
Efficient methods for the distance-based critical node

detection problem in complex networks

Glory Uche Aloziea,∗, Ashwin Arulselvana, Kerem Akartunalıa, Eduardo L. Pasiliao
Jrb

aDepartment of Management Science, University of Strathclyde, 199 Cathedral Street, G4 0QU,
Glasgow, United Kingdom

bMunitions Directorate, Air Force Research Laboratory, Building 13, Eglin AFB, Florida 32542

Abstract

An important problem in network survivability assessment is the identification of
critical nodes. The distance-based critical node detection problem addresses the
issues of internal cohesiveness and actual distance connectivity overlooked by the
traditional critical node detection problem. In this study, we consider the distance-based
critical node detection problem which seeks to optimise some distance-based connectivity
metric subject to budgetary constraints on the critical node set. We exploit the
structure of the problem to derive new path-based integer linear programming formulations
that are scalable when compared to an existing compact model. We develop an
efficient algorithm for the separation problem that is based on breadth first search
tree generation. We also study some valid inequalities to strengthen the formulations
and a heuristic to improve primal bounds. We have applied our models and algorithm
to two different classes of the problems determined by the distance based connectivity
functions. Extensive computational experiments on both real-world and randomly
generated network instances, show that the proposed approach is computationally
more efficient than the existing compact model especially for larger instances where
connections between nodes consist of a small number of hops. Our computational
experiments on both classes of distance-based critical node detection problem provide
good numerical evidence to support the importance of defining appropriate metrics
for specific network applications.

∗Corresponding author
Email addresses: glory.alozie@strath.ac.uk (Glory Uche Alozie),

ashwin.arulselvan@strath.ac.uk (Ashwin Arulselvan), kerem.akartunali@strath.ac.uk
(Kerem Akartunalı), eduardo.pasiliao@us.af.mil (Eduardo L. Pasiliao Jr)

Preprint submitted to Computers & Operations Research March 18, 2021

Keywords: Critical node problem, Distance connectivity, Integer programming,
Lazy constraints, Breadth first search

1. Introduction

Assessment of system vulnerability to adversarial attacks has become an important
concern to organisations, especially in the wake of security threats around the world.
Natural occurrences such as environmental disasters and disease epidemics with
their cascading effects impact the overall performance of systems, in which they
occur. System developers consider as a matter of necessity the issue of survivability
at the very stage of building new networks. This means designing networks in
which communications between nodes can still be established after the failure of
a pre-defined number of nodes or links [1]. Motivated by telephone line failures,
Grötschel et al. [2] proposed mathematical models for the survivable network design
problem which is the problem of designing minimum cost networks that satisfy
certain connectivity requirements. The minimum cost k−connected network problem
amongst other network problems was used to model the connectivity requirements
as a means of representing survivability. Recent studies in survivable network design
combine survivability and quality of service by imposing hop-constraints. Two
such problems are the hop-constrained survivable network design problem (see e.g
[3],[4],[5]) and the network design problem with vulnerability constraints (see e.g [1],
[6]). The former seeks a minimum cost subgraph that contains k edge-disjoint (or
node-disjoint) paths of length at most H for every given commodity (s, t). The latter
which is a less expensive problem seeks a minimum cost subgraph in which for every
commodity (s, t), there is a path of length at most Hst and after the removal of k−1
edges, the resulting graph has a path of length at most H

′
st.

For existing networks, the issue of vulnerability assessment requires efficient
surveillance strategies to ensure minimal disruption in the health and performance of
the networks. An important strategy is to identify elements of a given system that
are critical in maintaining optimum system performance. In other words, we are
identifying the parts of a system whose failure would result in a break down of the
system. System performance has varying definitions depending on the topology of the
system and the application being considered. Nevertheless, the underlying problem
is that of identifying important system elements. The associated problem as studied
in the optimisation community is termed critical node detection problem (CNP),
as introduced in [7]. Given an undirected graph G = (V,E) with n = |V | nodes
(vertices) and m = |E| edges (arcs), the problem is to identify a subset of nodes of
limited cardinality whose deletion results in a subgraph of maximum disconnectivity

2

with respect to a predefined connectivity metric.
The CNP finds interesting applications in various areas. For example, identifying

the critical nodes of a telecommunication network and taking them offline would
stop the spread of a virus over the network. It is also useful in jamming wired
telecommunication networks [8] to disrupt communication. In epidemiology, it is
too expensive or impractical to vaccinate every member of a target population. The
CNP provides a good immunisation strategy that targets individuals to immunise
(or quarantine) in order to curtail the transmission of the virus in a contact network
[8, 9]. In a social network context, the concept of key players relates to the idea
of critical nodes. They correspond to the members of a social network who are
influential for diffusion of information or potential targets for rumours [10]. This is
of practical benefit in a public health context where crucial health information has to
be disseminated across communities or to thwart the propagation of misinformation
or malicious news. In security and defence operations, neutralising certain individuals
in a terrorist network ensures disruption in communication eventually limiting their
chances to launch a large scale coordinated attack [8]. Other areas in which the
critical node detection problem has found application include drug design [11], emergency
response and transport engineering [12].

An essential aspect of the critical node detection problem is the identification
of a network property relevant to the network under study and an appropriate
metric for its description [13]. This is primarily determined by the application
context. In relation to network properties associated with studies on the CNP,
existing studies can be grouped into two broad categories, namely fragmentation
and pairwise distances. A graph is said to be fragmented if it consists of more
than one connected component, that is, if there is no path connecting some nodes
in the graph. A significant volume of research has been carried out in relation
to the goal of fragmentation, where popular objectives are either minimising the
number of connected node pairs [8, 14, 15], maximising the number of connected
components or minimising the size of the largest connected component [16, 17].
Other studies have focused on specific graph structures such as trees, split graphs and
bipartite graphs [18, 16, 19]. Modified versions include the cardinality-constrained
and similar variants which aim to minimise the number of deleted nodes while
bounding the connectivity structure in the resultant subgraph [20, 21]. Deletions
involving edges as opposed to nodes have also been studied for example in [12] and
[22]. It is also noteworthy to remark that studies of centrality measures in the network
analysis community address relevant problems, albeit from a different perspective
[23]. In the aforementioned studies, the CNP was predominantly formulated as
a integer programming (IP) problem. The models were then either solved using

3

state-of-the-art IP solvers or some appropriate decomposition procedures. The CNP
is known to be NP-hard in general. A dynamic program was proposed for the case
of trees [18]. Several heuristics were proposed to solve the general case on large scale
instances (see, e.g., [24], [25], [26]).

Although fragmentation objectives of the CNP capture interesting system properties
as reflected in the vast areas of applications and volume of research outputs, it is
often not possible to achieve actual fragmentation. This is due to the topological
structures of input networks under study as well as the available budget limiting
the cardinality of the critical node set. These two aspects, which are inherent to
most problem instances, severely undermine solution procedures designed towards
achieving a fragmentation objective present in the CNP (see [10] and [27]). So,
when it is infeasible or expensive to achieve the goal of fragmentation, the question
one is compelled to ask is, “are we stuck in a maze or are there alternative means
of assessing network vulnerability consequently leading to identification of critical
nodes?”. The second category of the CNP, hereafter referred to as the distance-based
critical node detection problem (DCNP), gives a positive response to this question.
It has been argued that for many real world applications in communication and social
networks, disconnectivity is not limited to fragmentation (that is, when there is no
path connecting some pairs of nodes). If the distance between two nodes is above
some threshold, they can be seen as practically disconnected [10, 27]. Moreover,
Borgatti [10] in his study of key players in social networks further identified another
limitation of fragmentation-based objectives, which is the overlooking of internal
structure (cohesiveness) of components. In a similar study [28], the authors noted
that certain structural deviations from the input network are left undetected by the
traditional metrics of the CNP and concluded that there is a need for alternative
choices based on distance metrics.

Despite the importance of the DCNP, very few studies have focused on it. A
formalised study was proposed in Veremyev et al. [29]. The authors defined five
distance-based connectivity objectives for the DCNP, namely,

i Minimise the number of node pairs connected by a path of length at most k

ii Minimise the Harary index (equivalently, the efficiency)

iii Minimise the sum of power functions of distances

iv Maximise the generalised Wiener index (equivalently, the characteristic path
length)

v Maximise the shortest path length between nodes s and t

4

They proposed a generic IP model, which admits different distance objectives and
an exact truncate-and-resolve algorithm to solve the model. In [30], complexity
analyses of the DCNP connectivity objectives i, ii and iv above were presented
for graphs with special structures, such as trees, paths and series-parallel graphs.
The authors then proposed dynamic programming algorithms for polynomially and
pseudo-polynomially solvable cases. In [31], a complementary mixed integer programming
(MIP) formulation and a Benders decomposition algorithm were proposed for the
distance-based connectivity objective (iv) above. In a very recent and independent
work [32], Salemi and Buchanan (2020) proposed new integer programming formulations
for the first distance based connectivity objective (i). Their solution technique uses
warm-start solutions obtained from a heuristic as well as a preprocessing procedure
that identifies “non-critical” nodes for which corresponding variables are fixed to zero.
Their work and ours both deal with objective function (i) and use the idea of tree
generation for the separation problem. However, the models and algorithm proposed
in this study can handle other objective classes of the DCNP as we demonstrate in
Sections 3 & 4.

