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Abstract

In this paper, we study the one-dimensional multi-period cutting stock problem with setup
costs on cutting patterns. We present pattern-based and pseudo-polynomial formulations
for the problem. Reformulations are also proposed to improve the lower bounds. We then
present a thorough theoretical analysis to establish the strength of the various proposed
formulations in comparison to each other. Finally, a computational analysis is conducted
to complement the theoretical analysis and provide further insights with respect to the
complexity and strength of the formulations.

Keywords: Combinatorial Optimization, Cutting, Cutting Pattern Setups, Strong
Reformulations.

1. Introduction

The cutting stock problem (CSP) was one of the problems identified by Kantorovich
in his 1939 paper entitled “Mathematical methods of organizing and planning production”
(later published in Kantorovich (1960)). Among the very first techniques to emerge from
operational research to be applied in practice, the CSP is concerned with determining the
best way of cutting a set of objects into smaller items, often with a large potential of economic
savings. The CSP is encountered in a wide variety of industrial applications in the steel,
wood, glass and paper industries (Ben Amor and Valério de Carvalho, 2005).

The cutting process in the CSP may be affected by various factors, particularly by the
number of times one has to switch between different cutting patterns, e.g., changing the
positions of the cutting knives (Wuttke and Heese, 2018). Such adjustments often interrupt
production and/or may impose a setup cost every time a different cutting pattern is used.
Therefore, it is often desirable to have a cutting plan composed of fewer cutting patterns.
The problem that focuses only on minimizing of the number of different cutting patterns
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while satisfying demands is known in the literature as the Pattern Minimization Problem
(PMP) (Vanderbeck, 2000). In the remainder of the paper, the CSPs will be used specifically
to denote the single period problem with setups costs on the cutting patterns. We note that
even this single period version of the problem is known to be NP-hard (McDiarmid, 1999).

Considering the CSPs with multiple time periods (Trkman and Gradisar, 2007; Tomat
and Gradisar, 2017), there is a strong relevance to the lot-sizing problem, which has been an
area of very active research over the last six decades (Brahimi et al., 2017), offering significant
cost savings to the manufacturing sector by generating the least costly production plan over a
planning horizon with multiple periods. The lot-sizing problem deals with key decisions such
as when and how much to produce or stock, while respecting limitations such as satisfying
demands on time. The body of research devoted to the topic (and solution methodologies
therein) is extensive, ranging from polyhedral methods such as extended formulations and
valid inequalities (Doostmohammadi and Akartunalı, 2018; Gruson et al., 2019; Zhao and
Zhang, 2020) to decomposition and relaxations (Van Vyve et al., 2014; de Araujo et al.,
2015; Akartunalı et al., 2016), and heuristics designed for real-world problems (Fiorotto
et al., 2017; Wu et al., 2018; Absi and van den Heuvel, 2019), as well as stochastic and
robust approaches to tackle uncertainty in a broad range of settings (Alem et al., 2020;
Attila et al., 2021; Quezada et al., 2020).

Integrated lot-sizing and cutting stock problems were recently classified in the extensive
review of Melega et al. (2018), where the authors essentially identify three levels of produc-
tion, with the first level associated to the purchase/manufacture of object(s), the second
level to the cutting process of objects into pieces, and third level to production of final
products from pieces. In their classification scheme, the case that considers exclusively the
second level, with multiple time periods in a planning horizon, the inventory of cut pieces
providing the link between different periods and cutting of objects planned for each period
is called the Multi-Period Cutting Stock Problem (MPCSP). It is also worth noticing that
when more than one level is considered, with multiple time periods in a planning horizon,
Melega et al. (2018) classify the problem as the Integrated Lot-sizing and Cutting Stock
Problem.

In this paper, we consider the MPCSP with setup costs on cutting patterns and a one-
dimensional cutting process, which will hereafter refer to it as the MPCSPs. Although
integrated decision problems have gained more attention over the last decade, there are only
a small number of papers dealing with setups on cutting patterns with multiple periods in
the literature. Moreover, most of this literature simply uses the multi-period adaptation of
the well-known CSP formulations of Gilmore and Gomory (1961) and Kantorovich (1960).
To the best of our knowledge, only recently, Ma et al. (2019) presented, for the first time,
a multi-period adaptation (including setups) of the arc-flow model of Alves and Valério de
Carvalho (2008a).

Our paper provides important contributions in this domain. First, we present three for-
mulations to provide a rather complete picture of alternative formulations for the MPCSPs.
To the best of our knowledge, two of these MPCSPs formulations are proposed here for the
first time in the literature : the ones inspired by the CSP models of Johnston and Sadinlija
(2004) and Delorme and Iori (2019). Secondly, we consider strengthening the formulations
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by using extended reformulations. More specifically, we use the facility location reformula-
tion of Krarup and Bilde (1977). Although this is an effectively used method in the lot-sizing
domain, its application to the MPCSPs is not trivial due to cutting patterns. Thirdly, we
present a thorough theoretical analysis investigating the strength of various formulations
given in the paper, providing a comparative ranking with respect to lower bounds to be
expected from the formulations. Finally, to complement our theoretical analysis with an
understanding of performance in practice, a computational analysis is provided.

We remark that although the concepts of the cutting-stock and lot-sizing formulations
are used, the formulations proposed are not direct adaptations from the literature of these
individual problems. Considering the point of view of the CSP, including setups on the
single period case is already an area of extensive research (see Subsection 2.2) and some of
the formulations proposed in the paper are presented for the first time in the literature, even
considering their simplified single period version. From the lot sizing problem point of view,
since we are considering the production of cutting patterns (which contains a set of items),
the classical production variables of the Uncapacitated Lot Sizing (ULS ) problem had to
be modified and the theoretical results for the ULS are no longer valid. As the adaptations
are not direct, an interesting problem arises, which is different from the classical ULS and
has not been fully explored in the literature. Additionally, it is important to highlight that,
to the best of our knowledge, the facility location reformulation has never been applied to
such a problem, and it presents high quality lower bounds.

It is worth remarking that in the MPCSPs addressed in this study, the setup cost only
reflects the direct or indirect costs related to a setup, for example, when changeovers imply an
unavoidable loss of material (Arbib and Marinelli, 2007), or when several workers are needed
to perform the setup, which implies high labor cost (Kolen and Spieksma, 2000), or when a
setup involves a costly craftwork (Bonnevay et al., 2016). The considered setup costs do not
include penalty costs for lost production capacity, since this should be taken into account
via the introduction of setup times, which may impact time-related parameters or indicators
(such as due dates, throughput, production capacity). In general, when considering practical
applications, production capacity and its consequent constraints must be considered when
integrating cutting stock and lot sizing problems. Since the research developed in this paper
does not consider production capacity, it is limited to some exceptional practical applications,
and it is also relevant as a relaxation of several real problems, where production capacity is
apparent.

The remainder of the paper is organized as follows: a literature review about models and
methods related to our problem, as well as a discussion regarding the impact of setup costs,
setup times and production capacity, is presented in Section 2. The three formulations and
their descriptions are presented in Section 3. Strengthening the formulations using the facil-
ity location reformulation is discussed in Section 4. Our main theoretical results evaluating
the strengths of different formulations are presented in Section 5, followed by computational
results and discussion in Section 6. Finally, in Section 7, we make our concluding remarks
and discuss some potential directions for future research.
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2. Literature review

In this section, we present a literature review related to studies that address the cutting
stock problem with setup on the cutting patterns. The problem of minimizing the number
of different cutting patterns in the final solution of a CSP has been considered since the
1970s. Most of the papers dealing with setups on cutting patterns are an extension of the
Single Stock Size Cutting Stock Problem, defined in the typology presented in Wäscher et al.
(2007). In this literature review, we firstly present a discussion regarding setup costs, setup
times and production capacity. Afterwards, we discuss papers that present studies for the
single period cutting stock problem with setups on cutting patterns (CSPs), and finally, we
discuss papers regarding studies for the multiple period cutting stock problem with setups
on cutting patterns and, in this case, there are papers on the MPCSPs as well as papers
on the integrated lot-sizing and cutting stock problem (more than one level according to
Melega et al. (2018)) that also consider setups on cutting patterns.

2.1. Setup costs, setup times and production capacity

Firstly, it is important to understand the complex trade-offs present in the objective
function. In the context of the classical ULS problem, a setup cost indicates the fixed
cost borne to start production, and it has a clear trade-off with inventory costs, since the
larger the amount produced in a period to fulfill future demand, the smaller the incidence
of fixed costs and the larger the inventory costs. In the context of this paper, the setups
refer to the action of positioning cutting knives. A clear trade-off exists between solutions
that diversify patterns (more setups) to cut fewer objects, and solutions with fewer patterns
(less setups) that perhaps spend more in terms of objects cut. Additionally, a clear trade-
off exists between solutions that bring forward production (increasing inventory) to have
better combinations of items in cutting patterns, which might decrease the total use of raw
material by cutting fewer objects (Vanzela et al., 2017). However, the trade-off between
setups and inventory costs is not as clear as is for the classical ULS problem. The number
of knives setups (number of setups) may only loosely, or not at all, be related to production
volumes (setup run duration) and hence to inventory levels. This point is discussed in the
paper of Diegel et al. (2006), where the authors attempt to avoid the problem of short setup
runs in the cutting plan (which maps to avoiding small values for production amounts of
each cutting pattern in each period in our problem context.) According to the authors, on
average, fewer number of setups mean longer setup runs, which increase the inventory levels.
However, individual setup runs may not change uniformly. As the number setups decreases,
some setup runs become longer, but others may remain as is, or even become shorter. It is
also worth mentioning that we are aware of only one paper that considers a multi-objective
approach for a setting with multiple periods and setups on cutting patterns (Oliveira et al.,
2021), albeit without an elaboration on the points we have discussed.

Secondly, it is important to distinguish the impact of setup time from the impact of
setup cost. Setups on cutting patterns have two types of major impact on production: one
is the time a setup requires, which may impact on time-related parameters or indicators (due
dates, throughput, production capacity, etc.); another is a direct or indirect cost derived from
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setup operations. Regarding production capacity, when considering single-period problems,
demand is not time-indexed and hence, it is natural in this case to minimize the production
time, that is, to maximize throughput. For this reason, the absence of production capacity
constraints is common in the single-period case. When considering multiple cutting stock
problems, production capacity and its consequent constraints must be considered to model
most of the practical applications. The resource involved in the capacity constraint is time,
including time spent on the number of setups and setups run duration. It is worth mentioning
that the inclusion of production capacity constraints makes the problem much more difficult
to solve and in general, heuristic procedures are employed.

