Finally,

the integrality and non-negativity constraints are provided by (4). Let us
recall that this problem has a complexity of O(T log T ), see, e.g., Wagelmans
et al. (1992).

In addition to the deterministic demands Dt, ∀t ∈ [1, T ], that need to be
satisfied on time, we simultaneously consider stochastic demand timing as
follows. Let [li, ui] ⊂ [1, T ] be an interval, indexed by i, where it is certain
that a demand of di will fully occur, i.e., at once, in one period, with a
probability of pit ≥ 0 for each period t ∈ [li, ui] and such that

∑ui
t=li

pit = 1.
Note that pit = 0 for t ≤ li − 1 and t ≥ ui + 1. Let I be the set of such
intervals with stochastic demand timing in the planning horizon and, for ease
of notation, let |I| = n.
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In this paper, we make the following realistic assumptions:

• No backlog is allowed for deterministic demands and, accordingly, no
backlog is allowed for any stochastic demand quantity di after period
ui. Note that, however, stochastic demand quantity di may be satis-
fied with inventory carried from before li, while backlogging is allowed
within the interval [li, ui] with a variable backlog cost bt. In Section 6,
the more general case where the variable backlog cost bit also depends
on di is discussed.

• Partial delivery of any stochastic demand quantity di is not allowed,
i.e., di products must be delivered to the customer in one and only one
period. Hence, each stochastic demand timing can be seen as a separate
order, and the backlog cost is counted until di is fully satisfied. Note
that the problem is easy to solve if partial delivery is allowed, as one
can simply solve in that case a classical lot sizing problem with demand
pitd

i in period t.

• As it is usually the case and w.l.o.g., backlog is more costly than in-
ventory, i.e., bt > ht ∀t.

For any period t ∈ [li, ui], the expected stochastic demand quantity to
satisfy is pitd

i. As this stochastic demand quantity cannot be produced after
ui, we note that, for any t ≤ ui and per unit produced, the expected inventory
is
∑ui

l=t+1 p
i
l (if one unit of product has already been produced) and the

expected backlog is
∑t−1

l=li
pil (if one unit of product has not been produced

yet). Hence, the expected holding and backlog cost for producing one unit of
product to satisfy di in period t is denoted by ECi(t), which can be defined
as follows for any t ≤ ui:

ECi(t) =

ui∑
l=t

hl

ui∑
k=l+1

pik +
t−1∑
l=li

bl

l∑
k=li

pik (5)

Note that the first and second terms of (5) correspond to the expected
holding and backlogging costs, respectively. Also, note that the first term is
equal to 0 for t = ui, and the second term is equal to 0 for t ≤ li. Next, we
present a numerical example to illustrate the problem.

Example 1. Consider a problem with five periods and two stochastic demand
timing intervals, i.e., T = 5, n = 2. For the sake of simplicity, let the cost
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parameters be time independent, and let ht = 1.5, bt = 6, ft = 25 and ct = 8,
t = 1, . . . , 5. The remaining parameter values are given as follows:

t 1 2 3 4 5
Dt 4 0 10 6 9
p1t 0.45 0.35 0.2 0 0 d1 = 7, [l1, u1] = [1, 3]
p2t 0 0 0.3 0.7 0 d2 = 5, [l2, u2] = [3, 4]

We first note that in period 5, at most 9 units will be produced, i.e., the
deterministic demand of period 5, and no stochastic demand. On the other
hand, in the first three periods, d1 and/or d2 can be produced, while in pe-
riod 4, d2 can be produced, in addition to any deterministic demand that is
produced. To illustrate (5), we provide the following detailed calculations for
the cases of producing in period t when li < t < ui, t < li and t = ui:
EC1(2) = h2p

1
3 + b1p

1
1 = 1.5×0.2 + 6×0.45 = 3

EC2(1) = h1(p
2
3 + p24) +h2(p

2
3 + p24) +h3p

2
4 = 1.5×1 + 1.5×1 + 1.5×0.7 = 4.05

EC1(3) = b1p
1
1 + b2(p

1
1 + p12) = 6×0.45 + 6×0.8 = 7.5

Recall that these are unit costs for expected holding and backlogging costs.
For example, producing one unit of d1 in period 2 will incur an expected cost
of 3, in addition to the unit production cost of 8 and fixed cost of 25.

The inventory variable st is a stochastic variable since di is stochastic,
and thus modeling our problem by extending the model (1)-(4) is not trivial.
Hence, as it is common in lot sizing, we propose to formalize our problem
with the variables in [0, 1] zlt, the fraction of the deterministic demand Dt

produced in period l ≤ t, and zil , the fraction of the stochastic demand
quantity di produced in period l ≤ ui. In order to illustrate the development
of our model, we first reformulate the deterministic model (1)-(4) using the
zlt variables, which are linked to the original production variables as follows:

xl =
T∑
t=l

zltDt, l = 1, . . . , T. (6)
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Then, the deterministic model becomes:

min
T∑
t=1

ftyt +
T∑
t=1

t∑
l=1

(cl +
t−1∑
k=l

hk)zltDt (7)

s.t.
t∑
l=1

zlt = 1 t = 1, . . . , T (8)

T∑
t=l

zltDt ≤Mlyl l = 1, . . . , T (9)

yt ∈ {0, 1} t = 1, . . . , T (10)

0 ≤ zlt ≤ 1 t = 1, . . . , T ; l = 1, . . . , t (11)

We remark that the objective (1) is rewritten as (7) using (6) and the fact
that inventory variables are no longer explicitly used. Constraints (8) ensure
that the deterministic demands are satisfied in the horizon, and constraints
(9) correspond to constraints (3) using (6).