Contributions

In this study, we focus on the first two distance classes defined in [29], for which
the authors proposed a generic compact formulation that is valid for any distance
function. We will use this as a base model to benchmark our study. The base model
hasO(|V |3) variables andO(|V |2|E|) constraints and is sensitive to edge-dense graphs
as well as graphs with short average path lengths. Therefore, we propose a path-based
formulation to minimise the number of node pairs connected by a path of length at
most L. We exploit the structure of the problem to develop an efficient separation
routine to use within a branch-and-cut framework. We extend our framework to the
second distance (Harary Index) class of the DCNP to develop a model which like
the compact model is valid for other distance functions. We performed extensive
computational experiments on both real-world and synthetic graphs for these two
classes to compare our new models with the base model. In order to demonstrate
the computational advantages of our approach, these two distance classes would be
enough as they broadly generalise the other classes. Comparing our implementation
for the two distance DCNP classes on some real-world graphs provides computational
evidence to the impact of connectivity objective on the possibility and ease of solving
the CNP. We also propose two families of valid inequalities. Our contributions are
two-fold:

i From the methodological side, we introduce new formulations that use a decomposition
approach. It was designed to exploit certain classes of distance functions (when

5

L is small) as the natural compact model can become too big. We also introduce
two families of valid inequalities for these problems.

ii We perform a computational study to test and compare the performance of
the proposed formulations on a number of real-world and computer generated
instances. The implementation includes a) a modified breadth first search
(BFS) algorithm to separate hop-constrained path constraints b) a primal
heuristic to improve upper bounds c) the valid inequalities introduced.

Organisation

The rest of the paper is organised as follows. In section 2, we formally describe
the distance-based critical node detection problem and give definition of two distance
connectivity metrics of interest. In section 3, we present the base mixed integer
programming formulations introduced by [29], followed by our new path-based mixed
integer programming formulations for the corresponding distance metrics. In section 4,
we present our modified breadth-first search algorithm for solving the separation
problem associated with the new model as well as valid inequalities. We present
our computational study with thorough comparisons of models in sections 5 and 6.
Concluding remarks and potential future perspectives are provided in section 7.

2. Problem definition

Let G = (V,E) be a simple unweighted graph with a finite set V of nodes (or
vertices) and a finite set E ⊆ V × V of edges and let B be the available budget on
the set of critical nodes. The distance-based critical node detection problem aims
to find a subset of nodes R ⊂ V with |R| ≤ B, whose removal minimises some
distance-based connectivity measure f(d) written mathematically as:

DCNP : min
R⊂V

∑
i,j∈V :i<j

f(dGR(ij)) : |R| ≤ B

where dGR(ij) is the distance or shortest path length between nodes i and j in the
resultant subgraph GR = G[V \ R]. For simplicity of notation, we use f(d) instead
of f(dGR(ij)) hereafter where f(d) is assumed to be a non-increasing function of
shortest path distances between pairs of nodes in the graph. We assume that the
input graph G is connected, otherwise, the largest connected component is used. We
focus on two distance connectivity classes while we refer the interested reader to [29]
for detailed descriptions of other distance functions and their application contexts.

6

Class 1. Minimise the number of node pairs connected by a path of length at most
L1

f(d) =

{
1, if d ≤ L1

0, if d > L1

(1)

where d = dGR(ij) defined as length of shortest path and L1 is a given positive integer
representing the cut-off hop distance. The special case where L1 = n − 1 is the
traditional CNP version of minimising number of connected node pairs. Interesting
instances for this class would be graphs with a small diameter and thus a large
proportion of nodes connected within a small number of hops. From an application
perspective, it makes sense to use small values of L1, say L1 ∈ {3, 4}, in function (1)
for instances with small diameter. We will refer to the DCNP version corresponding
to this class of distance function as DCNP-1.

Class 2. Minimise the Harary index or efficiency of the graph

f(d) =

{
d−1, if d <∞
0, if d =∞

This metric is based on the assumption in communication network analysis that
communication efficiency between node pairs is inversely proportional to the distance
between them [33]. Typically, two disconnected nodes are at a distance of ∞.
This corresponds to the fragmentation objective of the CNP. In [29], the authors
introduced a threshold model, where two nodes separated by some distance threshold,
L2, cannot communicate directly, resulting in the following modified Harary distance
function.

f(d) =

{
d−1, if d ≤ L2

0, otherwise
(2)

We will also be using this threshold model and we will refer to the DCNP version
corresponding to this class of distance function as DCNP-2.

3. Integer programming formulations

We first present simplified versions of the generic mixed integer programming
formulations defined in [29] for the two distance functions and then introduce our
proposed path-based formulations.

7

3.1. Base IP formulations

Let G = (V,E) be an input graph with n = |V | nodes and m = |E ⊆ V × V |
edges, also let B and Lr be given positive integers. Associated with any node i, we
define variable xi as

xi =

{
1, if node i is deleted,

0, otherwise.
(3)

Similarly, we define connectivity variables ylij by

ylij =

{
1, if (i, j) are connected by a path of length ≤ l in GR

0, otherwise.
(4)

We will first present the constraints defined in the base IP model for the problem
DCNP-r (r = 1, 2) as provided in [29].

y1ij + xi + xj ≥ 1, ∀(i, j) ∈ E, i < j (5)

ylij = y1ij, ∀(i, j) ∈ E, i < j, l ∈ {2, . . . , Lr} (6)

ylij + xi ≤ 1, ∀(i, j) ∈ V, i < j, l ∈ {1, 2, . . . , Lr} (7)

ylij + xj ≤ 1, ∀(i, j) ∈ V, i < j, l ∈ {1, 2, . . . , Lr} (8)

ylij ≤
∑

t:(i,t)∈E

yl−1tj , ∀(i, j) /∈ E, i < j, l ∈ {2, . . . , Lr} (9)

ylij ≥ yl−1tj − xi, ∀(i, t) ∈ E, (i, j) /∈ E, i < j, l ∈ {2, . . . , Lr} (10)∑
i∈V

xi ≤ B (11)

xi ∈ {0, 1} , ∀i ∈ V (12)

ylij ∈ {0, 1} , ∀(i, j) ∈ V, i < j, l ∈ {1, . . . , Lr} (13)

Constraints (5)–(6) ensure that ylij = 1 for adjacent node pairs (i, j), if neither of
the nodes i nor j is deleted. Constraints (7)-(8) enforce ylij to be zero if either
node i or j is deleted. Constraints (9)-(10) ensure that there is a path of length at
most l between non-adjacent nodes i and j iff node i is not deleted and there is a
path of length at most l − 1 between t and j for some non-deleted node t in the
neighbourhood of node i. Constraint (11) limits the cardinality of the critical node
set to the budget B. Constraints (12)-(13) are binary restrictions on the decision

8

variables. The observation that the binary restrictions on the y variables can be
relaxed was made in [29]. Intuitively, once the x variables are fixed, constraints (5)
and (10) will fix a subset of y variables to either 0 or 1. The minimisation function
incentivises the remaining y variables to take a value of 0.

As noted in [29], considering initial shortest-paths between each node pair (i, j)
in the input graph enables us to set connectivity variables ylij = 0 for all l < dij as
well as defining constraints (9)-(10) for only l ≥ dij . In addition to this, we note
that only neighbours t of i having shortest path dtj ≤ l − 1 should be considered in
constraints (9)-(10). These and leaf-node based considerations reduce the number of
variables and constraints in the model, thereby improving performance of standard
IP solvers. The set of possible solutions to the DCNP-r (r = 1, 2) is then given by
the set

Pr := {x ∈ {0, 1}n, y ∈ {0, 1}n2×Lr : (x, y) satisfies(5) to (13)}

The IP base model with distance function (1), which we refer to as DCNP-1a is given
as follows:
DCNP-1a

min
(x,y)∈P1

∑
i,j∈V :i<j

yL1
ij (14)

Objective (14) minimises the number of node pairs whose shortest path distance is at
most L1. Similarly, a simplified version of the base model corresponding to distance
connectivity metric (2), which we refer to as DCNP-2a is given as follows:
DCNP-2a

min
(x,y)∈P2

∑
i,j∈V :i<j

(
f(1)y1ij +

L2∑
l=2

f(l)
(
ylij − yl−1ij

))
(15)

Note that the objective function (15) computes the sum of the inverse of distances
of all pairs of nodes. We assume the distance past a certain threshold (L2) as ∞.