2.2. Single period cutting stock problem with setups on cutting patterns

Regarding some important achievements from the literature, we highlight the heuristic
approaches of Haessler (1988) for the one-dimensional trim-loss problem for the paper and
film industries, which minimizes waste and setup costs of changing cutting patterns. The
first branch-and-price-and-cut algorithm for the PMP is presented in Vanderbeck (2000)
which solves a compact formulation for the CSPs. The formulation minimizes the number
of different cutting patterns, that can be seen as an analogy to the setup on cutting pat-
terns. Umetani et al. (2003) presented a mathematical model to the CSPs in which the
deviation of the cut items from the demand is minimized, while the total number of differ-
ent cutting patterns is considered as a constraint in the model and equal to a specific value.
The proposed model is solved by an iterated local search algorithm with adaptive pattern
generation, within some practical constraints on the generation of cutting patterns. Later,
Yanasse and Limeira (2006) proposed a bi-objective approach for the CSPs and Golfeto
et al. (2009) introduced an symbiotic genetic algorithm. Aloisio et al. (2011a) addressed
the PMP for special instances, where no more than two items fit in an object in stock.
They explored two formulations for the problem, and derived various results concerning the
existence of specific solutions. Aloisio et al. (2011b) discusses two formulations to the PMP,
which consists of the formulation proposed by Vanderbeck (2000) and the reformulation
obtained by applying the Dantzig-Wolfe decomposition. The authors show that the linear
relaxation of the reformulation is stronger and as practical as the original formulation in
terms of computational effort.

A literature review of mathematical models and solution approaches to the CSPs is
presented in Henn and Wäscher (2013). Since then, more papers have been published.
Cui et al. (2013) studied the two-dimensional CSPs where the main objective is input
minimization, and pattern minimization is an auxiliary objective. The authors proposed
a sequential grouping heuristic, which essentially selects the items that can be used to
generate the next cutting pattern. The work of Song and Bennell (2014) focused on irregular
shapes in the two-dimensional problem and employed both column generation and sequential
heuristics as solution methods to exploit the problem structure. The model minimizes the
number of stock sheets used, while meeting the demand of items and within a constraint
that limits the number of possible cutting pattern to a given value, as in (Umetani et al.,
2003). In de Araujo et al. (2014) and Aliano Filho et al. (2018), the authors proposed a
bi-objective approach for the one-dimensional CSPs, minimizing both the number of stock
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objects and the number of cutting patterns used. The work of Cui et al. (2015) used a
two-phase approach to solve the one-dimensional CSPs, where the first phase essentially
generates promising cutting patterns based on a sequential grouping process and the second
phase solves a mixed integer programming model.

Some papers consider setup costs based on practical cases, where the quantification
of the setups costs is precisely supported, i.e., setups are (or can be) priced with good
precision. Arbib and Marinelli (2007) consider a real cutting process in a glass factory,
where changeovers imply an unavoidable loss of material, which can be evaluated with great
accuracy since cuts are done while the glass float moves forward. In Kolen and Spieksma
(2000), a practical case that arises in abrasive paper production is considered, where every
setup involves a time-consuming operation that can be associated with labor cost. Bonnevay
et al. (2016) study a paper printing application, where setup involves a costly craftwork (print
composition).

2.3. Multiple period cutting stock problem with setups on cutting patterns

Studies of the MPCSPs in the literature are scarce. The paper by Aktin and Özdemir
(2009) with an application in medicine proposes an extension of the CSP model of Gilmore
and Gomory (1961, 1963), and involves a generalized cost function with material, setup,
labor and delay costs. The authors propose a two-stage solution method, with the first
stage estimating the total number of cutting patterns, as well as their generation, while
the second stage simply solves the model. The second study consists of an application in
the furniture industry (Gramani and França, 2006). There is a time limit capacity for the
use of the cutting machine, where the time spent to cut one plate depends on the cutting
pattern used in this plate. The authors also use the classical CSP model of Gilmore and
Gomory (1961, 1963) with an objective to minimize trim-loss, along with inventory and
setup costs. The solution approach uses a shortest path reformulation of the problem.
Non̊as and Thorstenson (2000, 2008) studied the one-dimensional cutting stock problem in
a Norwegian company that produces off-road trucks. The mathematical model consists of
a non-linear formulation with a continuous time horizon and a concave objective function,
which minimizes holding costs and setup costs associated with cutting patterns. As solution
methods, two global search procedures and three local search procedures are presented.

To the best of our knowledge, Ma et al. (2018) is the only paper that considers setup costs,
albeit without capacity constraints, in multi-period settings. The authors propose a math-
ematical model based on Gilmore and Gomory (1961, 1963), and a dynamic programming-
based heuristic. The approaches were applied to real data of a problem that arises in a
company that produces extra-high-voltage and high-voltage switch equipment. According
to the authors, the computational results have significance for the company because it en-
ables them to reduce total cost and enhance competitive advantages. The authors highlight
that the studied problem has applications in a range of industries. In a more recent paper,
Ma et al. (2019) studied the MPCSPs with setup costs and production capacities incor-
porating setup duration. Two mathematical models, based on the classical CSP model of
Gilmore and Gomory (1961, 1963) and the arc-flow formulation of Alves and Valério de Car-
valho (2008a), are presented and two heuristics, based on column generation and dynamic
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programming are proposed. Their computational experiments highlight the efficiency of the
formulation based on Gilmore and Gomory (1961, 1963) due to the fast increasing size of
the arc-flow model. The authors also present a statistical analysis regarding the changes in
the setup cost and the production capacity. Ma et al. (2021) extend the previous work of
Ma et al. (2019) by considering the production replanning problem according to demand
realization which might be different from the predicted demand.

As pointed out by Melega et al. (2018), in some industrial applications, delivering the
orders on time can be far more important than reducing the resulting waste and the cost
of cut objects. Models that consider due dates in the formulation better describe the need
of the industry in such a case (Reinertsen and Vossen, 2010; Arbib and Marinelli, 2014;
Braga et al., 2015). These papers consider production capacity limits and combine the
standard objective of minimizing the number of rolls used with a scheduling term penalizing
the tardiness of the cutting operations. This problem is referred to in the literature as the
combined Cutting Stock and Scheduling Problem. The multi-period setting also appears in
these papers, but a shorter planning horizon is considered. In general, they assume that it
takes exactly one unit of time to cut a stock roll.

As mentioned earlier, the multi-period cutting stock problem studied in this paper ad-
dresses multiple periods in a finite planning horizon, the inventory of items which comprises
the link between periods, and the cutting process of objects in each period. In this way,
the decision-making of such processes might occur at different levels of the supply chain.
For instance, the planning managers are usually responsible for the production planning of
the items in order to meet the demand, whereas the machine manufacturers perform the
optimization of the cuts in the cutting process. However, the literature have pointed out
computational results demonstrating the benefits of an integrated approach instead of taking
decisions separately (Hendry et al., 1996; Arbib and Marinelli, 2005; Gramani and França,
2006; Gramani et al., 2009; de Araujo et al., 2014; Vanzela et al., 2017). As follows, we next
review those studies in which setup on cutting patterns appears in the integrated lot-sizing
and cutting stock problem.

Ghidini et al. (2007) present a mathematical model for an application in the furniture
industry that addresses setup cost on the cutting patterns and production capacities inte-
grating setup duration, which is solved by a column generation procedure. Santos et al.
(2011) approach a multi-period cutting stock problem with setup cost and time, in addition
to the capacity of the cutting process, to model a real-world problem from the furniture
industry. The model is solved by an optimization package considering real data from the
factory and different sets of cutting patterns. In an application in the aluminum industry,
Suliman (2012) presents a non-linear mathematical model, which considers setup costs for
cutting patterns, as well as a capacity constraint in terms of the number of total cuts. There
are also constraints to manage the inventory availability of objects with costs related to their
inventories. To solve the problem, the authors present an algorithm based on a lot-sizing ap-
proach, where for each period, starting with the last one, the products and the quantities to
be produced are established, as well as the cutting patterns to be used. Oliveira et al. (2021)
analysed a multi-objective integrated lot-sizing and cutting stock problem and proposed a
goal programming model that takes into account six different goals representing the interests
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of different stakeholders in the manufacturing process. The model is solved by a column
generation based heuristic. Christofoletti et al. (2021) propose an integrated lot-sizing and
three-dimensional cutting stock problem from the mattress industry. It considers setup cost
and time, as well as limited production capacity. A mathematical model of mixed integer
programming was proposed and solved with an optimisation package. Computational results
based on real data are presented.

Two other papers also deal with setups related to the cutting patterns. However, they use
setup variables to estimate the setup time in the capacity constraints (Alem and Morabito,
2013) and minimum object length to use a cutting pattern (Silva et al., 2015). Therefore,
these studies do not address setup cost. Alem and Morabito (2013) propose a two-stage
stochastic mixed optimization model to represent the production planning of a small-scale
furniture industry. The authors consider stochastic demand and setup times and use robust
optimization tools to solve the integrated problem. Computational tests were performed
using real and simulated data. Silva et al. (2015) deal with the problem observed in a
textile factory, in which the mathematical model comprises the CSPs, considering upper and
lower bounds on demand for each piece, with a setup constraint for each cutting pattern to
guarantee a minimum length to use that cutting pattern. The model is solved by a column
generation procedure.

3. Problem definition and mathematical formulations

We make the following assumptions in defining and formulating to the MPCSPs. There
is a finite planning horizon represented by a set T of periods, and a set P of item types,
for which external demand is known. We consider the one-dimensional case, i.e., only one
dimension is taken into account in the cutting process, and assume there is a single object
type of length L, which is available in stock in an unlimited quantity. In each period t ∈ T ,
an item type i ∈ P of given length li has to be cut from objects to meet demand dit. W.l.o.g.,
we assume that L ≥ li, L and li are all integral, and li > 1 holds for all i. A cutting pattern
is defined as a way a stock object is cut to produce the demanded items. Every time a
different cutting pattern is cut, a setup cost is incurred. We do not consider setup time and
capacity constraints.