Then, using zil associated with the stochastic demand quantities, we next
state the relationship between the original production variables and the new
variables in a similar fashion to (6):

xl =
T∑
t=l

zltDt +
∑

i∈I; l≤ui

zild
i, l = 1, . . . , T. (12)

Our problem can then be modeled as follows:

min
T∑
t=1

ftyt +
T∑
t=1

t∑
l=1

(cl +
t−1∑
k=l

hk)zltDt +
∑
i∈I

ui∑
l=1

(cl + ECi(l))z
i
ld
i (13)

s.t. (8), (11)
ui∑
l=1

zil = 1 i ∈ I (14)

T∑
t=l

zltDt +
∑

i∈I; l≤ui

zild
i ≤Mlyl l = 1, . . . , T (15)

yt ∈ {0, 1} t = 1, . . . , T (16)

0 ≤ zil ≤ 1 i ∈ I; l = 1, . . . , ui (17)
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In a similar fashion to (7), the objective (1) is rewritten as (13) using (12)
and (5). Constraints (14) ensure that the stochastic demand quantities are
produced in the horizon similar to constraints (8) for deterministic demands.
Constraints (15) correspond to constraints (3) using (12).

Next, we remark the following result.

Proposition 1. arg minECi(t) ∈ [li, ui].

Proof. First, note that the first term of (5) is strictly decreasing over [1, ui]
since ht > 0 ∀t, while the second term of (5) is strictly increasing over [li, ui]
since bt > 0 ∀t. To prove that the minimum of ECi(t) is attained in [li, ui],
it is sufficient to observe that the second term of (5) is 0 for t ≤ li while the
first term of (5) attains its lowest value over [1, li] at t = li.

In the remainder of the paper, and for the sake of simplicity, we use the
notation t∗i to indicate the period where the minimum of ECi(t) is attained,
i.e. t∗i = arg minECi(t). In case of multiple periods attaining this minimum,
we assume that t∗i indicates the earliest such period. Finally, we note that
the problem can be rewritten with only stochastic demand quantities by
considering that pit = 1 and li = t = ui for Dt.

3. Stochastic Demand Timing with a Single Interval

In this section, we assume that there is a single interval i with stochastic
demand timing, with a demand quantity of di throughout the planning hori-
zon. Because backlog on di is only allowed before ui, d

i is either produced
before or at li, i.e., no backlog cost is incurred, or between li + 1 and ui, i.e.,
both inventory and backlog costs are incurred.

The following theorem states that there is an optimal solution in which di

is not produced in multiple periods, and that if stochastic demand quantity
is produced, it is not produced in isolation from deterministic demand, thus
limiting the number of states in the dynamic program.

Theorem 1. There is always an optimal solution, where demand di is pro-
duced in a single period t ≤ ui. Moreover, xt ≥ di +Dt holds when there are
no speculative production costs, i.e., ct +

∑t′−1
`=t h` ≥ ct′, ∀t, t′ ∈ [1, T ] such

that t < t′.

Proof. Let us consider an optimal solution where di is produced in two pe-
riods t′ and t′′, i.e. the setups costs ft and ft′ are both incurred. It can
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be observed that the expected total cost can be reduced by producing di

only in period t′ if ct′ + ECi(t
′) ≤ ct′′ + ECi(t

′′) or only in period t′′ if
ct′′ + ECi(t

′′) ≤ ct′ + ECi(t
′). Next, assume that di is produced in period

t in an optimal solution, and xt = di. Then, if Dt > 0, production in
a period t′ < t must include Dt. However, producing Dt in t would save
(ct′ +

∑t−1
`=t′ h` − ct)Dt, where ct′ +

∑t−1
`=t′ h` − ct ≥ 0 when production costs

are not speculative.

Theorem 1 is used in all the dynamic programs proposed in this paper by
only considering solutions where the quantity di of each stochastic demand
timing interval [li, ui] is produced in a single period. Moreover, as shown in
the proof of Proposition 1, the minimum of ECi(t) over [1, li] is reached at li.
Hence, we consider in the dynamic programs that the decisions to produce
di are made between li and ui, even if di is produced between 1 and li − 1.

To solve the case with a single stochastic demand timing interval, the
main change from the dynamic program of Wagner & Whitin (1958) is that
two states are managed for t ∈ [li+ 1, ui], depending on whether the decision
of producing di has already been taken or not. Hence, we make the following
state definition for each period t and indicator parameter sdi ∈ {0, 1} in
order to derive the dynamic programming algorithm:

G(t, sdi): The value of the optimal solution for the horizon [1, t−
1], where sdi = 1 indicates the case of demand di being already
produced before t, and sdi = 0 indicates the case of demand di

not being produced yet.