3.2. New path-based formulation

We exploit the structure of the first distance function (1) to develop a new
path-based formulation, which we refer to as DCNP-1b. Since only paths of length
at most L1 is of importance here, by keeping track of paths within this threshold,
we can guarantee that any given node pair (i, j) is L1-distance disconnected iff at
least one node along all candidate paths PL1(i, j) is deleted. Observe that the value

9

of the distance function (1) defined for DCNP-1 is not explicitly dependent on the
shortest path lengths l. Instead, the distance function takes on constant values 1
or 0 depending on whether or not pairs of nodes (i, j) are connected by a path of
distance l ≤ Lr. Following this line of thought enables us to eliminate the need for
the l- index in the distance connectivity variable ylij used in the base model to arrive
at an alternative model with fewer variables. This new model which is based on the
paths connecting node pairs has exponentially many constraints but the constraints
corresponding to non-adjacent node pairs can be treated as lazy constraints and
separated efficiently. We define a new set of connectivity variables yij as follows:

yij =

{
1, if (i, j) are connected by a path of length ≤ L1 in GR

0, otherwise.
(16)

Using the former set of node deletion variables (3) along with the new connectivity
variables (16), the path-based model for distance objective function (1) is formulated
as follows:

DCNP-1b

min
∑

i,j∈V :i<j

yij (17)

s.t.
∑

r∈V (P)

xr + yij ≥ 1, ∀P ∈ PL1(i, j), (i, j) ∈ V, i < j (18)

∑
i∈V

xi ≤ B (19)

xi ∈ {0, 1} , ∀i ∈ V (20)

yij ∈ {0, 1} , ∀(i, j) ∈ V, i < j (21)

Objective function (17) minimises the number of connected node pairs within the
required threshold distance L1. Constraint (18) ensures that node pairs (i, j) are
L1-distance disconnected iff at least one node along all paths of length less or
equal to L1 connecting i and j is deleted. Since there are potentially many such
constraints, some of which are redundant, we explicitly model the non-redundant
constraints (yij + xi + xj ≥ 1) for edges and leave the rest to be identified in a
separation routine. The budgetary constraint limiting the cardinality of the critical
node set is represented by constraint (19) while constraints (20)-(21) are same with
the constraints (12)-(13) of the base model. Following the same argument in [29], the
integrality constraints can be relaxed for the connectivity variables yij. Note that the

10

lower bound of the compact model DCNP-1a will be better than that of DCNP-1b
as constraints (5) and (10) of the compact model would completely imply constraint
(18). However, constraints (9) and (10) make the compact model grow with the
graph size. We can get computationally more efficient solutions using DCNP1-b as
the corresponding LP relaxation is relatively smaller, which we exploit to compute
quicker bounds. These observations are supported in our experiments. Finally, for
the second distance class (2), our new path-based formulation is defined as follows:

DCNP-2b

min
∑

i,j∈V :i<j

(
f(1)y1ij +

L2∑
l=2

f(l)
(
ylij − yl−1ij

))
(22)

s.t.
∑

r∈V (P)

xr + y
|P |
ij ≥ 1, ∀P ∈ PL2(i, j), i, j ∈ V, i < j (23)

yl−1ij ≤ ylij, ∀(i, j) ∈ V, i < j, l ∈ {2, . . . , L2} (24)

ylij = y1ij, ∀(i, j) ∈ E, i < j, l ∈ {2, . . . , L2} (25)∑
i∈V

xi ≤ B (26)

xi ∈ {0, 1} , ∀i ∈ V (27)

ylij ∈ {0, 1} , ∀(i, j) ∈ V, i < j, l ∈ {1, . . . , L2} (28)

The ideas behind constraints (23); (26)- (28) are similar to those of constraints (18)- (21).
Constraints (24) ensure that there is a path of length l, if there is a path of length
l−1 while constraint (25) is similar to that of (6). We note that the new path-based
model DCNP-2b is a valid formulation for other distance functions f(d) and not
just the Harary index. In particular, DCNP-2b is valid for distance function (1).
Exploiting the structure of the distance function (1) allows us to model DCNP-1b
with fewer variables. We will not gain much in DCNP-1b by including the l-indexed
variables used in DCNP-2b. Let

Q := {(y,x) : (y,x) satisfies constraints (23) to (28)}

where y = yL, . . . ,y1. Then we can think of the feasible space of DCNP-1b as

Proj(yL,x)Q := {(yL,x) : ∃(yL−1, . . . ,y1) : (y,x) ∈ Q}

If we do Fourier elimination of variables systematically starting from y1ij all the way

to yL−1ij , we will get exactly DCNP-1b with no changes. On the other hand, if we

11

interpret yij as continuous variables that define the value of the distance function
between nodes i and j, then we can model DCNP-2b similar to DCNP-1b. Constraint
set (23) should now be∑

r∈V (P)

f(|P |)xr + yij ≥ f(|P |) ∀P ∈ PL2(i, j), i, j ∈ V, i < j (29)

One could then remove the dependency on ` in the y variables. This can also
accommodate positive edge weights in the distance measure:∑

r∈V (P)

f(d)xr + yij ≥ f(d) ∀P ∈ PL(i, j), (i, j) ∈ V, i < j (30)

where d is the edge-weighted length of path P . The binary distance-based ylij
variables can be viewed as a disaggregated version of the new continuous yij variables.
Thus, for edge weighted graphs with positive integral edge weights, an alternative
aggregated formulation to the edge-weighted version of DCNP-2b would be derived
by replacing ylij with the aggregated continuous yij variables and constraints (23)–(25)
replaced with (30). Consequently, constraint (28) is relaxed to yij ∈ [0, 1] and the
objective function (22) becomes

min
∑

i,j∈V :i<j

yij

However, such a formulation would result in poor lower bounds. In order to see this,
observe that for every solution to DCNP-2b there exist a solution to the aggregated
formulation with the same objective value by setting yij = max(f(l)ylij). Although,
theoretically DCNP-2b is tighter than the aggregated (reduced) formulation, it would
suffer from scalability as it has pseudopolynomially many variables for arbitrary edge
weights. It is not clear when the trade-off between the size of the formulation and
its tightness would begin to pay off. Intuitively, one could expect the DCNP-2b to
outperform the reduced model when the distance threshold is relatively small. This
investigation, however, needs to be undertaken as an independent computational
study.

4. Solution Methods

In this section, we present details of the separation routine for the path-based
formulations. We also present a heuristic framework for generation of good incumbent
solution as well as valid inequalities for improvement of lower bounds.

12

v

`11

`21

...

`Lr
1 `Lr

2

...
...

...

`1k1

...
...

`2k2

...
...

`Lr
kLr

level Lr

...

level 2

level 1

level 0

· · ·

· · · · · ·· · ·

· · · · · ·· · ·

Figure 1: An example of a k-depth BFS tree generation

4.1. Separation algorithm

Instead of solving a hop-constrained shortest path problem [34] or enumerating
all paths of certain length for every pair of nodes in order to generate cuts, we use
a customised approach to separate violated lazy cuts. This approach involves in
generating a breadth first search tree for every candidate node v ∈ V . At each level i
of the BFS tree rooted at v, there are ki nodes {li1, . . . , liki} that are at a distance of i
from v (see Figure 1). The unique path from a node in the BFS tree to the root node
gives us an inequality of type (18) or (23). For DCNP-1, since we are only interested
in paths up to a specific length L1, we stop the traversal up to that particular depth.
For DCNP-2, we continue traversal up to depth L2. In the BFS tree, we identify
the path from the root node i to the nodes in level ` = 1, . . . , Lr and if this path is
violated, we add it as a cut. The generation of these BFS trees is much more efficient
and we get multiple paths for one such tree. BFS tree can be generated in O(|E|) as
compared to solving shortest path that will take O(|E|+ |V | log |V |). Since we only
explore Lr levels of the BFS tree, it takes far less time than O(|E|) to generate these
trees. A pseudocode of the algorithm is given by Algorithm 1.

The algorithm begins by selecting a root node r from the set of candidate root nodes
and constructs a BFS tree up to a specified depth (or tree level) Lr. The algorithm
follows a standard BFS algorithm with the only difference being that it keeps track

13

Algorithm 1: Separation algorithm for the proposed model

1 Input : Graph G = (V,E), Incumbent (x̃, ỹ) or LP-relaxation solution
(x̄, ȳ), set of candidate root nodes Rc, and tree depth Lr

2 Output: Queue of violated inequalities Qc

3 for r ∈ Rc do
4 Q← {r} ; // initialise queue Q with root node r
5 T ← {r} ; // mark r as visited

6 l[r] = 0;
7 while Q 6= Ø do
8 s← Q.remove ; // retrieve the first element in queue Q

/* Explore node s, where δs denotes neighbours of s */

9 for t ∈ δs \ T do
10 l[t] = l[s] + 1;
11 if l[t] = 1 then
12 Q.add(t) ; // add t to queue Q
13 T ← T ∪ {t} ; // mark t as visited

14 else if l[t] ∈ [2, Lr] then
15 Q.add(t);
16 T ← T ∪ {t} ; // mark t as visited

/* check violation of (18) (resp. (23) for DCNP-2b)

for the path Prt */

17 if
∑

i∈V (Prt)
x̃i + ỹrt < 1 (resp.