As the demand is known for all periods, the produced items can be brought forward
to a certain period t at the cost of storing them. Backorder is not allowed. W.l.o.g., we
also assume zero inventory for all items at the beginning of the horizon, otherwise, for
each item with a positive initial inventory, this quantity can be removed from its respective
demand and the value of the initial inventory can be set to zero. Therefore, the MPCSPs
consists of determining the cutting patterns and the number of times each cutting pattern
will be cut (i.e., the cutting pattern frequency) in each period of the planning horizon to
satisfy customer demands, while minimizing the costs associated with cutting pattern setup,
inventory of items, and objects consumed.

We also define the following notation before presenting the formulations.

Sets
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T set of periods (index t);
P set of item types (index i);
J set of feasible cutting patterns indices;
Hi set of integer frequencies for item type i in object of length L.
Mt set of cutting pattern frequencies needed to satisfy demands from period t to |T |.

Input Parameters

L length of the objects;
li length of item type i;
dit demand of item type i in period t;
ct setup cost of cutting patterns in period t;
hit unit holding cost of item type i at the end of period t;
c material cost per object;
aijt number of items i obtained from cutting pattern j in period t.

For any period t, note that each cutting pattern j can be described by a vector Aj =
(a1jt, a2jt, ..., a|P |jt)

T . Obviously, a cutting pattern j is valid if a1jtl1+a2jtl2+...+a|P |jtl|P | ≤ L
holds.

In this paper, we consider |Mt| = max
i,j, aijt>0

{⌈∑|T |
τ=t diτ
aijt

⌉}
, representing an upper bound

for the frequency of the cutting patterns in period t.

General Decision Variables

xjt number of objects cut according to cutting pattern j in period t;
yjt binary variable, 1 if cutting pattern j is used in period t, 0 otherwise;
sit amount of inventory of item type i at the end of period t.

The formulations proposed in this paper are presented in the following order: Section
3.1 shows a column generation-based formulation that consists of a multi-period adaptation
of the classical CSP model of Gilmore and Gomory (1961) (denoted by AGG); Section 3.2
displays a knapsack-based formulation inspired by the CSP model of Johnston and Sadinlija
(2004) (denoted by AJS ); Section 3.3 presents an arc-flow-based formulation motivated by
the reflect formulation of Delorme and Iori (2019) (denoted by ARE ). To the best of our
knowledge, two of these formulations (AJS and ARE ) are proposed here for the first time in
the literature. In Section 4, we will also propose facility location reformulations of these three
formulations, which, to the best of our knowledge, has not been considered before for this
problem setting. It is worth remarking that we have also implemented other formulations,
such as a knapsack-based formulation motivated by Vanderbeck (2000) and an arc-flow-
based formulation inspired by Alves and Valério de Carvalho (2008a). However, for the
sake of keeping the exposition in this paper concise and focused, we did not include these
formulations in this paper, due to their not promising computational results.
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3.1. Adapted Gilmore and Gomory formulation (AGG)

This is a multi-period extension of the CSP formulation of Gilmore and Gomory (1961)
with setups on cutting patterns. This formulation is that most often used in the literature
for multiple periods extensions of the CSP and can be adapted to our problem as follows:

AGG model

Minimize
∑
t∈T

∑
i∈P

hitsit +
∑
t∈T

∑
j∈J

(ctyjt + cxjt) (3.1)

subject to:

xjt ≤ |Mt|yjt ∀j, ∀t (3.2)

si,t−1 +
∑
j∈J

aijtxjt = dit + sit ∀i, ∀t (3.3)

xjt ∈ Z+, yjt ∈ {0, 1} ∀j, ∀t (3.4)

sit ≥ 0 ∀i, ∀t (3.5)

The objective function (3.1) is the minimization of the holding costs of the items, the
setup costs for the cutting patterns and the material costs of objects. Constraints (3.2) force
yjt to be 1 if objects are cut according to the cutting pattern j in period t, i.e., xjt > 0.
Constraints (3.3) represent the inventory balance constraints of items. Constraints (3.4) and
(3.5) indicate the domains of the decision variables.

3.2. Adapted Johnston and Sadinlija formulation (AJS)

Johnston and Sadinlija (2004) proposed a new compact formulation for the CSP. Ex-
tending their ideas to the MPCSPs and applying it to a formulation inspired by Vanderbeck
(2000), we first define binary variables rijht, which are 1 when item type i appears in pattern
j in period t with multiplicity h, and 0 otherwise, and then a new integer variable pijht that is
equal to xjt if rijht = 1 and 0 otherwise. We note that h is bounded by |Hi|. In other words,
for h 6∈ Hi, where Hi = {1, 2, ..., |Hi|}, no feasible cutting patterns are generated, thus, the
corresponding binary variable can be excluded from the model for all cutting patterns j.
Additionally, the size of the set J needs to be defined in advance and in this paper, it will be
defined according to the solution of the AGG formulation. The formulation is then as follows:

AJS model

Minimize
∑
t∈T

∑
i∈P

hitsit +
∑
t∈T

∑
j∈J

(ctyjt + cxjt) (3.6)
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subject to: ∑
i∈P

∑
h∈Hi

hrijhtli ≤ Lyjt ∀j, ∀t (3.7)

xjt ≤ |Mt|yjt ∀j, ∀t (3.8)

si,t−1 +
∑
j∈J

∑
h∈Hi

hpijht = dit + sit ∀i, ∀t (3.9)

pijht − |Mt|rijht ≤ 0 ∀i, ∀j, ∀h, ∀t (3.10)∑
h∈Hi

rijht ≤ yjt ∀i, ∀j, ∀t (3.11)∑
h∈Hi

pijht ≤ xjt ∀i, ∀j, ∀t (3.12)

∑
h∈Hi

pijht ≥ xjt − |Mt|

(
1−

∑
h∈Hi

rijht

)
∀i, ∀j, ∀t (3.13)

pijht ∈ Z+, rijht ∈ {0, 1} ∀i, ∀j, ∀h ∀t (3.14)

xjt ∈ Z+, yjt ∈ {0, 1} ∀j, ∀t (3.15)

sit ≥ 0 ∀i, ∀t (3.16)

The objective function (3.6) and setup constraints (3.8) are identical to previous formu-
lation. Constraints (3.7) ensure that the items cut in an object do not exceed its length,
considering the multiplicity of each item in the cutting pattern. Constraints (3.9) represent
the inventory balance, where the amount produced is represented by the sum of the multi-
plicity of each item type i over all cutting patterns j. Constraints (3.10) guarantee that only
one rijht and its corresponding pijht can be selected for each (i, j, t) tuple because, at most,
one rijht can be chosen due to constraints (3.11). Constraints (3.12) and (3.13) guarantee
that if pijht is strictly positive, then it must be equal to xjt. Finally, constraints (3.14),
(3.15) and (3.16) represent the variable domains.

3.3. Adapted Reflect formulation (ARE)

In Delorme and Iori (2019) a computational enhancement of the CSP arc-flow model,
first proposed by Wolsey (1977) and later explored by Valério de Carvalho (1999, 2002),
called Reflect arc-flow formulation, is proposed. In our study, the Reflect formulation is
extended to the multi-period problem and a cutting pattern setup environment, based on
the PMP arc-flow formulation of Alves and Valério de Carvalho (2008b), is introduced.

As described in Ma et al. (2019), the multi-period PMP arc-flow problem is formulated
over acyclic digraphs Gnt = (V,Ant), ∀n ∈ Mt and ∀t ∈ T , where Mt = [1, 2, ..., |Mt|]. A
vertex in V corresponds to an integer position within the object, with vertex 0 representing
the leftmost border of the object and L the rightmost (hence, |V | = L + 1). An arc (d, e)
in Ant represents an item of width e− d placed at a position d of the leftmost border of the
object. The unused portion of the objects are represented by arcs (d, e) with e−d = 1. Any
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path with tail in 0 and head in L created by arcs in set Ant indicates that an object is cut
n times in period t according to this path (cutting pattern).

In the Reflect formulation, only half of the object capacity is considered, i.e., just L/2
vertices. Two main features of the Reflect model are:

• it considers only vertices corresponding to normal cutting patterns with size smaller
than L/2 (including 0), plus an additional node, called R, corresponding to size L/2;

• it considers the same arcs of the arc-flow formulation, but: (i) it “reflects” each arc
(d, e) with d < L/2 and e > L/2 into an arc (d, L − e); (ii) it removes all arcs (d, e),
including loss arcs, having d ≥ L/2; and (iii) it creates a last loss arc by connecting
the rightmost node before R with R.

Intuitively, a path in the Valério de Carvalho (1999, 2002) formulation can be seen as a
pair of colliding paths in the Reflect formulation, i.e., two paths both starting at node 0 and
ending at the same node, but with only one of the two paths passing through R (the one
that contains the reflected arc). Delorme and Iori (2019) proved that any feasible cutting
pattern for the CSP can be represented by a pair of colliding paths, whose reflected arc
(d, e) has d ≤ e. Thus, reflected arcs (d, e) with d > e only generate symmetric solutions
and can be excluded from the model.

Figure 1 presents a multigraph and a reflect multigraph, respectively, for an example
with object length 11 (L = 11) and four items of lengths l1 = 7, l2 = 4, l3 = 3 and l4 = 2.
These arcs are responsible for at least two paths. In the reflect multigraph, all the arcs
before the reflected node (R) are added to the reflect multigraph, whereas the arcs that go
through the reflected node are reflected until the corresponding node. In the case of the arc
with length 7, it is reflected to the node 4. Finally, those arcs present after the reflected
node are removed from the reflect multigraph.

0 1 2 3 4 7 8 9 10 11

0 1 2 3 4 R

Figure 1: Multigraphs required for the standard arc-flow and the reflect flow, respectively.