By problem definition, G(1, 0) = 0 holds, and we also note that for t ≤ li,
only sdi = 0 is allowed, whereas for t ≥ ui + 1, only sdi = 1 is allowed. Next,
we define ct′k = ct′ +

∑k−1
l=t′ hl to represent the cost of meeting one demand

unit of period k by producing in period t′, where t′ ≤ k. The recursion is
then formally defined as follows:

• For t ≤ li (i.e., di is still not produced):

G(t, 0) = min
t′≤t−1

(
G(t′, 0) + ft′ +

t−1∑
k=t′

ct′kDk

)

• For li + 1 ≤ t ≤ ui (i.e., di is produced or not):

G(t, 0) = min
t′≤t−1

(
G(t′, 0) + ft′ +

t−1∑
k=t′

ct′kDk

)
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G(t, 1) = min
t′≤t−1

(
G(t′, 0) + ft′ +

t−1∑
k=t′

ct′kDk + di(ct′ + ECi(t
′)),

G(t′, 1) + ft′ +
t−1∑
k=t′

ct′kDk

)
• For t ≥ ui + 1 (i.e., di must be produced):

G(t, 1) = min

(
min
t′≤ui

(
G(t′, 0) + ft′ +

t−1∑
k=t′

ct′kDk + di(ct′ + ECi(t
′))

)
,

min
t′≥li+1

(
G(t′, 1) + ft′ +

t−1∑
k=t′

ct′kDk

))
.

The optimal cost will be given by G(T + 1, 1). Following the O(T logT )
algorithms proposed in Wagelmans et al. (1992) for the case without back-
logging cost, and in van Hoesel (1991), Aggarwal & Park (1993) and Feder-
gruen & Tzur (1993) for the case with backlogging cost, it is straightforward
to observe that our dynamic program can also be implemented with a com-
plexity of O(T logT ). Note that it is also possible to first solve the problem
in O(T logT ) with only the deterministic demands, and if there is already a
setup in period t∗i , then the stochastic demand quantity can be added. Fi-
nally, we remark that if the production costs are non-speculative, then the
complexity reduces to O(T ), in line with previous results such as presented
in Wagelmans et al. (1992).

4. General Case of Stochastic Demand Timing

First, we investigate the general case of stochastic demand timing, in
order to propose a general purpose dynamic programming algorithm. As
we will discuss later, this algorithm will be improved from a computational
complexity perspective when more restricted but realistic special cases are
considered.

Starting from the simplest case discussed in Section 3, the first obvious
step for generalization is to consider multiple intervals with stochastic de-
mand timing. Then, one can observe that such intervals may also have over-
laps. Less obvious is a case when there is no particular order between such
overlapping intervals, and therefore, we next define an essential property, in
order to differentiate different cases of overlapping intervals.
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Definition 1. Let di and dj be two demands with stochastic timing. If∑t
l=1 p

i
l ≥

∑t
l=1 p

j
l ∀t ∈ [lj, ui], then we say that di dominates dj.

Example 2. Consider a problem with five periods and three stochastic de-
mand timing intervals, i.e., T = 5, n = 3. Assume we are given the following
data for these intervals:

t 1 2 3 4 5
p1t 0.1 0.5 0.4 0 0 [l1, u1] = [1, 3]
p2t 0 0.3 0.2 0.5 0 [l2, u2] = [2, 4]
p3t 0 0 0.6 0.2 0.2 [l3, u3] = [3, 5]

Demand d1 dominates d2 since 0.1 + 0.5 ≥ 0.3 and 0.1 + 0.5 + 0.4 ≥ 0.3 + 0.2
both hold. On the other hand, neither d2 nor d3 dominate the other, since
0.3 + 0.2 ≤ 0.6 holds while 0.3 + 0.2 + 0.5 ≥ 0.6 + 0.2 is true.

In this section, we look into the general case with multiple intervals of
stochastic demand timing, where we do not have any dominance relationship
between the overlapping intervals.

Let us also introduce the following definition, where we assume that
ECi(t) = +∞ if t ≥ ui + 1.

Definition 2. Let σi denote the sequence of length T for demand di in which
periods are ranked in non-decreasing order of the production and expected unit
holding and backlog cost ct +ECi(t). More precisely, ∀k = 2, . . . , T , either i)
cσi(k)+ECi(σi(k)) > cσi(k−1)+ECi(σi(k−1)) or ii) both cσi(k)+ECi(σi(k)) =
cσi(k−1) + ECi(σi(k − 1)) and σi(k) > σi(k − 1) hold.

Example 3. Using the first interval (i.e., i = 1) from Example 2, suppose
that c1 + EC1(1) = 12, c2 + EC1(2) = 11 and c3 + EC1(3) = 15 (note this
is simply +∞ for periods 4 and 5). Then, by a slight abuse of notation, our
ordering vector is σ1 = (2, 1, 3, 4, 5).

Then, we propose the following result.

Theorem 2. For two demands with stochastic timing di and dj, if σi = σj,
then there is an optimal solution in which di and dj are produced in the same
period.