∑
i∈V (Prt)

x̃i + ỹ
l[t]
rt < 1) then

Qc.add(
∑

i∈V (Prt)
xi + yrt ≥ 1)

(resp. Qc.add(
∑

i∈V (Prt)
xi + y

l[t]
rt ≥ 1));

end

18 else
19 Q← Ø;
20 break;

end

end

end

end

14

of the depth of each discovered node (lines 6 & 10) with which it determines when
to terminate the current tree generation and also to separate the corresponding path
inequalities. For each node t that is being visited, the algorithm proceeds in one of
three possible ways depending on its tree level l[t].
Case 1: l[t] = 1 which implies that node t is a direct neighbour of the root node r
that is (r, t) ∈ E. In this case, we only add t to the queue Q and mark it as visited
(lines 11-13) since path inequalities for edges are already present in the formulation.
Case 2: 1 < l[t] ≤ Lr, which implies that (r, t) /∈ E but hop distance between
root node r and t is less than or equal to Lr. This is the case of interest. Hence
we not only add t to the queue Q and mark it as visited, but we also check if path
inequalities (18) or (23) of the corresponding shortest path Prt are violated (lines
14-17) and add the violated inequality to the queue Qc.
Case 3: l[t] > Lr, this implies that all nodes reachable within hop distance Lr from
the root r have been explored. Therefore, we stop the current tree generation (lines
18-20) and return to line 3 where we select the next root and begin the process all
over.

We note a slight difference in the implementation of Algorithm 1 for separation
of integer and fractional solutions. Observe that in any incumbent solution, the
variables are either 0 or 1. Since constraints (18) or (23) are only violated when
left-hand sum is less than 1, only nodes with value x̃i = 0 in any given incumbent
solution would potentially lead to violated path constraints. Therefore, set of candidate
root nodes Rc in step 3 of Algorithm 1 consists only of nodes with value x̃i = 0 in the
current integer solution. Following this thought, in exploring a node in step 9, we
also limit it to unvisited neighbors whose x̃ variable value in the current incumbent
solution is zero. Hence, only nodes with zero solution value (x̃i = 0) feature in the
constructed trees. This helps us to detect and add all violated constraints for any
given integer solution and avoid spending time in unpromising branches.

The separation problem for the most violated cut of a fractional solution involves
solving a weighted shortest path problem in which the edge weights are given by
the LP relaxation values x̄. This can still be done in polynomial time through
a transformation to a directed graph as the weights are positive. This, however,
increases the graph size and the shortest path problem has to be solved for all
pairs of nodes. We instead adapt our BFS algorithm as a heuristic to separate a
violated fractional solution. The BFS trees are built based on the LP relaxation
values x̄i, i.e., candidate root nodes with smaller LP relaxation values are chosen
first for BFS tree generation. Also, nodes are explored in increasing order of their
neighbours’ LP-relaxation values, this means that the unvisited neighbours with
smaller LP relaxation values x̄i are visited first before other neighbours. This ensures

15

that the most violated constraints for all paths of a particular hop distance between
node pairs are separated. Furthermore, for LP relaxation solutions, we set limits
on the number of cuts added at which we end the call on the separation algorithm
and re-solve the problem. We set parameter for cut limit to 150 cuts, after trying
different values within the neighborhood of ±100. For integer solutions, we only set
this limit to stop the current BFS tree generation and return to line 3 to generate a
new BFS tree rooted at the next candidate root node. Nevertheless, this cut limit
is only applied after the optimisation process begins branching to ensure all violated
cuts are separated. This is because at the root node of a branch-and-bound tree,
many integer solutions are infeasible to the original problem, hence more constraints
would be potentially violated.

For the new reduced model (that is path-based model for DCNP-2 with the
aggregated continuous yij) mentioned in the latter part of Section 3.2, the separation
technique for the hop-based distances for constraints (29) would be similar to the
initial discussions made in this section. Specifically, the BFS tree construction would
be done in the same manner. For integer solutions, since only nodes with x̃i = 0
feature in the BFS tree, it suffices to check that ỹrt < f(l[t]) in line 17 of Algorithm
1 for node t at hop distance l[t], (1 < l[t] ≤ Lr) from root node r and then to add
the corresponding path inequality∑

i∈V (Prt)

f(l[t])xi + yrt ≥ f(l[t]) (31)

where violated. Using the same presentation made for the old path based model in
this section, we can adapt the BFS algorithm as a heuristic to separate fractional
solutions. One needs to check if∑

i∈V (Prt)

f(l[t])x̄i + ȳrt < f(l[t])

and then add the corresponding constraint (31). For edge-weighted distances, we
cannot use BFS trees. Instead, shortest path trees would need to be generated using
an appropriate algorithm such as Dijkstra’s while keeping track of the shortest paths
as well as their lengths. For integer solutions, shortest path trees can be generated
in a manner similar to the generation of BFS trees by using an auxiliary graph
of the input graph where nodes with x̃r = 1 are removed from the graph. Using
the information on the shortest paths, the path constraint (30) corresponding to the
shortest path from the root node to nodes in each shortest path tree can be separated
based on the same ideas presented for the hop-based version.

16

4.2. Valid inequalities

In addition to the lazy cuts, we propose two families of strong valid inequalities
that are not implied by the constraints in the formulations. These inequalities can
be viewed as {0, 1

2
} (or {0, 2

3
})-Chvátal-Gomory (CG) cuts, where the constraints

are multiplied by constants in the set {0, 1
2
} (or {0, 2

3
}), added together and then

rounded up. Note that this generalises the procedure that was provided in [14] and
we can obtain a broader class of inequalities. For the purpose of our computational
experiments, we focused on odd cycles of lengths 3 and 5 as larger holes are atypical
in small world networks.

4.2.1. Odd holes of length 3

Let H be an odd hole of length 3 in G = (V,E) with node set V (H) and edge
set E(H). Also for simplicity, let V (H) = {1, 2, 3} and E(H) = {12, 23, 13}.

Proposition 1. The following is a valid inequality for the path-based constraints in
E(H):

x1 + x2 + x3 + y12 + y13 + y23 ≥ 2 (32)

Proof. Consider the following valid inequalities for each edge in H:

x1 + x2 + y12 ≥ 1

x1 + x3 + y13 ≥ 1

x2 + x3 + y23 ≥ 1

Summing together we get 2x1 + 2x2 + 2x3 + y12 + y13 + y23 ≥ 3. Then by applying
{0, 1

2
}-CG procedure we obtain inequality (32). It is easy to show that inequality (32)

is not implied by inequalities (18)-(21) of DCNP-1b. The fractional point, xi = 1/2
for all i ∈ V (H), yij = 0 for all i, j ∈ E(H), is feasible to the LP-relaxation of
DCNP-1b but violates (32).

4.2.2. Odd holes of length 5

Let H be an odd hole of length 5 in G = (V,E) with node set V (H) and edge set
E(H). Also for simplicity, let V (H) = {1, 2, 3, 4, 5}, E(H) = {12, 23, 34, 45, 15} and
let P2(i, j) denote the path of length 2 connecting i and j in H. Formulation (17)-(21)
contains the following constraints:

path of length 1: xi + xj + yij ≥ 1 i, j ∈ E(H)

path of length 2: xi + xj + xk + yij ≥ 1 i, j /∈ E(H), k ∈ V (P2(i, j)) \ {i, j}

17

Proposition 2. The following is a valid inequality for path-based constraints for
paths of length 2 in E(H):

2x1 + 2x2 + 2x3 + 2x4 + 2x5 + y13 + y24 + y35 + y14 + y25 ≥ 4 (33)

Proof. Consider the following valid inequalities corresponding to paths of length 2
in H:

x1 + x2 + x3 + y13 ≥ 1

x2 + x3 + x4 + y24 ≥ 1

x3 + x4 + x5 + y35 ≥ 1

x1 + x5 + x4 + y14 ≥ 1

x2 + x1 + x5 + y25 ≥ 1

Summing together we get 3x1 +3x2 +3x3 +3x4 +3x5 +y13 +y24 +y35 +y14 +y25 ≥ 5.
Then applying {0, 2

3
}-CG procedure, we obtain inequality (33). Inequality (33) is

not implied by inequalities (18)-(21) of DCNP-1b. The fractional point, xi = 1/3 for
all i ∈ V (H), yij = 1/3 for all i, j ∈ E(H), yij = 0 for all i, j /∈ E(H), is feasible to
the LP-relaxation of DCNP-1b but violates (33).