We now extend this idea of the reflect multigraph to the multi-period and cutting pattern
setup settings. Maintaining the general idea of the arc-flow problem, we define multigraphs
Gnt = (V,Ant), ∀n ∈Mt and ∀t ∈ T , where the set of vertices is V = {0}∪{r ∈ N : 0 < r <
L/2} ∪ {L/2}. The set of arcs Ant is then partitioned into subsets Ants and Antr , where Ants
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represents the set of “standard” arcs and Antr represents the set of reflected arcs, i.e., the
arcs (d, e) from the arc-flow formulation that have been reflected to arc (d, L− e). Each arc
is defined by the quintuple (n, t, d, e, k), where k = s indicates that it is a standard arc (i.e.,
in Ants ), k = r indicates a reflected arc (i.e., in Antr ), and the remaining four indices are as
defined previously. We also define Anti as the subset of arcs associated with items i in period
t, i.e., Anti = {(d, d+ li, s) ∈ Ants , ∀n, ∀t}∪{(d, L−d− li, r) ∈ Antr , ∀n, ∀t}. Associating an
integer decision variable fntdek to each arc (d, e, k) ∈ Ant, ∀n ∈Mt and ∀t ∈ T , we can model
the problem as follows:

ARE model

Minimize
∑
t∈T

∑
i∈P

hitsit +
∑
t∈T

∑
n∈Mt

∑
(d,e,r)∈Ant

r

(ct + cn)fntder (3.17)

subject to:∑
(d,e,s)∈Ant

s

fntdes =
∑

(e,u,k)∈Ant

fnteuk +
∑

(d,e,r)∈Ant
r

fntder ∀e ∈ V \{0}, ∀t, ∀n (3.18)

∑
(0,e,k)∈Ant

fnt0ek = 2
∑

(d,e,r)∈Ant
r

fntder ∀t, ∀n (3.19)

sit−1 +
∑
n∈Mt

∑
(d,e,k)∈Ant

i

nfntdek = dit + sit ∀i, ∀t (3.20)

fntdek ∈ Z+ ∀n, ∀t, ∀(d, e, k) ∈ Ant (3.21)

sit ≥ 0 ∀i, ∀t (3.22)

The objective function (3.17) is the minimization of the inventory holding cost of the
items, the number of reflected arcs (which is equivalent to the number of different cutting
patterns), and the number of multiplicities n of each reflected arc (which is equivalent
to the material cost of objects). Constraints (3.18) ensure that the amount of flow from
standard arcs entering a node e is equal to the amount of flow (for both standard and
reflected arcs) emanating from e plus the amount of flow from reflected arcs entering e in all
periods and multiplicities. Constraints (3.19) impose boundary conditions by enforcing the
amount of flow emanating from node 0 to be twice the number of different cutting patterns
used. Constraints (3.20) represent the inventory balance, and constraints (3.21) and (3.22)
represent the variable domains.

Due to the reflection properties of the multigraph, the arc reduction proposed by Valério
de Carvalho (1999), which was later extended to the multi-period case by Poldi and de Araujo
(2016), can not be applied to the reflect arc-flow, except that arcs with length wi are not
placed before wk if wi > wk, i, k ∈ P . Another criterion used was the one proposed by
Côté and Iori (2018), which modifies the multigraph by removing the unit-width loss arcs
(d, d+1) and creating longer loss arcs that connect each vertex in V to its consecutive vertex
in V (as shown in Figure 1).
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4. Facility Location Reformulation

In the lot-sizing literature, extended reformulations are often employed to overcome
the poor quality of the lower bounds obtained with the linear relaxation of the original
formulations. The most classical reformulations consist of redefining the variables of the
original problem according to facility location and shortest path problems (see Krarup and
Bilde (1977); Eppen and Martin (1987), respectively). Such variable redefinition has been
shown to describe the convex hull of the ULS (see Barany et al. (1984)). However, as
mentioned before, since in the MPCSPs we are not considering individual items but cutting
patterns which contain a set of items, some theoretical results proposed for the ULS are no
longer valid, and a different and challenging problem arises that has not been fully explored
in the literature. In this section, we intend to help fill this gap by presenting reformulations
for the MPCSPs. For this, the three formulations presented in Section 3 are reformulated
as a facility location problem which, though not describing the convex hull of the MPCSPs,
obtains considerably improved lower bounds as shown by our theoretical and computational
results. It is worth mentioning that we have not found any paper in the literature that
employs the facility location reformulation for the MPCSPs.

An additional parameter is used in order to simplify the models based on the facility
location reformulation, as follows:

ĥitτ : holding cost of item type i from period t to period τ , i.e., ĥitτ =
τ−1∑
q=t

hiq;

4.1. Adapted Gilmore and Gomory Facility Location reformulation (AGGFL)

This is a reformulation of the AGG model as a facility location problem. To present this
new formulation, let us observe that a cutting pattern activated in period t contributes to
fulfill the demand of item type i in different periods τ ≥ t. Let then:

• ϕijtτ : portion of the frequency of cutting pattern j cut in period t to satisfy part of
the demand of item type i in period τ .

Observe that when reformulating the MPCSPs as a facility location problem, the rela-
tionship between the MPCSPs and facility location decision variables consists of considering
a facility as a period-indexed cutting pattern that must be chosen in order to perform the
cutting process, and satisfy the demand of period-indexed clients . In this way, the demand
(cutting) of an item type i in a future time period τ can be spread over different cutting
patterns j in previous time periods, from t to τ , in order to be met. Mathematically, the con-
straints connecting the production of the cutting patterns to the production of the facilities
are given by:

xjt =

|T |+1∑
τ=t

ϕijtτ aijt > 0, ∀i, ∀j, ∀t. (4.1)
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Note that defining the ϕ variables up to period τ = |T |+ 1 (rather than τ = |T |) allows
any excess production that would end up as inventory to be at the end of the horizon. In
addition, the characterization of the cutting patterns (aijt) in these constraints guarantee
that the facility location decision variables (ϕijtτ ) will have positive values for any item, only
if this item belongs to the corresponding cutting pattern, i.e., aijt > 0.

In order to demonstrate the relationship in constraints (4.1), we use the example pre-
sented in Figure 1, i.e., an object with length 11 and four items types of lengths l1 = 7, l2 =
4, l3 = 3 and l4 = 2. If the cutting pattern Aj1 = (1, 0, 1, 0)T represents a facility for any
given t ∈ T , the production of facility indexed with j1,t is represented as a bipartite graph,
where the upper node represents the period indexed cutting pattern and the first 4|T | lower
nodes the period indexed clients, while the remaining ones represent the production excess
over the end of the horizon. Figure 2 illustrates such scheme, where each arc represents the
amount of item types cut from cutting pattern j1 in period t to satisfy part of the demands
for further periods, in other words, the arcs represent the product, aij1tϕij1tτ , for i ∈ {1, 2}
and τ ≥ t.

1 0 1 0

d1,1 d2,1 d3,1 d4,1 d1,t d2,t d3,t d4,t 1|T |+1 2|T |+1 3|T |+1 4|T |+1

j1,t

Figure 2: Cutting pattern production as facility production.

Therefore, the Facility Location reformulation for the MPCSPs considering the AGG
formulation is given as follows:

AGGFL model

Minimize
∑
t∈T

∑
i∈P

∑
j∈J

|T |+1∑
τ=t

ĥitτaijtϕijtτ +
∑
t∈T

∑
j∈J

(ctyjt + cxjt) (4.2)

subject to:

(4.1)

ϕijtτ ≤ diτyjt ∀i, ∀j, ∀t, τ ≥ t (4.3)∑
j∈J

t∑
τ=1

aijtϕijτt = dit ∀i, ∀t (4.4)

xjt ∈ Z+ yjt ∈ {0, 1} ∀j, ∀t (4.5)

ϕijtτ ∈ R+ ∀i, ∀j, ∀t, ∀τ ≥ t (4.6)
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The objective function (4.2) is the standard cost function. The linking constraints (4.1)
are added to the reformulation in order to calculate the material costs of objects in the ob-
jective function. Constraints (4.3) link the facility location and setup variables ensuring that
a setup is accounted each time a new cutting pattern is used. Constraints (4.4) guarantee
the demand satisfaction and (4.5)-(4.6) define variable domains.

4.2. Adapted Johnston and Sadinlija Facility Location reformulation (AJSFL)

The AJS reformulation can be obtained in a similar fashion to the AGGFL described in
Section 4.1. We introduce a set of ϕ variables with extra indexes h to obtain the link with
the AJS production variables, i.e.:

pijht =

|T |+1∑
τ=t

ϕijhtτ ∀i, ∀j, ∀h, ∀t (4.7)

The reformulation is then given by:

AJSFL model

Minimize
∑
t∈T

∑
i∈P

∑
j∈J

|T |+1∑
τ=t

∑
h∈Hi

ĥitτhϕijhtτ +
∑
t∈T

∑
j∈J

(ctyjt + cxjt) (4.8)

subject to:

(4.7)∑
i∈P

∑
h∈Hi

hrijhtli ≤ Lyjt ∀j, ∀t (4.9)

xjt ≤ |Mt|yjt ∀j, ∀t (4.10)

ϕijhtτ ≤ diτrijht ∀i, ∀j, ∀h, ∀t,∀τ ≥ t (4.11)∑
j∈J

t∑
τ=1

∑
h∈Hi

hϕijhtτ = dit ∀i, ∀t (4.12)∑
h∈Hi

rijht ≤ yjt ∀i, ∀j, ∀t (4.13)∑
h∈Hi

pijht ≤ xjt ∀i, ∀j, ∀t (4.14)

∑
h∈Hi

pijht ≥ xjt − |Mt|

(
1−

∑
h∈Hi

rijht

)
∀i, ∀j, ∀t (4.15)

pijht ∈ Z+, rijht ∈ {0, 1} ∀i, ∀j, ∀h ∀t (4.16)

ϕijhtτ ∈ R+ ∀i, ∀j, ∀h, ∀t,∀τ ≥ t (4.17)

xjt ∈ Z+, yjt ∈ {0, 1} ∀j, ∀t (4.18)
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The objective function (4.8) is the standard cost function. Constraints (4.7) are re-
sponsible for linking the decision variables and are added to the reformulation in order to
calculate the material costs of objects in the objective function. Constraints (4.9), (4.10),
(4.13), (4.14) and (4.15) are the same as in the AJS model. Constraints (4.11) link the
facility location and setup decision variables ensuring that a setup is accounted each time a
new cutting pattern is used. Constraints (4.12) guarantee the demand satisfaction. Finally,
constraints (4.16) - (4.18) define the variable domains.