Proof. From Theorem 1, we know that there is an optimal solution in which
di is produced in a single period t′ and dj is produced in a single period t′′.
If σi = σj and t′′ 6= t′ then, by definition of σi, the solution is only optimal if
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ct′+ECi(t
′) = ct′′+ECi(t

′′), otherwise the solution could be strictly improved
by producing both demands di and dj in t′ if ct′ +ECi(t

′) < ct′′ +ECi(t
′′) or in

t′′ if ct′+ECi(t
′) > ct′′+ECi(t

′′). Finally, because ct′+ECi(t
′) = ct′′+ECi(t

′′),
it is possible to change the solution and keep the same total cost by producing
both demands di and dj in t′ or in t′′.

Theorem 2 implies that, for two stochastic demand timings such that
σi = σj and ui < uj, there is an optimal solution in which dj is not produced
between ui + 1 and uj. Note also that there are O(T !) possible different
sequences of periods in σi.

4.1. Dynamic Program for the General Case

Let (sd1, · · · , sdn) be a vector of binary parameters, where sdi is de-
fined for each stochastic demand timing interval i ∈ I in the same fash-
ion as in Section 3. Then, for the general dynamic program, we define
G(t, (sd1, · · · , sdn)), which indicates the value of the optimal solution for
the horizon [1, t− 1] and the specific vector (sd1, · · · , sdn).

Note that a vector (sd1, · · · , sdn) is classified as valid at period t (or
equivalently, G(t, (sd1, · · · , sdn)) is valid) if:

• sdi = 0 for all i ∈ I such that t ≤ li,

• sdi = 0 or sdi = 1 for all i ∈ I such that t ∈ [li + 1, ui], and

• sdi = 1 for all i ∈ I such that t ≥ ui + 1.

By definition, G(1, (sd1, · · · , sdn)) = 0 holds, where sdi = 0, ∀i ∈ I.
Let SD(t) denote the set of valid vectors at period t. For each vector
(sd1, · · · , sdn) ∈ SD(t), the recursion for G(t, (sd1, · · · , sdn)) is formally de-
fined as follows:

G(t, (sd1, · · · , sdn)) = min
t′≤t−1,

(sd′1,··· ,sd′n)∈SD(t′)

(
G(t′, (sd′1, · · · , sd′n))

+ft′ +
t−1∑
k=t′

ct′kDk +
∑
i∈I:

sdi−sd′i=1

di(ct′ + ECi(t
′))

)
(18)

Note that Theorem 1 remains valid in this case, as one can extend these
results by simply applying them to any interval i ∈ I. Hence, the optimal
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cost for the full problem is given by G(T + 1, (sd1, · · · , sdn)), where sdi = 1,
∀i ∈ I. We remark that, when n = 1, i.e., there is a single interval, it is
easy to observe that this general dynamic program exactly maps to the one
described in Section 3: G(t, sdi) is reduced to a single stochastic demand
timing while the validity arguments for sdi remain (though now for a single
interval), and the cost of producing di is only applied when sdi value is
changed from 0 to 1 in the new time period.

The complexity of the dynamic program is O(T maxt∈[1,T ] |SD(t)|). The
value of maxt∈[1,T ] |SD(t)| is discussed in Lemma 1.

Lemma 1. In the worst case, maxt∈[1,T ] |SD(t)| ∼ O(min{2n, T !})

Proof. The worst case can be reached in two different ways:

1. If there exists t ∈ [1, T ] such that t ∈ [li + 1, ui], ∀i ∈ I, i.e., all n
intervals intersect with each other at least in one period. This leads to
O(2n) combinations.

2. Following Theorem 2, it is possible to combine demands with the same
sequence σi in the same indicator sdi in the dynamic programming
algorithm. This leads to a maximum of O(T !) combinations. This is
essentially a preprocessing stage to the algorithm.

Therefore, the time complexity of the algorithm may be exponential in
n and in T . However, as stochastic demand intervals will be short in most
practical settings (no more than 4 or 5 periods), a small number of intervals
should be overlapping in any period t, leading to small sets SD(t). For
example, in case all demand intervals are different from each other (i.e., no
two intervals have the same starting and ending points) and the number
of periods of each interval is limited to m periods, then SD(t) = O(m2).
Moreover, if at most k intervals are overlapping in any period t, then the
complexity of the dynamic program is O(T2k). Moreover, as we will see in
Sections 4.2 and 4.3 for practical general cases, as well as in Section 5 for
some relevant special cases, this time complexity can be effectively reduced
to polynomial.

4.2. Time Independent Production Costs and Time Independent Ratio be-
tween Inventory and Backlog Costs

An interesting case in practice appears when the ratio between the unit
inventory and backlog costs in each period is time independent, i.e., ht = αth

14



and bt = αtb with αt > 0 ∀t (or, equivalently, ht/bt = h/b, ∀t). Moreover, we
assume time independent production costs, i.e., ct = c, ∀t ∈ [1, T ]. Although
this case is more restricted than the general case that does not specify cost
functions or other key parameters of the problem, it is very common in
practice, where hard to quantify backlog costs are often defined in terms of
inventory holding costs. Moreover, its limitations are minimal, as there is
no specification on how the actual cost levels would vary from one period to
another, and time independent production costs are a common setting in the
lot sizing literature. Because production costs are time independent, they
can be ignored in the remainder of this section. Finally, as discussed in this
section, this case can be solved in polynomial time. A more special case worth
remarking is when the inventory and backlog costs are time independent, i.e.,
αt = 1 ∀t.