Following the same procedure, the corresponding odd hole inequalities for DCNP-2b
formulation (22)–(28) are:

x1 + x2 + x3 + y112 + y113 + y123 ≥ 2 (34)

and

2x1 + 2x2 + 2x3 + 2x4 + 2x5 + y213 + y224 + y235 + y214 + y225 ≥ 4 (35)

Separation of the odd hole inequalities is based on simple enumeration whereby a
pool of cycles of given length is generated based on the cycle enumeration scheme
proposed in [35] and the corresponding odd hole inequalities are routinely checked
for violations.

4.3. Primal heuristic

Generation of good incumbent solution helps in pruning branch-and-bound nodes.
Thus we propose a primal heuristic which incorporates information from LP-relaxation
solutions into centrality-based ranking to arrive at a good primal bound. First, we
extend the budget requirement to B̂ = 1.5B instead of B, then based on the degree
centrality measure, we obtain the top B̂ ranking nodes. Using the LP-relaxation
values of those nodes as selection probability, we randomly select B distinct nodes.
We fix the x variables of the selected nodes to 1 (xi = 1) while the x variables for
the rest of the nodes are fixed to zero.

18

5. Computational experiments

5.1. Hardware & Software

Our computational study was performed on an HP computer equipped with
Windows 8.1 x64 operating system, an Intel Core i3-4030 processor(CPU 1.90 GHz)
and RAM 8GB. The models and algorithms were written in Python 3.6 (Anaconda 5)
using Gurobi 8.1.0 [36] as optimisation suite. We use NetworkX [37] for random graph
generation as well as for drawing and manipulating of the graphs. All experiments
were run with time limit of 3600 seconds thus the CPU times presented are in seconds.

5.2. Test Instances

Our test instances comprise both real-world and randomly generated graphs.
Real-world instances are a subset of networks from the Pajek and UCINET datasets
[38, 39]. All instances are connected graphs or the largest connected component of
the original graph if the original graph is disconnected.

• Hi-tech(|V | = 33, |E| = 91): Friendship network of employees in a hi-tech
firm [38, 39].

• Karate (|V | = 34, |E| = 78): A social network of a karate club at a U.S
University in the 1970s [38, 39, 40].

• Mexican (|V | = 35, |E| = 117) A network of relations (family, political and
business) of political elite in Mexico [38, 39].

• Sawmill (|V | = 36, |E| = 62): Communication network of employees within a
small enterprise [38, 39].

• Chesapeake(|V | = 39, |E| = 170): Chesapeake Bay Mesohaline network [38,
41].

• Dolphins (|V | = 62, |E| = 159): A social network that represents frequent
associations between dolphins in a community in New Zealand [38, 39, 42].

• Lesmiserable (|V | = 77, |E| = 254): Network of co-appearance of characters
in the novel Les Miserable [43]

• Santafe (|V | = 118, |E| = 200): Collaboration network of scientists at the
Santa Fe Institute [44].

• SmallWorld (|V | = 233, |E| = 994): A citation network [38].

19

• Sanjuansur (|V | = 75, |E| = 155), and attiro (|V | = 59, |E| = 128) : Social
networks of families in a rural area in Costa Rica [38, 39].

• LindenStrasse (|V | = 232, |E| = 303): Network of friendly relationships
between characters of the soap opera “Lindenstrasse” [38].

• USAir97 (|V | = 332, |E| = 2126): Transportation network of US airlines [38].

• NetScience (|V | = 379, |E| = 914): Co-authorship network of scientists in
science [39].

We also used 3 classes of random graphs which were generated using the networkX
random graph generators. For any graph in a particular class, 10 different instances
were generated and results averaged and compared across those instances. The three
classes are described as follows:

I Barabasi-Albert random graphs: The Barabasi-Albert model [45] is known
for its preferential attachment mechanism wherein nodes with high degree have
a higher propensity to be connected to a new node as the graph is grown.
The degree distribution, defined to be the fraction of nodes with degree k, of
the Barabasi-Albert model is known to follow a power law distribution pk ≈
k−3. Instances of this random graph class were generated using networkX
random graph generator with parameters n = |V | and p, which denote the
graph size and the number of edges to attach from a new node to existing
nodes respectively. For the Barabasi-Albert graph class, two sets of graphs
were generated namely, ba1 and ba2, both with parameter n = 100 but with
p = 5 and p = 10 respectively.

II Erdos-Renyi random graphs: Erdos-Renyi model [46] for random graph
generation defines a set of graphs having the same parameters n = |V |, the
size of the graph and p, probability of adding an edge between any two node
pairs. Starting with an empty graph with |V | nodes, the model creates a
random graph by adding an edge between every pair of nodes i, j ∈ V with
probability p. The degree distribution of Erdos-Renyi graphs follow the Poisson
distribution. Instances were generated using networkX random graph generator
with parameter n denoting the graph size and p denoting the probability of edge
creation. Two sets of graphs were generated using the Erdos-Renyi model. The
first which is named er1 has parameters n = 80 and p = 0.15 while the second
named er2 has parameters n = 200 and p = 0.05.

20

III Uniform random graphs: Given two input parameters n and m, the uniform
random graph model Gn,m returns a graph selected uniformly at random from
set of all graphs having n nodes and m edges. Three sets of instances were
generated using networkX random graph generator that takes n and m as
parameters. The sets of instances are named gnm1, gnm2 and gnm3.

The properties of the random graphs averaged over the 10 instances generated for
each set are summarised in Table 1.

Graph n m diam density (%) k-DistConn (%) efficiency(%)

ba1 100 475 4.0 9.6 99.9 49.6
ba2 100 900 3.0 18.0 100 58.4
er1 80 470 3.0 14.9 100 55
er2 200 1004 4.0 5.0 97.7 42.8
gnm1 200 1000 4.2 5.0 97.9 42.8
gnm2 300 1500 4.4 3.3 94.1 39.6
gnm3 300 2000 4.0 4.5 99.6 43.4

Table 1: Characteristics of each set of random graph instances

5.3. Parameter settings and preprocessing

For our computational experiments, we set the distance threshold L1 = 3 for
DCNP-1 models, and for DCNP-2 model, we set L2 to the diameter of the input
graph. For experiments on randomly generated graphs, we set budget B to 5% and
10% of graph size. We varied this percentage for the real world graphs from 1% to
10% of number of nodes in the input graph. The budget values for different instances
are specified on the corresponding tables and figures in Section 6. We also explored
the enhancements discussed in Section 3.1 for the base model as a preprocessing
stage prior to running the Gurobi optimiser while fixing values for nodes with degree
one to zero (xi = 0) for both models.

6. Results and Discussion

The computational experiments were performed for varying sizes (nodes, edges)
and classes of graphs with different edge densities and diameters. We compare
performance of the base formulation (DCNP-1a and DCNP-2a) implemented with the
suggested enhancements and our path-based formulations (DCNP-1b and DCNP-2b)

21

labeled as ECM and PBM respectively. In each table, along with graph characteristics
such as number of nodes, edges and diameter, we present computational times in
seconds and/or percentage gaps for both the ECM and PBM for different budget
settings. Columns labelled InitObj represent the initial objective values in the input
graph prior to solving the model. For distance function class 1, this is the percentage
of node pairs connected by paths of length at most L1 while for class 2, it is the initial
communication efficiency of the input graph. Similarly, columns labelled FinObj
represent the final objective value (in percentage) at the end of optimisation or
the best objective realised within the specified time limit. Columns labelled ECMt
and PBMt represent the computational time for the base and path-based models
respectively. Recall that all experiments were run with time limit of 3600 seconds,
hence, where the optimisation process could not terminate within the given time
limit, the corresponding entry is marked ′ > 3600′. Similarly, when a problem
instance runs out of memory, we indicate this by an “M”. For instances which were
unsolved within the specified time limit, the percentage gaps are calculated as

%gap = 100 · BestObj − FinalLowerBound
FinalLowerBound

%

For the synthetic graphs, the percentage gaps are averaged over all ten instances
generated for each graph class.