4.3. Adapted Reflect Facility Location reformulation (AREFL)

Even though the cutting pattern setup is not explicitly expressed in the ARE model,
it is still possible to obtain an extended reformulation from it. Consider the link between
item type i production along period t for cutting patterns with frequency n ∈ Mt, given as
follows:

|T |+1∑
t=τ

ϕintτ =
∑

(d,e,k)∈Ant
i

nfntdek ∀i, ∀n, ∀t (4.19)

where the ϕ variables represent the portion of production of item type i considering all
cutting patterns j ∈ J which were cut n times in period t to satisfy item type i demand of
period τ .

The facility location reformulation of the ARE model is then given as follows:
AREFL model

Minimize
∑
t∈T

∑
i∈P

∑
n∈Mt

|T |+1∑
τ=t

ĥitτϕintτ +
∑
t∈T

∑
n∈Mt

∑
(d,e,r)∈Ant

r

(ct + cn)fntder (4.20)

subject to:

(4.19)∑
(d,e,s)∈Ant

s

fntdes =
∑

(e,u,k)∈Ant

fnteuk +
∑

(d,e,r)∈Ant
r

fntder ∀e ∈ V \{0}, ∀t, ∀n (4.21)

∑
(0,e,k)∈Ant

fnt0ek = 2
∑

(d,e,r)∈Ant
r

fntder ∀t, ∀n (4.22)

ϕintτ ≤ diτ
∑

(d,e,k)∈Ant
i

fntdek ∀i, ∀n, ∀t, τ ≥ t (4.23)

t∑
τ=1

∑
n∈Mt

ϕinτt = dit ∀i, ∀t (4.24)

fntdek ∈ Z+ ∀n, ∀t, ∀(d, e, k) ∈ Ant (4.25)

ϕintτ ∈ R+ ∀i, ∀n, ∀t, ∀τ ≥ t (4.26)
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The objective function (4.20) is the standard cost function. The linking constraints
(4.19) are added to the reformulation in order to calculate the material costs of objects in
the objective function. Constraints (4.21) and (4.22) represent the reflect flow balance of
the multigraphs. Constraints (4.23) link the facility location and setup variables ensuring
that a setup is accounted each time a new cutting pattern is used for each n. Constraints
(4.24) guarantee the demand satisfaction, and (4.25)-(4.26) define variable domains.

4.3.1. An alternative AREFL reformulation

The facility location variables of model (4.20)-(4.26) are O(|T |2|P |
∑

n∈Mt
n). In this

section, we present an alternative AREFL reformulation with facility location variable
O(|T |2|P |), which obtains a weaker lower bound, but can be solved more efficiently. Con-
sider the ϕ variables as the portion of the total production of item type i with respect period
t, i.e.:

ϕitτ =
∑
n∈Mt

ϕintτ ∀i, ∀t, ∀τ ≥ t (4.27)

This approach mimics the variables of the facility location reformulation of the unca-
pacited lot-sizing problem, since the ϕ indexes only relate items and periods. The link
constraints (4.19) are replaced by:

|T |+1∑
t=τ

ϕitτ =
∑
n∈Mt

∑
(d,e,k)∈At

i

nfntdek ∀i, ∀t (4.28)

and the setup constraints (4.23) are then replaced by:

ϕitτ ≤
∑
n∈Mt

∑
(d,e,k)∈Ant

i

fntdek ∀i, ∀t (4.29)

In the remainder of the paper, we will refer to this alternative formulation as AREFL*
model, in order to distinguish it from AREFL. We note that AREFL* will be used in
the computational analysis in Section 6 due to its computational efficacy, and although it
presents a weaker bound than AREFL, the difference is rather minimal.

Table 1 summarizes some characteristics of the MPCSPs formulations and reformulations
discussed in this paper. We mention the presence of knapsack and setup constraints and the
number of binary, integer and continuous variables in each model.

5. Theoretical strengths of formulations

In this section, we intend to explore the relationship between the lower bounds of the
formulations presented so far and, hence, theoretically establish the relative strengths of
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Table 1: Formulations and Reformulations review.

Knapsack Setup Number of Variables
Models constraints constraints Binary Integer Continuous
AGG no yes O(|J ||T |) O(|J ||T |) O(|J ||T |)
AJS yes yes O(|J ||T ||P |

∑
i |Hi|) O(|J ||T ||P |

∑
i |Hi|) O(|T ||P |)

ARE no no — O(|J ||T ||P |
∑

t |Mt|) —
AGGFL no yes O(|J ||T |) O(|J ||T |) O(|J ||T |2|P |)
AJSFL yes yes O(|J ||T ||P |

∑
i |Hi|) O(|J ||T ||P |

∑
i |Hi|) O(|J ||T |2|P |

∑
i |Hi|)

AREFL* no no — O(|J ||T ||P |
∑

t |Mt|) O(|T |2|P |)

different formulations. Regarding the single period CSP, a few theoretical results can be
found in the literature. Vanderbeck (2000) proved that the Dantzig-Wolfe decomposition of
his formulation leads to a formulation at least as strong as the lower bound provided by the
well-known Gilmore and Gomory (1961) formulation. In Valério de Carvalho (2002), the
equivalence between the arc-flow formulation and the Gilmore and Gomory (1961) formula-
tion is shown. Though we have not used it in this paper, it is also worth commenting that
there are other single period CSP formulations in the literature, such as the One Cut and
the Kantorovich-based formulations (Valério de Carvalho, 2002; Delorme and Iori, 2019).

We use the following notation in the remainder of the paper. ZLP denotes the lower bound
obtained from the linear problem (LP) relaxation of a formulation, e.g., ZLP (AGG) denotes
the solution obtained by the AGG formulation without the integrality constraints. Likewise,
XLP denotes the feasible region of the LP relaxation of a formulation, e.g., XLP (AGG)
denotes the feasible region of the AGG formulation without integrality constraints.

For the sake of clarity, we provide the following definition (from Wolsey (1998)) which
will be used throughout the Section.

Definition 5.1. Given a polyhedron Q ⊂ (Rn × Rp), the projection of Q onto the subspace
Rn, denoted proj(x)(Q), is defined as:

proj(x)(Q) = {x ∈ Rn|(x, y) ∈ Q for some y ∈ Rp}. (5.1)

Proposition 5.1. ZLP (AGG) ≥ ZLP (AJS), i.e., the lower bound obtained by the AGG
formulation is at least as strong as the one obtained by the AJS formulation.

The AJS model is a multi-period linearized version of the PMP model of Vanderbeck
(2000). As proven in this paper, its Dantzig-Wolfe decomposition when letting the knapsack
constraints define the subproblem naturally leads to the CSP formulation of Gilmore and
Gomory (1961, 1963).

Proposition 5.2. The ARE formulation models the MPCSPs.

This directly follows from the fact that the reflect arc-flow formulation models the CSP,
as proved by Delorme and Iori (2019). The authors also conclude the lower bound obtained
by the reflect arc-flow, when demands are not considered as a limitation in the number of
arcs, is the same as the one from the arc-flow formulation of Valério de Carvalho (1999).

Therefore, it is possible to conclude that the ARE formulation and the PMP arc-flow for-
mulation of Ma et al. (2019) provide the same lower bound. We next discuss a decomposition
technique of the ARE formulation.
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5.1. Dantzig-Wolfe decomposition for the arc-flow MPCSPs formulation

In a similar fashion to Valério de Carvalho (2002), we can obtain an equivalent pattern-
based formulation of the ARE model, applying the Dantzig-Wolfe decomposition to its linear
relaxation, keeping the inventory balance constraints in the master problem and letting the
flow conservation constraints define the subproblem.

The set of flow conservation constraints along with the non-negativity constraints and
without the integrality requirements, define a polyhedral cone with equality constraints for
each multiplicity n ∈Mt and period t, i.e, Pnt = {x ≥ 0 : Ax = 0}, where A is the incidence
matrix and x is a vector containing the arc-flow variables from the associated graph. From
Minkowski’s theorem, any point x of a non-empty polyhedron P can be expressed as a
convex combination of the extreme points of P plus a non-negative linear combination of
the extreme rays.

For each multiplicity n and period t, Pnt has just one extreme point, the origin, which
corresponds to the solution with null flow. The circulation flows along each colliding path
can not be expressed as a non-negative linear combination of other circulation flows, and
are, therefore, the extreme rays of Pnt. The extreme flows are not bounded and each set of
colliding path on the planning horizon will correspond to an extreme ray. Also, the master
problem will not have a convexity constraint since its only extreme point is the null solution.

For the sake of simplicity, we consider the following constraints along with the flow
balance constraints (3.18) and (3.19) to generate the subproblem:

ynt =
∑

(d,e,r)∈Ant
r

fntder ∀t, ∀n (5.2)

where ynt ∈ Z+.
The subproblem will only generate extreme rays to the master problem. Let Γ be the

set of feasible colliding path indices. Note that for any period or multiplicity, the set Γ will
be the same. Let µjnt be the variables of the master problem, which take the value 1 if the
corresponding cutting pattern j is included in period t with frequency n and 0 otherwise.
Note ynt =

∑
j∈Γ µ

j
nt. For a given n, a column in the master problem can be defined by

(
∼
ajnt), where

∼
ajnt = (aj1nt, a

j
2nt, ..., a

j
|P |nt) is the vector that defines the number of items in

each period and cutting pattern multiplicity. The coefficients of these columns, anijt, are

expressed in terms of the decision variables of the subproblem, f jntdek , which correspond to
the arcs (d, e) that take the value 1 when the arc is included in the path j with frequency n
and 0 otherwise. The relation is explicitly given by:

ajint =
∑

(d,d+li)∈Ant
i

f jntd(d+li)k
∀i, ∀j, ∀n, ∀t (5.3)

Note we can simply set ajint = aijt for all i, j, t and n. The first result obtained from this
decomposition extend a well known results from the CSP literature regarding the arc-flow
formulation and the formulation of Gilmore and Gomory (1961, 1963).
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Proposition 5.3. ZLP (AGG) = ZLP (ARE), i.e., the lower bound obtained by the AGG
and ARE formulations are equal.

Proof. The model (3.1)-(3.5) can be derived by taking the following variable substitution
into the master problem:

xjt =
∑
n∈Mt

nµjnt ∀j, ∀t (5.4)

yjt =
∑
n∈Mt

µjnt ∀j, ∀t (5.5)

The next result correlates the facility location reformulations of the ARE and AGG
formulations.