First, we note the step change from t to t+ 1:

∆(t) = ECi(t+ 1)− ECi(t) =

(
ui∑

l=t+1

hl

ui∑
k=l+1

pik +
t∑

l=li

bl

l∑
k=li

pik

)

−

(
ui∑
l=t

hl

ui∑
k=l+1

pik +
t−1∑
l=li

bl

l∑
k=li

pik

)
= bt

t∑
k=li

pik − ht
ui∑

k=t+1

pik

Because
∑ui

k=t+1 p
i
k = 1−

∑t
k=li

pik, the expression above can be rewritten:

∆(t) = (ht + bt)
t∑

k=li

pik − ht (19)

Note that (19) can also be used to show Proposition 1, since ∆(t) =
−ht < 0 when t ≤ li − 1. For the case of time independent ratio, we can
rewrite the expression (19) as follows:

∆(t) = αt

(
(h+ b)

t∑
k=li

pik − h
)

(20)

Theorem 3. If the ratio between the inventory and backlog costs is time
independent, i.e., ht = αth and bt = αtb ∀t, then ECi(t) is strictly decreasing
until t = t∗i and strictly non-decreasing after t = t∗i . Moreover, if inventory
and backlog costs are time independent, i.e., αt = 1 ∀t, then ECi(t) is convex.
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Proof. We first observe that, in (20),
∑t

k=li
pik is strictly increasing with t

when li ≤ t ≤ ui (while being 0 when t ≤ li − 1, as noted earlier). Since
h + b > 0, the value of ∆(t), starting from −αth < 0 at t = li − 1, will
also be strictly increasing. Hence, either (i) t = t∗i ≤ ui − 1 holds due to
the first observation of (h + b)

∑t
k=li

pik ≥ h at t, or (ii) t∗i = ui holds if

ECi(ui) − ECi(ui − 1) < 0. In case (i), note that (h + b)
∑t

k=li
pik = h

is possible, and hence the function ECi(t) is strictly non-decreasing (rather
than strictly increasing). This concludes the proof of the first claim.
Next, consider the case of αt = 1. Note that we can further simplify (20) by
eliminating αt. Then, we have:

ECi(t+ 1) = ECi(t) + (h+ b)
t∑

k=li

pik − h

ECi(t+ 2) = ECi(t) + (h+ b)
t∑

k=li

pik − h+ (h+ b)
t+1∑
k=li

pik − h

where the second equation is simply the definition of ∆(t+1) with ECi(t+1)
substituted using the first equation. Since

∑t
k=li

pik ≤
∑t+1

k=li
pik, it is possible

to observe that ECi(t + 2) + ECi(t) ≥ 2ECi(t + 1). This concludes the
convexity of ECi(t).

The case of a convex ECi(t) function can be associated to the practical
setting where, as one moves further away from t = t∗i , not only the expected
cost increases, but also the rate of the cost increases.

In line with the previous literature, we next define a regeneration interval
[t1, t2] as an interval of periods such that production takes place in periods
t1 and t2 while no production occurs in periods t, t1 < t < t2. Then, we have
the following result.

Proposition 2. Given a regeneration interval [t1, t2], let It1,t2 = {i ∈ I :
t1 ≤ t∗i ≤ t2}. If the ratio between the inventory and backlog costs is time
independent, and production costs are time independent, then in an optimal
solution involving regeneration interval [t1, t2], for every i ∈ It1,t2, di will be
produced either at t1 or t2.

Proof. First, note that the production of di for any i ∈ Ii1,i2 cannot take place
in a period t < t1 (or t > t2), since ECi(t) ≥ ECi(t1) (or ECi(t) ≥ ECi(t2),
respectively) due to Theorem 3 and the fact that production costs are time
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independent. Since production of di for any i ∈ I takes place in a single
period in an optimal solution due to Theorem 1, and since, by definition,
there is no production in any period t such that t1 < t < t2, d

i will be
produced either in t1 if ECi(t1) ≤ ECi(t2), or in t2 otherwise.

Next, we discuss how to use this result to define a dynamic program of
polynomial complexity particularly due to the significantly reduced number
of linkages between states. First, we note that the number of valid states is
reduced, since now a state is valid only if sdi = 0 for all i ∈ I such that t ≤ t∗i
(rather than t ≤ li). Next, in order to account for the regeneration intervals,
we replace SD(t′) with SD(t′, t) in the recursion (18) of the dynamic program,
where we define any valid SD(t′, t) as follows:

• If t′ ≤ t∗i ≤ t− 1 and ECi(t
′) ≤ ECi(t), then sdi = 1 must hold at t,

• If t′ ≤ t∗i ≤ t− 1 and ECi(t
′) > ECi(t), then sdi = 0 must hold at t,

• If t′ ≥ t∗i + 1, then sdi = 1 must hold at t.