6.1. Comparisons of results for DCNP class 1 models (DCNP-1a and DCNP-1b)

B=0.05n B=0.1n

Graph n m diam InitObj FinObj ECMt (s) PBMt (s) FinObj ECMt (s) PBMt (s)

Hi-tech 33 91 5 88.3% 75.2% 0.12 0.2 55.5% 0.59 0.64
Karate 34 78 5 85.6% 57.8% 0.16 0.13 26.2% 0.11 0.11
Mexican 35 117 4 98.0% 88.6% 0.31 0.23 60.2% 0.33 0.39
Sawmill 36 62 8 63.0% 34.1% 0.08 0.06 21.4% 0.08 0.08
Chesapeake 39 170 3 100.0% 93.9% 0.6 0.61 69.1% 1.36 1.18
Dolphins 62 159 8 58.5% 43.4% 1.91 1.03 30.8% 1.91 1.71
Lesmiserable 77 254 5 85.4% 31.8% 0.52 0.92 11.0% 0.97 1.03
Santafe 118 200 12 32.9% 4.4% 0.2 0.45 1.7% 0.59 0.72
Sanjuansur 75 155 7 48.7% 28.9% 0.44 0.35 16.5% 0.39 0.58
Attiro 59 128 8 68.0% 43.4% 0.39 0.31 26.0% 0.67 0.61

Table 2: Results of ECM and PBM models with DCNP-1 on realworld networks (small size)

The first set of experiments provides comparison between the base model (ECM)
and the path-based model (PBM) for distance function class 1. Tables 2 & 3
summarise results for real world network instances. What we see from Table 2 is that

22

Graph n m diam InitObj B FinObj ECMt (s) PBMt (s)

USAir97 332 2126 6 84.8%

0.1n 5.64% > 3600 1277.38
0.05n 19.33% 426.88 377.83
0.03n 39.35% 952.22 692.04
0.02n 49.57% 515.49 582.16
0.01n 63.90% 456.41 240.67

LindenStrasse 232 303 13 12.1%

0.04n 4.70% 0.91 1.17
0.03n 6.15% 0.88 1.82
0.015n 8.32% 0.86 1.25

SmallWorld 233 994 4 95.2%

0.1n 6.27% 144.56 117.54
0.04n 19.45% 78.66 53.61
0.03n 23.41% 46.75 18.46
0.015n 40.56% 85.17 41.17

NetScience 379 914 17 13.3%
0.03n 4.32% 4.08 5.11
0.01n 8.43% 4.72 4.52

Table 3: Results of ECM and PBM models with DCNP-1 on real world networks (medium size)

the path based model (PBM) competes well with the base model for small graph sizes
(< 120 nodes). As the real-world network instances increase in size with increase
in initial objective, the performance of PBM over ECM becomes more glaring. For
example, in Smallworld and USAir97 graphs with initial %k-distConn greater
than 80%, the PBM on average is almost twice as fast as the ECM. In particular, for
budget setting of 0.1n, ECM is fails to solve the USAir97 instance terminating with
a 10.3% gap whereas this is solved under 1300 seconds by PBM (see Table 3). This
is also the case for the smaller class of Barabasi-Albert random network (ba1), in
which PBM is more than thrice as fast as the ECM for B=0.05n (PBMt=1263.18s,
ECMt=374.33s) and more than twice faster for B=0.1n (PBMt=1158.20s,
ECMt=418.94s). For the rest of the synthetic networks, both models are unable
to solve these instances within the specified time limit, thus we compare the average
percentage gaps for both models. The instances are labelled network-budget. For
instance, er1-5 represents the er1 network with 0.05n budget setting. From the
graphs in Figure 2, the average %gap for the ECM is larger than those of PBM.
In particular, the %gap for ECM is twice that of PBM for ba2-5 (ECM=3.75%,
PBM=1.24%); ba2-10 (ECM=10.32%, PBM=5.35%) and er1-10 (ECM=6.44%,
PBM=3.41%). Moreover, for ba2-5 and er1-5 random network classes, we observed
that among the 10 instances generated for each class, PBM successfully solved 30%
and 50%, respectively, while the success for ECM was 0% and 20%, respectively.

23

ba2-5 er1-5 er2-5 gnm1-5 gnm2-5
graph

0.00

0.02

0.04

0.06

0.08

A
v
g
 g

a
p

Formulation

ECM

PBM

(a) Budget=0.05n

ba2-10 er1-10 er2-10 gnm1-10
graph

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

A
v
g
 g

a
p

Formulation

ECM

PBM

(b) Budget=0.1n

Figure 2: Variation of average gaps of ECM and PBM models with DCNP-1 distance function on
some random network.(a) Budget=5% of graph size (b) Budget=10% of graph size. The average
gaps are taken over 10 problem instances for each network class.

Furthermore, percentage gap is observed to increase with the budget for both models.
The difference in average % gap for both models is seen to be even more pronounced
for larger instances of the uniform random graph model (see Figure 3). This is

gnm2-10 gnm3-5 gnm3-10
graph

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

A
v
g
 g

a
p

Formulation

PBM

Figure 3: Variation of average gaps of PBM with DCNP-1 distance function on uniform random
network instances. ECM gap remains at 100% for all instances of gnm3-5 and gnm3-10. It solves
50% of gnm2-10 graphs to an average percentage gap of 20% and the rest of instances have 100%
gap.

24

understandable as these instances are larger than the rest both in terms of number
of nodes and edges. Moreover, the topology of the network is characterised by a
small diameter and a large proportion of nodes being connected by very few hops.
Similar to other random network instances, the average percentage gap increases
with the budget for both models. For all instances and budget setting, PBM is seen
to outperform ECM. PBM in conjunction with the BFS cuts excelled particularly for
large edge densed instance (n=300, m=2000) where almost all node pair connections
are within short distances. We see the ECM struggling to solve the LP relaxations
as can be seen from the average gap of 100%, whereas with our approach, we are
still able to achieve competitive bounds and gaps in these instances.

6.2. Comparisons of results for DCNP class 2 models (DCNP-2a & DCNP-2b)

We now present results of computational experiments for the second DCNP
class. Recall that for this class, the objective is to minimise the communication
efficiency. We use the same set of real-world graphs with budget setting of 5% and
10% of graph size. For randomly generated graphs, we use the same instances of
Barabasi-Albert and Erdos-Renyi classes howbeit with budget setting of only 5%
of graph size due to the observation of computational difficulty when the budget
increases. Results for these experiments are summarised in Table 4 for real-world

B=0.05n B=0.1n

Graph n m diam InitObj FinObj ECMt (s) PBMt (s) FinObj ECMt (s) PBMt (s)

Hi-tech 33 91 5 50.8% 43.69% 0.47 0.45 32.81% 2.38 1.53
Karate 34 78 5 49.2% 33.74% 0.3 0.19 16.69% 0.38 0.28
Mexican 35 117 4 55.0% 49.06% 0.35 0.41 36.58% 0.92 0.71
Sawmill 36 62 8 39.9% 27.46% 0.75 0.44 14.17% 0.67 0.34
Chesapeake 39 170 3 60.4% 53.71% 0.25 0.27 35.87% 0.33 0.69
Dolphins 62 159 8 37.9% 29.33% 243.13 23.03 18.63% 609.81 24.73
Lesmiserable 77 254 5 43.5% 18.44% 3.02 3.85 7.88% 7.27 5.02
Santafe 118 200 12 27.0% 2.95% 14.07 3.41 1.39% 21.39 4.83
Sanjuansur 75 155 7 34.2% 25.90% 141.1 25.96 14.41% 224.22 28.62
Attiro 59 128 8 38.9% 31.11% 29.47 6.17 22.30% 175.81 41.93
SmallWorld 233 994 4 45.4% 9.28% 642.7 264.88 4.02% > 3600 822.96
NetScience 379 914 17 20.3% 2.09% M 1166 0.94% M 181.55

Table 4: Results of ECM and PBM models with DCNP-2 on realworld networks

network instances and in Figure 4 for random network instances. Analysing results
for the random network instances, it can be seen from Figure 4 that PBM is on
average 3 times faster than the ECM for all three sets of instances. Moreover for the
larger Erdos-Renyi class (er2-5), a striking observation is that while PBM achieves
an average percentage gap of 6.56%, ECM is seen to struggle with solving the linear
programming relaxation of these instances within the given time limits. We notice

25

ba1-5 ba2-5 er1-5
graph

0

500

1000

1500

2000

2500

A
v
g
 t

im
e
(s

)

Formulation

ECM

PBM

Figure 4: Variation of average computational times of ECM and PBM models with DCNP-2 distance
function on Barabasi-Albert and Erdos-Renyi network instances for B=0.05n

a similar trend for the real-world graphs, PBM competes well with ECM for the
smaller instances and indeed performs a lot better in terms of computational times
as the graph size increases (see Table 4). For instance, for Dolphins network, PBM
is more than 10 times faster for both budget settings B = 0.05n and B = 0.1n.
Similarly, for Santafe, Sanjuansur & Attiro networks, PBM is atleast 4 times
faster than ECM for both budget settings. Moreover, for the NetScience graph
which has a large diameter (diameter=17), we see that while PBM is able to solve
the problem to optimality in 1166 and 182 seconds respectively for budget settings
B = 0.05n and B = 0.1n, the ECM runs out of memory. This behaviour might
be related to the issue of sensitivity to large diameter of the base model (ECM) as
reported in [31] for a different class of the DCNP (Wiener index). For USAir97
and LindenStrasse, both models fail to close the gap within the time limit. In
particular, with LindenStrasse, both ECM and PBM struggle to obtain good dual
bounds leading to gaps of 108.6% and 102.3%, respectively. Moreover, comparison
with the results obtained for the same graphs earlier reported for the first distance
class provides strong insights for our discussion in Section 6.4.