Theorem 5.4. ZLP (AGGFL) = ZLP (AREFL), i.e., the lower bound obtained by the AG-
GFL and AREFL formulations are equal.

Proof. Using the Dantzing-Wolfe decomposition of the AREFL as above, we show
proj(A,x,y,s)XLP (M−AREFL) ⊆ XLP (AGGFL) and proj(A,x,y,s)XLP (AGGFL) ⊆ XLP (M−
AREFL), where M-AREFL is the master problem of the AREFL decomposition model.
⇒ Given a XLP (M − AREFL) point, we define ϕ variables according to each cutting

pattern j ∈ Γ as follows:

|T |+1∑
τ=t

ϕjintτ = naijtµ
j
nt ∀i, ∀j, ∀t, ∀n (5.6)

ϕjintτ ≤ diτaijtµ
j
nt ∀i, ∀j, ∀t, ∀τ ≥ t, ∀n (5.7)

Therefore, we can set ϕintτ =
∑

j∈Γ ϕ
j
intτ without affecting the feasibility of constraints

(4.19) and (4.23).
Now, using Equations (5.4) and (5.5), we take the AGGFL variables such that aijtϕijtτ =∑
n∈Mt

ϕjintτ , ∀i, ∀j, ∀t, ∀τ ≥ t. Hence, the feasibility constraints (4.1) and (4.3) are
satisfied.
⇐ A similar argument is applied to obtain the other inclusion. For a given point in

XLP (AGGFL), we use Equations (5.4) and (5.5) to define ϕ variables according to each
n ∈Mt as follows:

|T |+1∑
τ=t

ϕnijtτ = naijtµ
j
nt ∀i, ∀j, ∀t, ∀n (5.8)

ϕnijtτ ≤ diτaijtµ
j
nt ∀i, ∀j, ∀t, ∀τ ≥ t, ∀n (5.9)

Now, we take ϕintτ =
∑

j∈Γ ϕ
n
ijtτ to conclude the proof.
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Theorem 5.5. ZLP (AJSFL) ≥ ZLP (AGG), i.e., the lower bound obtained by the AJSFL,
i.e., the facility location reformulation of the AJS model, provides a lower bound at least as
strong as the lower bound of the AGG model.

Proof. It can be shown that proj(A,x,y,s)(XLP (AJSFL)) ⊂ XLP (AGG). For instance, choos-
ing the AGG cutting plan containing only homogeneous cutting patterns, i.e., for each t we
took |P | cutting patterns such that aijt = 1 if j = i and 0 otherwise. Then, the extreme
point sit = 0 xit = dit/aiit, yit = dit/|Mt| ∀i,∀t does not lie in proj(A,x,y,s)(XLP (AJSFL)).

Indeed, by noting the a variables of the AGG model are linked with the AJS model
variables by:

aijt =
∑
h∈Hi

hrijht ∀i, ∀j, ∀t

the constraints (4.7), (4.14) and (4.11) implies that:

ϕijhtτ ≤ diτ
dit
|Mt|︸︷︷︸
<1

< diτ ∀i, τ ∈ [t, |T |)

Therefore, a contradiction.

Proposition 5.6. The lower bound obtained by any of the extended formulations presented
in this paper is at least as strong as the lower bound obtained by its respective formulation.

It is obvious that the facility location reformulation naturally tightens the convex hull
of the underlying lot-sizing formulation and therefore the result is trivial.

Theorem 5.7. ZLP (AREFL) = ZLP (AGGFL) ≥ ZLP (AJSFL) ≥ ZLP (ARE) = ZLP (AGG) ≥
ZLP (AJS).

This main result follows from all the previous results presented.

6. Computational study

The main objective of this section is to complement the theoretical results presented
earlier by providing computational insights to address questions, such as “how difficult is
a formulation to solve?” and “how much better is a formulation?” in a practical context
with a range of classes of test problems. The formulations were tested with randomly
generated instances in a PC with Intel Core i7 3.2 GHz CPU processor and 16 GB of
RAM. The mathematical formulations were implemented in Visual Studio 2017 using the C
callable library of IBM ILOG Cplex 12.9.0. In order to evaluate the impact of the proposed
formulations and facility location reformulations of the MPCSPs we analysed two sets of
instances, as presented in the next two subsections. In the first set, some easy instances are
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considered by varying item and period number, object size and inventory cost, while in the
second set, more challenging instances are considered by varying item and period number
and item length.

In Section 6.1, the pattern-based and the pseudo-polynomial formulations are exactly
solved by a commercial optimization package with a MIP tolerance of 0.0001% and a time
limit of 1800 seconds. In order to obtain an exact solution to this set of easy instances,
the pattern-based formulations (AGG and AGGFL) consider all the possible columns, i.e.,
all possible cutting patterns are generated a priori and considered when solving the linear
relaxation and the mixed-integer cutting stock problem. We also note that, due to its
computational efficacy, AREFL* is used in computational testing (rather than AREFL). In
Section 6.2, difficult instances are considered, and the pattern based formulations AGG and
AGGFL are solved by a column generation-based heuristic procedure called, respectively,
AGG-H and AGGFL-H. The heuristics are quite straightforward. They consist in first
solving the relaxed master problem by column generation, then considering the variables
limited to those associated with the generated columns, the integer problem is solved. We
next provide some details regarding the column generation procedure.

The restricted master problem starts with the columns related to the maximal homo-
geneous cutting patterns, i.e., columns of type: (0, ..., aii, ..., 0), where aii = |Hi|, ∀i. The
same columns are inserted for each period, t ∈ T . Then, during the pricing procedure, a
knapsack problem is solved to find new cutting patterns for the restricted master problem.
In the multi-period scenario, a pricing problem is solved for every period t ∈ T and columns
are included in the restricted master problem for period t until no more attractive columns
are generated. The master problem, as well as the pricing subproblems are solved by the
commercial optimization package.

We evaluate and compare the performance of the proposed models with respect to dif-
ferent factors, such as LP relaxation solution, ZLP , time to solve the LP relaxation, TLP
(in seconds), mixed-integer problem (MIP) solution, ZIP , time to solve the MIP, TIP (in
seconds), absolute MIP gap, GAPA (in percentage), and relative MIP gap, GAPR (in per-
centage). The absolute and relative gaps are calculated according to equations (6.1) and
(6.2), respectively, where ZBestLB is the best lower bound achieved when solving the integer
problem. We consider the value GAPR as the one provided by the optimization package,
after solving the integer problem.

GAPA =
100(ZIP − ZLP )

ZIP
(6.1)

GAPR =
100(ZIP − ZBestLB)

ZIP
(6.2)

6.1. Computational results for the exact solution approaches

The first data set used to generate instances for the multi-period cutting stock problem
with setups is based on data from the literature, more specifically, Poldi and de Araujo
(2016) (number of periods, items and inventory cost), Cui et al. (2015) (setup cost and
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object length) and the CUTGEN1 generator proposed by Gau and Wäscher (1995) (length
and demand of items), and with specifics as follows:

• number of periods: |T | = {3, 6};

• number of items: |P | = {10, 20};

• object length: L =


500, Small;
1000, Medium;
1500, High.

• setup costs: ct = 0.1L;

• item length: li ∈ [0.375L, 0.625L];

• inventory costs: hit =

{
0.01li, Low;
0.05li, High.

• item demand: Generated by CUTGEN11. with d = 10.

Using a full factorial design, the data set consists of 2 x 2 x 3 x 2= 24 problem classes.
For each class, 20 instances are generated, resulting in a total of 480 problems. It is worth
highlighting that these instances are easy to solve: requirements consist of less than 20 items
of length greater than L/3, which implies less than 2 items per object. So basically, we do
not need more than 400 positions in the object. Additionally, considering object lengths
500, 1000 or 1500 does not change the maximum number of possible subset sums.

Table 2 presents the average number of variables for classes of instances with medium
object length (160 instances). The calculation is obtained as shown in Table 1 for each
class and then the average value is taken. The AGG model presents the smaller number
of variables for these classes, followed by its reformulation, AGGFL, with a 133% overall
increment when compared to AGG. When the number of items is increased from 10 to 20 the
AGG formulation presents an increase of 300%, followed by 636% of increase for the ARE
model and 669% for the AJS model. We highlight that the AREFL* formulation presents
the lowest overall variable increment (only 0.4%) when compared to its original formulation
ARE.

Table 3 presents the main results of this section by displaying, for each class and math-
ematical model, the average values for the LP relaxation and computational time to solve
the LP. For all classes, the facility location reformulations present considerable improve-
ments for the lower bound, which can reach up to 339% (Class 24 with the AJSFL). The
AJSFL presents the highest improvements of the lower bound when compared to its origi-
nal formulation (AJS ), reaching on average 235.78% increase of the lower bound, followed
by the AGGFL with 189% average improvement. Containing the largest problems in this

1CUTGEN1 is an instance generator for the one-dimensional cutting stock problem (Gau and Wäscher
(1995))
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Table 2: Average number of variables for classes of instances with medium object length.

Classes Instances average size
(|T |/|P |) AGG AJS ARE AGGFL AFJSFL AREFL*
Class (3/10) 900 11520 4986 1500 24930 5076
Class (3/20) 3600 88200 36246 6000 353800 36426
Class (6/10) 1800 41700 34206 4800 103800 34626
Class (6/20) 7200 322720 255324 19200 1320640 256044
Mean 3375 115922 82690 7875 450792 83043

data set, Classes 19 to 24 demonstrate the best lower bounds obtained by the reformula-
tions when compared with their respective original formulations. It is worth to mention
that it is known in the literature that AGG and ARE formulations provide the same lower
bound quality, and we have shown in this study (Theorem 5.4) that the same behavior holds
for the facility location reformulations AGGFL and AREFL. However, since we are using
the alternative AREFL* described in Section 4.3.1, the lower bound values are not equal
(though the difference is minimal). For all classes, AJS consistently obtained the worst
lower bounds, whereas AGGFL provided the best values. The computational time required
to solve the LP relaxation is relatively small (not more than 0.75 seconds on average), and
the original formulations are naturally faster to solve than their respective facility location
reformulations.