Note that the first case means that di must be produced at t′ (since it is
cheaper at t′) whereas the second case means that di will be not produced
at t′. In the third case, if sdi = 0 holds at t′, then di must be produced at t′

since producing at t will be more expensive (whereas if sdi = 1 holds at t′,
it means production of di is already completed earlier.)

With this transformation of valid states as well as interactions between
them, we first note that, given an interval i ∈ I with stochastic demand tim-
ing, the optimal decision regarding a regeneration interval [t1, t2] is trivial,
unless t1 ≤ t∗i ≤ t2 − 1 holds. Note that there are O(T 2) nontrivial regener-
ation intervals satisfying t1 ≤ t∗i ≤ t2 − 1, and for each of these regeneration
intervals, we can pre-compute the set of valid vectors SD(t1, t2) as shown
above, i.e., by calculating whether it is cheaper to produce di at the start or
the end of the regeneration interval. With n intervals in total, this would
result in at most O(nT 2) computational effort.

Corollary 1. In the case of time independent production costs and time
independent ratio between inventory and backlog costs, the dynamic program
has a worst case complexity of O(nT 2).
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4.3. Time Independent Production Costs and Convex Probability Distribu-
tions

We next consider the case where the probability distribution for any
stochastic demand timing is convex between li and uj. Then, it is straight-
forward to observe that ECi(t) is convex, in the same fashion as in Theorem
3 when αt = 1 ∀t. Therefore, Proposition 2 holds in this case as well, and
the worst case complexity of the dynamic program is O(nT 2), as given in
Corollary 1.

5. Special Cases of Stochastic Demand Timing

In this section, we study two relevant special cases of stochastic demand
timing, which enable us to derive very effective dynamic programming algo-
rithms due to the significant reduction of valid states.

5.1. Stochastic Demand Timing with Non-Overlapping Intervals

First, we consider the case where none of the intervals with stochastic
demand timing overlap, i.e., ∀i, j ∈ I either li ≥ uj + 1 or lj ≥ ui + 1
holds. Let the set I be arranged in an increasing order w.r.t. time, i.e., if
li ≥ uj + 1 for i, j ∈ I, then i > j. For the sake of convenience, we use
G(t, (sd1, · · · , sdn)) as well as the set of valid vectors at period t, denoted by
SD(t), in line with the general case defined in Section 4.1.

First, let us formalize an important result for this case, which is crucial
for the effectiveness of the dynamic program, significantly limiting the state
space.

Lemma 2. For any period t, either |SD(t)| = 2 or |SD(t)| = 1 holds.

Proof. To observe this result, let us first note that there are three possible
cases for any given period t: i) there exists i ∈ I such that t ∈ [li + 1, ui], ii)
there exists i ∈ I such that t = li, iii) there does not exist any i satisfying i) or
ii). For i), by definition, the only valid vectors are (sdj = 1,∀j ≤ i− 1; sdj =
0,∀j ≥ i) and (sdj = 1,∀j ≤ i; sdj = 0,∀j ≥ i + 1), hence |SD(t)| = 2. For
ii), by definition, the only valid vector is (sdj = 1, ∀j ≤ i−1; sdj = 0,∀j ≥ i),
hence |SD(t)| = 1. For iii), let i′ = max{j ∈ I|lj ≤ t− 1}, i.e., the largest
index of the interval starting before t. In this case, there is only one valid
vector, which is (sdj = 1,∀j ≤ i′; sdj = 0,∀j ≥ i′ + 1).
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In order to establish the complexity of the dynamic program, we first ob-
serve that n ≤ T due to the non-overlapping nature of the intervals. More-
over, due to Lemma 2, note that, in the worst case (i.e., when each period is
covered by an interval with stochastic demand timing), the state space net-
work will have the same structure with O(T ) nodes as the worst case with
a single interval discussed in Section 3. Therefore, we conclude this section
with the following result.

Corollary 2. In case of non-overlapping intervals, the dynamic program has
a worst case complexity of O(T log T ).

5.2. Stochastic Demand Timing with Dominant Overlapping Intervals

In this section, we assume that Property 1 is satisfied for any pair of
stochastic demand timings with quantities of di and dj in I, i.e. either di

dominates dj or the opposite. Let us also assume that the set I is arranged in
an increasing order w.r.t. to the dominance property, i.e., if dj is dominated
by di, then j is ranked after i in I. We next state the key theoretical results
for this case.

Theorem 4. Assume that demand di dominates demand dj, i.e.
∑t

l=1 p
i
l ≥∑t

l=1 p
j
l ∀t, and let ti and tj be the production periods of di and dj, respec-

tively, in an optimal solution. Then, either i) ti ≤ tj holds, or ii) both
ECi(t

i) = ECi(t
j) and ECj(t

i) = ECj(t
j) hold.

In words, the theorem states that in any optimal solution, we will either
produce di latest in the same period as dj, or the timing of the production
of di or dj is interchangeable between ti and tj without any cost implication,
i.e., di can be produced in tj, or dj can be produced in ti, or both.