26

6.3. Computational comparison of path-based models DCNP-1b and DCNP-2b version
for distance function class 1

As noted earlier in Section 3, the proposed path-based model DCNP-2b is a valid
formulation for distance function class 1. By exploiting the structure of distance
function 1, we arrived at a formulation which has fewer variables (DCNP-1b). We
compare the computational time of both formulations on real-world network instances
as summarised in Table 5. The column labelled PBMt(s) contains the running
time of the model with fewer variables (i.e DCNP-1b) while the column labelled
PBMLt(s) contains the running time for the model with more variables (i.e DCNP-2b
type). As can be seen in Table 5, the model with fewer variables is computationally
more competitive which supports the motivation for the reformulation.

Graph n m diam InitObj B FinObj PBMt (s) PBMLt (s)

USAir97 332 2126 6 84.8%

0.1n 5.64% 1277.38 2375.76
0.05n 19.33% 377.83 526.39
0.03n 39.35% 692.04 1054.04
0.02n 49.57% 582.16 925.6
0.01n 63.90% 240.67 474.64

SmallWorld 233 994 4 95.2%

0.1n 6.27% 117.54 156.78
0.05n 17.13% 202.87 170.95
0.03n 23.41% 18.46 25.71
0.015n 40.56% 41.17 77.65

NetScience 379 914 17 13.3%
0.03n 4.32% 5.11 14.76
0.01n 8.43% 4.52 7.8

LindenStrasse 232 303 13 12.1%

0.4n 4.70% 1.17 2.03
0.03n 6.15% 1.82 3.32
0.015n 8.32% 1.25 2.11

Table 5: Computational comparisons of DCNP-1b and DCNP-2b type model for distance function
class 1 on some real-world network instances

6.4. Result comparisons for DCNP-1 and DCNP-2 on some real-world graphs

In the next set of experiments, we present a comparison of results from both
classes of distance-based critical node detection problem. Comparing results for the
larger real-world graphs, we see that the optimisation solver seems to be having
a difficult time solving DCNP-2 in comparison with DCNP-1 (see Tables 3 & 4).
In particular, for SmallWorld graph with 10% budget, Gurobi is able to solve
DCNP-1 in less than 150 seconds whereas it takes over 3600 and 800 seconds to

27

solve DCNP-2 with the base model and path-based models respectively. Similarly,
for USAir97 with 5% budget, Gurobi is unable to solve both the base model and
path-based model for DCNP-2. However with DCNP-1, both models are solved under
430 seconds. Even more striking difference is observed for the Lindenstrasse and
NetScience graphs, even though both graphs have very small initial communication
efficiency (20%) and k-DistConn (13%). For the random networks, however, the
second distance function (2) appears to be less computationally demanding than
the first distance function (1). For example, while both models were solved to
optimality on just a single random network class (ba1) using distance function (1),
two additional classes (ba2-5 & er1-5) were solved using distance function (2).
These differences in computational ease confirm earlier observations that the choice
of objective metric is an important part of the critical node detection problem.

6.5. Comparison of results of path-based model with oddhole inequalities and primal
heuristics

We conclude our discussion by comparing the path-based model (PBM) with the
inclusion of the oddhole inequalities and primal heuristics (PBM+oddhole+heur).
We focused our computational tests on those instances which were unsolved by PBM
within the time limit This consists of the random graph instances with B = 0.1n
for DCNP-1 and USAir97 and LindenStrasse for DCNP-2 with B = 0.05n.
Results are reported in Table 6 for network classes where there is a significant
difference between PBM and PBM+oddhole+heur. We omit results for uniform
random graphs (gnm1, gnm2 & gnm3 instances) and Erdos-Renyi graph er2
where no improvement was observed. From the table, we observe some improvement
of version PBM+oddhole+heur with respect to PBM over the denser Barabasi and
Erdos-Renyi classes (Ba2 & er1) instances, where tighter bounds are realised with
the inclusion of the odd hole inequalities. However, across all of the uniform random
graphs (gnm1, gnm2 & gnm3) instances as well as over Erdos-Renyi er2 instances,
PBM and PBM+oddhole+heur behave in a similar way. A possible explanation for
this is the very few number of cycles reported in these graphs which could have
reduced the chances of having violated inequalities. With respect to the cycle
enumeration, we observed that about four times as many cycles were enumerated
for the Barabasi graph class Ba2 and twice as many cycles for Erdos-Renyi er1 thus
leading to more usercuts violations. A clear evidence of this structural difference
is in the edge densities of these graph classes. While er1 and Ba2 instances have
average densities of 14.9% and 18.2% respectively, the gnm1, gnm2, gnm3 and er2
instances have smaller average densities of 5.0%, 3.3%, 4.5% and 5% respectively.
For the DCNP-2 instances, PBM+oddhole+heur improved in lower bounds for the

28

PBM PBM+oddhole+heur

Instances n m density LB UB %gap LB UB %gap

er1(1) 80 456 14.4% 2400.65 2466 2.72% 2402.94 2466 2.62%
er1(2) 80 472 14.9% 2398.17 2484 3.45% 2408.61 2481 3.01%
er1(3) 80 474 15.0% 2394.56 2474 3.32% 2404.32 2483 2.90%
er1(4) 80 446 14.1% 2383.29 2474 3.81% 2393.60 2474 3.36%
er1(5) 80 475 15.0% 2398.21 2483 3.45% 2413.72 2481 2.79%
er1(6) 80 476 15.1% 2394.74 2482 3.60% 2413.25 2481 2.81%
er1(7) 80 474 15.0% 2395.02 2484 3.59% 2410.33 2481 2.93%
er1(8) 80 471 14.9% 2393.31 2479 3.58% 2407.59 2481 2.97%
er1(9) 80 447 14.1% 2378.37 2452 3.10% 2403.22 2452 2.03%
er1(10) 80 505 16.0% 2398.67 2475 3.14% 2417.92 2474 2.32%

ba2(1) 100 900 18.2% 3674.25 4005 6.58% 3735 4004 4.85%
ba2(2) 100 900 18.2% 3744 3914 4.54% 3753.14 3916 4.29%
ba2(3) 100 900 18.2% 3716 4004 7.29% 3722.8 4003 7.10%
ba2(4) 100 900 18.2% 3751.18 3913 4.31% 3759.25 3913 4.09%
ba2(5) 100 900 18.2% 3737 3916 4.79% 3741.44 4003 4.67%
ba2(6) 100 900 18.2% 3717.45 3916 5.26% 3745.66 3913 4.47%
ba2(7) 100 900 18.2% 3745.14 3915 4.51% 3769 3914 3.85%
ba2(8) 100 900 18.2% 3767.83 3915 3.85% 3790.42 3913 3.23%
ba2(9) 100 900 18.2% 3702.2 4005 5.77% 3755.38 3916 4.28%
ba2(10) 100 900 18.2% 3744.49 3912 4.47% 3744.76 3914 4.47%

USAir97 332 2126 3.9% 5703.83 10745.58 88.39% 5758.62 10745.58 86.60%
LindenStrasse 232 303 1.1% 1162.01 2350.18 102.25% 1150.86 2350.18 104.21%

Table 6: Results of PBM and PBM+oddhole+heur

29

USAir97 graph instance but fell behind of its counterpart PBM for LindenStrasse
graph.
With regards to the primal bounds, better upper bounds were recorded for some of
the Ba2 and er1 instances. Although this improvement is mild, it is indicative of
the potential of the primal heuristics.

7. Conclusion

In this paper, we considered two classes of distance-based critical node detection
problem namely, minimisation of node pairs connected within specific threshold
length and communication efficiency. We presented new integer programming formulations,
separation heuristics and valid inequalities that exploit the structure of the problems
to strengthen the formulations. Extensive computational experiments on both real-world
and synthetic graphs shed light on the scalability of our approach. The effectiveness
of our approach is more evident as the graph size grows, when the existing compact
model struggles to solve even the linear programming relaxation. Results also provides
insights into the influence of graph topology, objective metric and budget constraint
on the identification of critical nodes in a network. This emphasises the need for
appropriate choice of objective metric for specific application setting in order to
design efficient solution methods. In the future, it would be interesting to see
extensions of our approach to other distance functions as well as computational
comparisons of the different distance functions on more graphs. Since the distance-based
critical node detection problem is NP-hard, development of efficient heuristics to
handle larger instances is also a fruitful future research direction.

Acknowledgements

This material is based upon work supported by the Air Force Office of Scientific
Research under award number FA9550-17-1-0029. We also thank three anonymous
referees for their valuable comments that helped improve the exposition of the paper.

References

[1] Gouveia L, Leitner M. Design of survivable networks with vulnerability
constraints. European Journal of Operational Research 2017;258(1):89–103.

[2] Grötschel M, Monma CL, Stoer M. Design of survivable networks. Handbooks
in operations research and management science 1995;7:617–72.