Table 4 displays, for each mathematical model and class, the objective function value
found for the MIP and the time spend to solve the MIP. Note that AJS and AJSFL are
not able to solve some instances in Classes 19, 20, 21, 23 and 24, as remarked in the table,
therefore, we are not able to compare these two formulations in these classes. The results
show that, for the first set of classes (Class 1 to 6), AGG, ARE, AGGFL, and AREFL*
present similar objective function values. However, as the problem size increases due to the
number of period and items (Classes 7 to 24), the reformulations, on average, are able to find
the best solutions in 13 classes, whereas the formulations found only in 5 classes. This fact
reinforces the motivation for using reformulations when solving the problem. The AREFL*
reformulation presents the highest improvements when compared to its original formulation
ARE. The AJS presents the worse values to the problem, followed by the AJSFL. There is
no clear behaviour of the formulations regarding the computational time, only the natural
fact that as the problem enlarges, more computational time is spent to solve the mixed-
integer problem. For most of the classes, the reformulations are faster than their respective
original formulations. The smallest average computational time is presented by AGGFL
(932.94 seconds), followed by AGG (981.94 seconds) and AREFL* (1004.79 seconds).

In Table 5, we present the average values for the absolute and relative gaps obtained
by each formulation in each class. As noted earlier, AJS and AJSFL could not solve some
instances in Classes 19, 20, 21, 23 and 24, and hence, we are not able to compare these
two formulations in these classes. The absolute gap obtained by the reformulations are
considerably smaller when compared to the original formulations, with AGGFL achieving
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Table 3: Evaluation of the lower bounds obtained by the proposed mathematical models

Classes LP relaxation solution (ZLP ) Time for the LP relaxation (seconds) (TLP )
(|T |/|P |/L/hit) AGG AJS ARE AGGFL AJSFL AREFL* AGG AJS ARE AGGFL AJSFL AREFL*
Class 1 (3/10/S/L) 690.18 497.48 690.18 1334.83 1080.84 1312.72 0.002 0.008 0.02 0.061 0.022 0.025
Class 2 (3/10/S/H) 691.49 497.47 691.49 1757.47 1340.96 1649.5 0.002 0.01 0.01 0.04 0.08 0.025
Class 3 (3/10/M/L) 825.22 551.14 825.22 1756.82 1325.57 1707.56 0.003 0.007 0.015 0.04 0.08 0.026
Class 4 (3/10/M/H) 825.22 551.14 825.22 2082.26 1502.31 1960.94 0.002 0.018 0.01 0.02 0.1 0.2
Class 5 (3/10/H/L) 661.61 474.23 661.61 1619.65 1268.46 1568.38 0.002 0.012 0.02 0.036 0.063 0.03
Class 6 (3/10/H/H) 661.61 474.22 661.61 1849.15 1408.52 1739.51 0.002 0.02 0.02 0.036 0.08 0.04
Mean (3/10) 725.89 507.61 725.89 1733.36 1321.11 1656.44 0.002 0.0125 0.016 0.039 0.07 0.058
Class 7 (3/20/S/L) 1177.77 862.74 1177.77 2485.17 2089.64 2456.82 0.008 0.053 0.037 0.45 0.17 0.08
Class 8 (3/20/S/H) 1179.16 862.76 1179.16 3264.98 2632.75 3081.01 0.005 0.08 0.03 0.26 0.32 0.067
Class 9 (3/20/M/L) 1386.66 923.69 1386.66 3333.74 2596.16 3227.72 0.07 0.075 0.036 0.173 0.256 0.07
Class 10 (3/20/M/H) 1386.66 923.70 1386.66 3982.45 2976.33 3726.69 0.003 0.09 0.03 0.15 0.41 0.06
Class 11 (3/20/H/L) 1241.33 895.12 1241.33 3152.64 2550.42 3003.4 0.009 0.074 0.05 0.3 0.263 0.9
Class 12 (3/20/H/H) 1241.33 895.12 1241.33 3558.46 2812.13 3277.7 0.003 0.1 0.05 0.022 0.4 0.1
Mean (3/20) 1268.82 893.85 1268.82 3296.24 2609.57 3128.89 0.016 0.079 0.039 0.22 0.3 0.24
Class 13 (6/10/S/L) 1140.65 780.11 1140.65 2590.17 2096.32 2535.93 0.003 0.048 0.05 0.18 0.21 0.143
Class 14 (6/10/S/H) 1144.34 780.1 1144.34 3556.75 2705.33 3332.15 0.005 0.11 0.04 0.09 0.43 0.09
Class 15 (6/10/M/L) 1263.59 810.28 1263.59 3411.78 2601.15 3291.75 0.04 0.06 0.057 0.085 0.27 0.114
Class 16 (6/10/M/H) 1263.59 810.28 1263.59 4215.42 3038.16 3897.88 0.003 0.1 0.05 0.07 0.55 0.12
Class 17 (6/10/H/L) 1084.15 748 1084.15 3183.22 2526.84 3053.8 0.004 0.111 0.08 0.13 0.335 0.12
Class 18 (6/10/H/H) 1084.15 748 1084.15 3706.36 2819.8 3426.62 0.004 0.14 0.07 0.09 0.59 0.13
Mean (6/10) 1163.42 779.46 1163.42 3443.95 2631.27 3256.36 0.009 0.095 0.056 0.1 0.4 0.12
Class 19 (6/20/S/L) 1783.48 1165.56 1783.48 4683.41 3914.86 4608.15 0.011 0.19 0.18 1.34 1.16 1.5
Class 20 (6/20/S/H) 1784.1 1190.5 1784.1 6375.16 5189.91 6071.41 0.014 0.43 0.18 0.9 2.48 0.85
Class 21 (6/20/M/L) 2334.79 1480.64 2334.79 6538.44 5071.75 6364.36 0.072 0.29 0.098 0.66 1.455 0.3
Class 22 (6/20/M/H) 2334.79 1437.58 2334.79 8006.94 5941.31 7532.2 0.007 0.47 0.09 0.43 3.16 0.23
Class 23 (6/20/H/L) 1901.43 1226 1901.43 6093.52 4958.93 5826.34 0.009 0.343 0.14 0.945 1.882 0.58
Class 24 (6/20/H/H) 1901.43 1272.47 1901.43 7028.42 5589.78 6527.01 0.011 0.7 0.17 0.61 3.21 0.57
Mean (6/20) 2006.67 1295.46 2006.67 6434.53 5111.09 6154.91 0.02 0.4 0.143 0.81 2.22 0.51
Mean 1291.2 869.1 1291.2 3731.97 2918.26 3549.15 0.01 0.15 0.06 0.3 0.75 0.22

the smallest average values (10.23%), followed by AREFL* (14.64%). The impact of the
problem size on the absolute gap can be seen more dramatically for formulations, while gaps
for reformulations may be even observed to decrease. Considering relative gaps (i.e., the
final gap value provided by the optimization package), AGGFL and AREFL* reformulations
are able to find the smallest gaps on all classes except for Classes 14 and 16, where AGG
found better results.

(a) Medium Objects, Solution Time (b) Medium Objects, MIP Values

Figure 3: Solution times (left) and MIP values (right) with medium object length, using AGGFL

Next, we briefly discuss the impact of some key input parameters on the solution process
in order to provide some insights with respect to parameter sensitivities. In Figure 3, we
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Table 4: Evaluation of the upper bounds (feasible solutions) obtained by the proposed mathematical models.

Classes MIP solution (ZIP ) Time for the MIP solution (seconds) (TIP )
(|T |/|P |/L/hit) AGG AJS ARE AGGFL AJSFL AREFL* AGG AJS ARE AGGFL AJSFL AREFL*
Class 1 (3/10/S/L) 1437.24 1438.1 2677.53 1439.49 1441.32 1439.49 10.93 1313.81 359.44 6.07 1551 161.62
Class 2 (3/10/S/H) 1985.66 2007.77 1989.5 1985.66 2008.05 1985.66 26.1 1661.7 586.75 11.97 1793 224.8
Class 3 (3/10/M/L) 1874.08 1875.93 1874.84 1874.86 1877.02 1874.86 4.11 1473.51 453.51 2.5 1706 82.35
Class 4 (3/10/M/H) 2359.36 2375.12 2359.36 2359.36 2368 2359.36 5 1800 35.77 7 1712 18.4
Class 5 (3/10/H/L) 1795.53 1807.34 1796.1 1796.21 1802.8 1796.21 26.55 1625.74 668.23 15.1 1789 186.89
Class 6 (3/10/H/H) 2233.85 2301.18 2233.9 2233.9 2286.53 2233.9 269.66 1800 301.64 282.43 1792 118.16
Mean (3/10) 1947.62 1967.57 2155.2 1948.55 1963.95 1948.25 56.95 1612.46 400.79 54.18 1723.33 132.03
Class 7 (3/20/S/L) 2645.96 2805.84 2677.53 2642.06 2712.83 2648.13 1482.88 1800 1322.8 1001.87 1800 1023.841
Class 8 (3/20/S/H) 3628.53 4275.3 3668.1 3626.94 3789.4 3619.4 1666.36 1800 1481.31 1618.07 1800 1308.8
Class 9 (3/20/M/L) 3519.58 3761.69 3544.2 3516.96 3597.01 3518.04 798.73 1800 1570.74 417.89 1800 470.93
Class 10 (3/20/M/H) 4419.78 5115.2 4403.85 4417.93 4582.19 4402.81 1188.14 1793 547.27 1171.12 1796 524.83
Class 11 (3/20/H/L) 3400.57 3854.08 3452.39 3397.06 3488.2 3400.97 1387.615 1800 1391.23 1303.2 1800 782.69
Class 12 (3/20/H/H) 4181.97 5124.53 4120.76 4168.01 4415.48 4115.91 1762.23 1800 985.77 1795 1800 882.65
Mean (3/20) 3692.73 4156.11 3644.7 3628.16 3764.18 3617.54 1380.2 1800 1216.52 1217.86 1800 832.29
Class 13 (6/10/S/L) 2751.34 2891.51 2850.63 2759.1 2784.95 2787.51 667.8 1800 1736.44 379.12 1800 1453.279
Class 14 (6/10/S/H) 3966.1 4346.57 4063.34 3968.88 4064.04 3996.17 996.38 1800 1756.18 1056.38 1800 1545.53
Class 15 (6/10/M/L) 3638.02 3844.86 3728.78 3639.83 3672.543 3658.28 289.05 1800 1707.31 238.24 1715 1347.28
Class 16 (6/10/M/H) 4761.7 5169.94 4775.92 4761.68 4902.62 4772.42 416.44 1800 1225.53 610.87 1714 987.1
Class 17 (6/10/H/L) 3520.79 3804.11 3694.85 3519.35 3617.17 3570.02 966.97 1800 1685.3 910.42 1800 1427.35
Class 18 (6/10/H/H) 4497.37 5139.88 4543.85 4510.18 4724.46 4510.54 1398.83 1800 1357.4 1448.75 1800 1247.2
Mean (6/10) 3855.89 4199.48 3942.9 3859.84 3960.96 3882.49 789.24 1800 1578.03 773.96 1771.5 1334.62
Class 19 (6/20/S/L) 5114.07 36046.3 1 6058.94 5062.43 5462.07 5217.38 1800 1800 1800 1800 1800 1800
Class 20 (6/20/S/H) 7266.47 7.27×106 2 8490.57 7220.55 8260.91 7453.32 1800 1800 1800 1800 1800 1767.26
Class 21 (6/20/M/L) 6916.9 8258.1 1 7642.46 6886.58 7270 6978.96 1711.3 1800 1793.58 1711.22 1800 1722.58
Class 22 (6/20/M/H) 9006.55 3×105 9018.74 9017.12 10066.8 8913.74 1708.3 1800 1766.17 1719.2 1800 1707.34
Class 23 (6/20/H/L) 6777.98 9731.54 3 7862.44 6653.63 7303.25 6840.87 1800 1800 1800 1800 1800 1800
Class 24 (6/20/H/H) 8545.51 4 ×107 2 8767.3 8703.31 10630.6 3 8312.26 1800 1800 1800 1800 1800 1766.42
Mean (6/20) 7271.25 7.9×106 7973.41 7257.27 8165.60 7286.09 1769.93 1800 1793.29 1771.74 1800 1760.6
Mean 4162.94 2.1×106 4424 4158.73 4452.34 4169.38 981.94 1750.77 1242.39 932.94 1773 1004.79