Proof. Let ti > tj and ECi(t
i) 6= ECi(t

j). Since di is produced in ti

(rather than in tj) and ECi(t
i) 6= ECi(t

j), ECi(t
i) < ECi(t

j) holds, whereas
ECj(t

i) ≥ ECj(t
j) holds since dj is produced in tj (rather than in ti.) By

using these relations and equation (5), we have

ECi(t
i)− ECi(tj) = −

ti−1∑
l=tj

hl

ui∑
k=tj+1

pik +
ti−1∑
l=tj+1

bl

l∑
k=li

pik < 0 (21)

ECj(t
i)− ECi(tj) = −

ti−1∑
l=tj

hl

uj∑
k=tj+1

pjk +
ti−1∑
l=tj+1

bl

l∑
k=lj

pjk ≥ 0 (22)
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Then, we have

ti−1∑
l=tj+1

bl

l∑
k=lj

pjk ≥
ti−1∑
l=tj

hl

uj∑
k=tj+1

pjk ≥
ti−1∑
l=tj

hl

ui∑
k=tj+1

pik >

ti−1∑
l=tj+1

bl

l∑
k=li

pik

where the first and third inequalities follow (21) and (22), respectively, and
the second inequality follows the dominance property. However, by the dom-
inance property, we also have

ti−1∑
l=tj+1

bl

l∑
k=li

pik ≥
ti−1∑
l=tj+1

bl

l∑
k=lj

pjk

which is a contradiction. The same argument follows when ECj(t
i) 6= ECj(t

j)
holds instead of ECi(t

i) 6= ECi(t
j).

Theorem 5. Assume that demand di dominates demand dj. If ∃t s.t.
∑t′

l=1 p
i
l =∑t′

l=1 p
j
l , ∀t′ ≤ t, and if there is an optimal solution in which dj is produced

before period t, then there is an optimal solution in which both di and dj are
produced in the same period.

Proof. Follows from Theorem 4.

Finally, we note the following result, which follows from Theorem 5.

Corollary 3. If, for demands di and dj,
∑t

l=1 p
i
l =

∑t
l=1 p

j
l ∀t, i.e., they

follow exactly the same distribution, then there is an optimal solution in
which di and dj are produced in the same period.

A very useful aspect of Corollary 3 is that stochastic demand timings
satisfying these conditions can be merged into a single demand. In the re-
mainder of this subsection, we assume that all such demands are already
combined into single demands.

Using G(t, (sd1, · · · , sdn)) and the set of valid vectors at period t, denoted
by SD(t), in line with the general case defined in Section 4.1, we formalize
the following result for the complexity of the dynamic program.

Lemma 3. In the worst case, maxt∈[1,T ] |SD(t)| ∼ O(n)
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This is quite straightforward to observe due to the fact that if sdi = 0
for any time period t, then sdj = 0,∀j ∈ I s.t. i < j. In order to establish
the complexity of the dynamic program, we note that in the worst case (i.e.,
when each period has n states), the state space network will have O(nT )
nodes in a structure similar to the case with non-overlapping intervals, albeit
with n layers. Hence, we conclude this section with the following result.

Corollary 4. In case of dominant overlapping intervals, the dynamic pro-
gram has a worst case complexity of O(nT log T ).

6. Extension to Demand-Dependent Backlog Cost

In this section, we extend our previous results to the more general case
where each stochastic demand timing can be seen as an order with a specific
backlog cost, i.e. bit now depends both on period t and on stochastic demand
quantity di. This case naturally stems from the varying importance of sat-
isfying different orders (or, likely, different customers) on time, and provides
planners and decision makers a more customized solution.

Next, we discuss the impact of considering bit instead of bt in order to
extend previous results:

• In Section 2, it is straightforward to extend the model by replacing bl
by bil in the definition of ECi(t), and Proposition 1 remains true.

• Because only a single stochastic demand timing is considered, the anal-
ysis and results in Section 3 remain valid in this case as well.

• With respect to the general case of Section 4, it is easy to observe
that the general dynamic program proposed in Section 4.1 does not
change. The analysis and results of Section 4.2 remain valid when the
time independence of the ratio between the unit inventory and backlog
costs in each period is redefined as bit = αtb

i with αt > 0 ∀t and ∀i (or,
equivalently, ht/b

i
t = h/bi, ∀t and ∀i). It is also straightforward to see

that the discussion on the case with convex probability distributions
presented in Section 4.3 remains valid.

• Finally, let us now consider the two special cases studied in Section 5.
The analysis conducted in Section 5.1 in the case of non-overlapping
intervals remains valid. On the other hand, the notion of dominance
between stochastic demand timings, defined in Section 5.2 (Definition
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1), is no longer sufficient to derive the results in Section 5.2, which we
discuss next.

Definition 3. Let di and dj be two demands with stochastic timing. If
ECi(t) ≥ ECj(t) ∀t = 1, . . . , T , then we say that di strongly dominates
dj.

In comparison to Definition 1, Definition 3 proposes a stricter definition
of dominance, and this can be employed to replace Theorems 4 and 5 with
Theorems 6 and 7, and Corollary 3 with Corollary 5. We note that Lemma
3 and Corollary 4 still remain valid.