30

[3] Gouveia L, Patŕıcio P, de Sousa A. Compact models for hop-constrained node
survivable network design: An application to mpls. In: Telecommunications
planning: Innovations in pricing, network design and management. Springer;
2006, p. 167–80.

[4] Botton Q, Fortz B, Gouveia L, Poss M. Benders decomposition for the
hop-constrained survivable network design problem. INFORMS journal on
computing 2013;25(1):13–26.

[5] Mahjoub AR, Simonetti L, Uchoa E. Hop-level flow formulation for
the survivable network design with hop constraints problem. Networks
2013;61(2):171–9.

[6] Gouveia L, Joyce-Moniz M, Leitner M. Branch-and-cut methods for the
network design problem with vulnerability constraints. Computers & Operations
Research 2018;91:190–208.

[7] Arulselvan A, Commander CW, Elefteriadou L, Pardalos PM. Detecting critical
nodes in sparse graphs. Computers & Operations Research 2009;36(7):2193–200.

[8] Arulselvan A, Commander CW, Pardalos PM, Shylo O. Managing network
risk via critical node identification. Risk management in telecommunication
networks, Springer 2007;:79–92.

[9] Nandi AK, Medal HR. Methods for removing links in a network to minimize
the spread of infections. Computers & Operations Research 2016;69:10–24.

[10] Borgatti SP. Identifying sets of key players in a social network. Computational
& Mathematical Organization Theory 2006;12(1):21–34.

[11] Boginski V, Commander CW. Identifying critical nodes in protein-protein
interaction networks. In: Clustering challenges in biological networks. World
Scientific; 2009, p. 153–67.

[12] Matisziw TC, Murray AT. Modeling s–t path availability to support disaster
vulnerability assessment of network infrastructure. Computers & Operations
Research 2009;36(1):16–26.

[13] Borgatti SP, Everett MG. A graph-theoretic perspective on centrality. Social
networks 2006;28(4):466–84.

31

[14] Di Summa M, Grosso A, Locatelli M. Branch and cut algorithms for
detecting critical nodes in undirected graphs. Computational Optimization and
Applications 2012;53(3):649–80.

[15] Veremyev A, Boginski V, Pasiliao EL. Exact identification of critical nodes
in sparse networks via new compact formulations. Optimization Letters
2014;8(4):1245–59.

[16] Shen S, Smith JC. Polynomial-time algorithms for solving a class of critical
node problems on trees and series-parallel graphs. Networks 2012;60(2):103–19.

[17] Shen S, Smith JC, Goli R. Exact interdiction models and algorithms
for disconnecting networks via node deletions. Discrete Optimization
2012;9(3):172–88.

[18] Di Summa M, Grosso A, Locatelli M. Complexity of the critical node problem
over trees. Computers & Operations Research 2011;38(12):1766–74.

[19] Addis B, Di Summa M, Grosso A. Identifying critical nodes in undirected
graphs: Complexity results and polynomial algorithms for the case of bounded
treewidth. Discrete Applied Mathematics 2013;161(16-17):2349–60.

[20] Arulselvan A, Commander CW, Shylo O, Pardalos PM. Cardinality-constrained
critical node detection problem. In: Performance models and risk management
in communications systems. Springer; 2011, p. 79–91.

[21] Dinh TN, Xuan Y, Thai MT, Pardalos PM, Znati T. On new approaches
of assessing network vulnerability: hardness and approximation. IEEE/ACM
Transactions on Networking (ToN) 2012;20(2):609–19.

[22] Shen Y, Nguyen NP, Xuan Y, Thai MT. On the discovery of critical links
and nodes for assessing network vulnerability. IEEE/ACM Transactions on
Networking (TON) 2013;21(3):963–73.

[23] Paton M, Akartunalı K, Higham DJ. Centrality analysis for modified lattices.
SIAM Journal on Matrix Analysis and Applications 2017;38(3):1055–73.

[24] Aringhieri R, Grosso A, Hosteins P, Scatamacchia R. Local search
metaheuristics for the critical node problem. Networks 2016;67(3):209–21.

[25] Aringhieri R, Grosso A, Hosteins P, Scatamacchia R. A general evolutionary
framework for different classes of critical node problems. Engineering
Applications of Artificial Intelligence 2016;55:128–45.

32

[26] Addis B, Aringhieri R, Grosso A, Hosteins P. Hybrid constructive heuristics for
the critical node problem. Annals of Operations Research 2016;238(1-2):637–49.

[27] Veremyev A, Prokopyev OA, Pasiliao EL. An integer programming framework
for critical elements detection in graphs. Journal of Combinatorial Optimization
2014;28(1):233–73.

[28] Schieber TA, Carpi L, Frery AC, Rosso OA, Pardalos PM, Ravetti MG.
Information theory perspective on network robustness. Physics Letters A
2016;380(3):359–64.

[29] Veremyev A, Prokopyev OA, Pasiliao EL. Critical nodes for distance-based
connectivity and related problems in graphs. Networks 2015;66(3):170–95.

[30] Aringhieri R, Grosso A, Hosteins P, Scatamacchia R. Polynomial and
pseudo-polynomial time algorithms for different classes of the distance critical
node problem. Discrete Applied Mathematics 2019;253:103–21.

[31] Hooshmand F, Mirarabrazi F, MirHassani S. Efficient benders decomposition
for distance-based critical node detection problem. Omega 2020;93.

[32] Salemi H, Buchanan A. Solving the distance-based critical node problem.
Optimization Online; 2020. http://www.optimization-online.org/DB_

HTML/2020/04/7751.html.

[33] Crucitti P, Latora V, Marchiori M, Rapisarda A. Efficiency of scale-free
networks: error and attack tolerance. Physica A: Statistical Mechanics and
its Applications 2003;320:622–42.

[34] Guérin R, Orda A. Computing shortest paths for any number of hops.
IEEE/ACM transactions on networking 2002;10(5):613–20.

[35] Liu H, Wang J. A new way to enumerate cycles in graph. In: Advanced Int’l
Conference on Telecommunications and Int’l Conference on Internet and Web
Applications and Services (AICT-ICIW’06). IEEE; 2006, p. 57–.

[36] Gurobi Optimization I. Gurobi optimizer reference manual. 2016. URL http:

//www.gurobi.com.

[37] Hagberg A, Swart P, S Chult D. Exploring network structure, dynamics, and
function using networkx. Tech. Rep.; Los Alamos National Lab.(LANL), Los
Alamos, NM (United States); 2008.

33

http://www.optimization-online.org/DB_HTML/2020/04/7751.html
http://www.optimization-online.org/DB_HTML/2020/04/7751.html
http://www.gurobi.com
http://www.gurobi.com

[38] Batagelj V, Mrvar A. Pajek datasets. http://vlado.fmf.uni-lj.si/pub/

networks/data/; 2006. Last accessed: 02-11-2018.

[39] Ucinet software datasets. https://sites.google.com/site/

ucinetsoftware/datasets/; n.d. Last accessed: 06-11-2018.

[40] Zachary WW. An information flow model for conflict and fission in small groups.
Journal of anthropological research 1977;33(4):452–73.

[41] Baird D, Ulanowicz RE. The seasonal dynamics of the chesapeake bay
ecosystem. Ecological monographs 1989;59(4):329–64.

[42] Lusseau D, Schneider K, Boisseau OJ, Haase P, Slooten E, Dawson SM.
The bottlenose dolphin community of doubtful sound features a large
proportion of long-lasting associations. Behavioral Ecology and Sociobiology
2003;54(4):396–405.

[43] Knuth DE. The Stanford GraphBase: a platform for combinatorial computing.
AcM Press New York; 1993.

[44] Girvan M, Newman ME. Community structure in social and biological networks.
Proceedings of the national academy of sciences 2002;99(12):7821–6.

[45] Barabási AL, Albert R. Emergence of scaling in random networks. Science
1999;286(5439):509–12.

[46] Erdös P, Rényi A, et al. On random graphs. Publicationes mathematicae
1959;6(26):290–7.

34

http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
https://sites.google.com/site/ucinetsoftware/datasets/
https://sites.google.com/site/ucinetsoftware/datasets/

	Introduction
	Problem definition
	Integer programming formulations
	Base IP formulations
	New path-based formulation

	Solution Methods
	Separation algorithm
	Valid inequalities
	Odd holes of length 3
	Odd holes of length 5

	Primal heuristic

	Computational experiments
	Hardware & Software
	Test Instances
	Parameter settings and preprocessing

	Results and Discussion
	Comparisons of results for DCNP class 1 models (DCNP-1a and DCNP-1b)
	Comparisons of results for DCNP class 2 models (DCNP-2a & DCNP-2b)
	Computational comparison of path-based models DCNP-1b and DCNP-2b version for distance function class 1
	Result comparisons for DCNP-1 and DCNP-2 on some real-world graphs
	Comparison of results of path-based model with oddhole inequalities and primal heuristics

	Conclusion