Theorem 6. Assume that demand di strongly dominates demand dj, and let
ti and tj be the production periods of di and dj, respectively, in an optimal
solution. Then, either i) ti ≤ tj holds, or ii) both ECi(t

i) = ECi(t
j) and

ECj(t
i) = ECj(t

j) hold.

Theorem 7. Assume that demand di strongly dominates demand dj. If ∃t
s.t. ECi(t

′) = ECj(t
′), ∀t′ ≤ t, and if there is an optimal solution in which

dj is produced before period t, then there is an optimal solution in which both
di and dj are produced in the same period.

Corollary 5. If, for demands di and dj, ECi(t) = ECj(t) ∀t, then there is
an optimal solution in which di and dj are produced in the same period.

We omit the proofs of these results, as they can be easily carried out
in the same fashion as the proofs of Section 5.2. Finally, we conclude this
section with the following important complexity result, which shows that the
problem studied in this section is NP-hard.

Theorem 8. The dynamic lot sizing problem with stochastic demand timing
is NP-hard when the backlog cost bit depends both on period t and on the
quantity of stochastic demand, di.

Proof. Consider the Uncapacitated Facility Location (UFL) problem, which
is NP-hard and can be stated as follows: Given F facilities, each with a
fixed opening cost αt, t ∈ F and no capacity, and C clients with unit demand
and unit service cost of βti for each client i ∈ C and each facility t ∈ F , find
the subset of facilities to open that will serve all clients with the minimum
total cost. Given an instance of the uncapacitated facility location, we will
show that this problem can be reduced to an instance of our problem.
First, we create a dummy first period (period 0), and then map facilities of
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UFL to periods starting from period 1, and map clients of UFL to intervals
with stochastic demand timing, hence creating a problem with F + 1 periods
and C intervals, each interval i spanning the whole horizon, i.e., `i = 0, ui =
F + 1. Then, we can make the following assignments of parameters in our
problem:

Dt := 0, ct := 0,∀t ∈ [0, F ]; f0 := M ; ft := αt,∀t ∈ [1, F ]; di := 1,∀i ∈ [1, C]

Here, M is a sufficiently big number so that production never takes place in
period 0. Note that these assignments result in a dynamic lot sizing problem
without zlt variables and instead only with yt and zit variables. In order to
finalize the problem reduction, we make the following assignment:

pit :=
1

F + 1
,∀t ∈ [0, F ],∀i ∈ [1, C]; ECi(t) := βti,∀t ∈ [1, F ],∀i ∈ [1, C]

Then, specific bit and ht values can be calculated by solving F × C linear
equations (∀t ∈ [1, F ], ∀i ∈ [1, C]) of (5) with assigned βti values and F ×
C + C unknowns (bit and ht, respectively), where the first set of equations
for t = 1 involve the i-specific parameter bit. It is straightforward to see that
a solution of UFL is equivalent to a solution of the single-item dynamic lot
sizing problem with stochastic demand timing.

We make a final remark that the proof relies on the fact that the param-
eters bit are defined separately for each i. Therefore, the proof is not valid
when bit = bt ∀i as in the original problem, which leaves its complexity open.

7. Conclusions and Perspectives

An original and relevant way of modeling stochastic demands in lot sizing
problems is proposed and studied in this paper. The uncertainty is not on
the demand quantity but rather on the timing at which the demand will
occur and should be satisfied. More precisely, the demand quantity of each
stochastic demand is known and fully occurs with a given probability in
a single period of a given interval and no partial delivery is allowed. In
our modeling, stochastic demands are naturally correlated since a stochastic
demand occurring in a period will not occur in another period. Dynamic
programs are proposed to solve several cases of the single-item dynamic lot
sizing problem with stochastic demand timing. The case with a single interval
is first solved, followed by the general case, the practical case where the
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ratio between the inventory and backlog costs is time independent and the
case where probability distributions are convex. Finally, the cases with non-
overlapping intervals and with dominant overlapping intervals are solved.
Note that all the dynamic programs presented in the paper could be extended
to the case with backlog costs on deterministic demands and on stochastic
demand timings after the last period in their interval. We also study the
general case where the variable backlog cost depends both on the period and
on the quantity of stochastic demand, and show that the resulting problem
is NP-hard.

Many research avenues are worthwhile investigating from this novel stochas-
tic setting in lot sizing. First, although we believe it is NP-hard, the com-
plexity of the general problem with backlog costs that are independent of
the quantity of stochastic demand remains an open question to study. Sec-
ond, the capacitated case with multiple products could be solved using a
Lagrangian heuristic, such as the ones proposed in Trigeiro et al. (1989) and
Brahimi et al. (2006), by relaxing the capacity constraints and solving the
resulting single-item problems with the dynamic programs proposed in this
paper. Another interesting extension of our work is to consider the case
where

∑ui
t=li

pit < 1, i.e., there is a probability that demand di may not occur
at all. In this case, the total demand on the planning horizon also becomes
uncertain. This implies that some production quantity aimed at satisfying
di might end up remaining in the inventory and thus could be used to satisfy
other demands in the planning horizon. A last related research perspective
would be to analyze the case with lost sales, where answering a demand too
late would also result in products remaining in the inventory.
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