1
15 instances were solved;

2
9 instances were solved;

3
17 instances were solved.

Table 5: Evaluation of the absolute and relative Gaps obtained by the proposed mathematical models.

Classes Absolute Gap (GapA) (%) Relative Gap (GapR) (%)
(|T |/|P |/L/hit) AGG AJS ARE AGGFL AJSFL AREFL* AGG AJS ARE AGGFL AJSFL AREFL*
Class 1 (3/10/S/L) 52.28 65.33 52.32 7.51 24.8 17.24 0.006 2.86 0.43 0.005 6.9 0.05
Class 2 (3/10/S/H) 65.9 75.22 65.46 12.31 33.1 9.03 0.008 10.7 0.67 0.007 16.1 0.006
Class 3 (3/10/M/L) 56.18 70.41 56.18 6.48 28.91 9.1 0.006 4.32 0.08 0.005 8.37 0.004
Class 4 (3/10/M/H) 65.23 76.89 65.24 12 36.29 17.18 0.005 12.01 0.005 0.005 14.86 0.005
Class 5 (3/10/H/L) 63.49 73.8 63.5 10.1 29.41 12.87 0.007 7.66 0.51 0.006 12.22 0.03
Class 6 (3/10/H/H) 70.6 79.45 70.6 17.54 38.3 22.4 0.14 19.6 0.2 0.23 21.31 0.007
Mean (3/10) 62.28 73.5 62.22 10.99 31.8 14.64 0.029 9.52 0.31 0.043 13.29 0.017
Class 7 (3/20/S/L) 55.57 69.22 56.05 6 22.9 15.03 2 18.17 2.6 0.85 15.04 1.62
Class 8 (3/20/S/H) 67.5 79.79 67.86 9.97 30.44 7.28 3.4 31.42 3.5 2.63 19.34 0.86
Class 9 (3/20/M/L) 60.81 75.42 60.88 5.26 27.73 8.37 0.57 20.46 0.87 0.037 13.92 0.26
Class 10 (3/20/M/H) 68.74 81.73 68.62 9.94 35 15.52 1.67 29.35 0.27 1.6 18.65 0.13
Class 11 (3/20/H/L) 63.6 76.78 64.13 7.29 26.86 11.77 2.18 26.92 3.23 1.15 15.8 1
Class 12 (3/20/H/H) 70.39 82.48 69.87 14.7 36.25 20.44 5.5 37.41 1.1 5.3 25.1 0.71
Mean (3/20) 64.43 77.57 64.57 8.86 29.86 13.1 2.55 27.29 1.92 1.93 17.98 0.74
Class 13 (6/10/S/L) 58.65 72.97 60.06 6.23 24.6 9.17 0.39 16.82 5.94 0.072 9.46 2.91
Class 14 (6/10/S/H) 71.22 82.02 71.9 10.58 33.34 17 0.9 26.4 4.87 0.97 17.83 2.53
Class 15 (6/10/M/L) 65.42 78.88 60.07 6.38 28.86 10.26 0.089 19.22 3.75 0.056 8.7 1.53
Class 16 (6/10/M/H) 73.56 84.23 73.64 11.65 37.91 18.61 0.25 26.38 1.16 0.38 18.73 0.86
Class 17 (6/10/H/L) 69.4 80.31 70.8 9.73 30 14.72 0.64 22.82 7.25 0.16 13.91 2.95
Class 18 (6/10/H/H) 76.01 85.43 76.14 18.1 40.31 24.26 2.66 34.73 3.27 3.94 26.4 2.12
Mean (6/10) 69.04 80.64 68.77 10.44 32.5 15.67 0.82 24.39 4.37 0.92 15.84 2.27
Class 19 (6/20/S/L) 65.46 81.2 1 70.22 7.58 28.25 11.81 6.56 33.8 20.1 4.1 20.45 6.93
Class 20 (6/20/S/H) 75.53 92.34 2 78.8 11.85 37.13 18.43 7.24 62.64 19.13 6.4 30.64 7.59
Class 21 (6/20/M/L) 66.32 81.98 1 68.82 5.16 30.1 8.95 3.1 27.63 9.98 2.33 18.46 2.94
Class 22 (6/20/M/H) 74.13 88.19 74.16 11.38 40.92 15.71 5.1 42.19 3.38 5.63 29.86 2.1
Class 23 (6/20/H/L) 72.1 85.59 3 75.72 8.56 32.1 14.82 6.47 43.17 18.6 4.39 24.8 5.88
Class 24 (6/20/H/H) 77.79 95.22 2 78.31 19.31 47.25 3 21.51 9.97 77.47 8.48 2.35 41.84 3.86
Mean (6/20) 71.89 87.42 74.33 10.64 35.96 15.2 6.41 47.82 13.28 4.2 27.68 4.88
Mean 66.91 79.79 67.47 10.23 32.53 14.64 2.45 27.26 4.97 1.77 18.7 1.97

115 instances were solved; 29 instances were solved; 317 instances were solved.
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present the solution times and MIP values for AGGFL (the overall most effective solution
method) when the object length is set as medium (similar results were obtained for small
and large objects). Although we cannot reach a conclusive statement with respect to how
object length impacts solution process of the problem, it is noteworthy to remark that its
impact is rather limited, and other specifics of the test instance, in particular its problem
size, have more significant impact on the solution process. On the other hand, when we look
into MIP values, the profile is almost identical for high and small object lengths, albeit with
increased values for medium size objects. To conclude, we highlight that similar patterns are
observed when AREFL* and the others solution methods are evaluated in a similar fashion
(this pattern is not specific to AGGFL and is representative of the general behaviour).

(a) AREFL* - Instances with |T | = 3, |P | = 20 (b) AREFL* - Instances with |T | = 6, |P | = 10

Figure 4: AREFL* solution times vs. the ratio between inventory and setup costs

Next, in Figure 4, we demonstrate two plots for the relationship between the solution
times and the ratio between setup and inventory costs, when AREFL* is the solution
method. As we have already observed the problem size as the most significant factor for
the solution process, in each of these figures, we included instances of the same number of
periods and items, and ranked them from the smallest ratio to the highest. As the random
nature of these two plots indicate, there is no impact of the ratio between setup and in-
ventory costs on the solution process. We remark that we have made the same observation
when different problems sizes or solution methods are considered.

(a) Instances with |T | = 3, |P | = 20 (b) Instances with |T | = 6, |P | = 10

Figure 5: AGGFL MIP values vs. the ratio between inventory and setup costs

Finally, in Figure 5, we demonstrate two plots for the relationship between the MIP
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values and the ratio between setup and inventory costs, when AGGFL is used as the solution
method (as before, solution method or different problem sizes did not impact the behaviour
observed). It is interesting to observe that as the ratio goes higher (i.e., the inventory cost
going higher with respect to setup cost), the overall cost goes lower. However, it is important
to recall that there are still at times significant absolute gaps in these instances.

6.2. Computational results for the exact and heuristic solution approaches

In order to better evaluate the formulations proposed in this paper, the best mathematical
models obtained from the analysis in Subsection 6.1 (i.e, ARE, AGG and reformulation)
were tested on difficult instances. To this aim, in the second data set used to generate
instances, we only vary the item length (based on Gau and Wäscher (1995)) while keeping
the object size (medium), the inventory costs (low) and the setup cost as constant. Hence,
the parameter specifics are as follows:

• number of periods: |T | = {3, 6};

• number of items: |P | = {10, 20};

• item length: li ∈


[0.01, 0.2]L, Small;
[0.01, 0.8]L Medium;
[0.2, 0.8]L, High.

Considering the difficulty encountered in problem solution, we split the presentation of
the computational results into two parts. Firstly, we will present the results for classes 1
to 6, which contain 3 periods. Then, we will present the results for classes 7 to 12 with 6
periods. Throughout the section, the heuristic approach for AGG and AGGFL are denoted
as AGG-H and AGGFL-H, respectively.

Table 6 presents the average values for the LP relaxation and computational time to solve
the LP in the same fashion as in Table 3. The proposed instances presented convergence
issues during the column generation procedure, i.e., tailing off effect. Hence, in order to
obtain valid lower bounds for the AGG-H and AGGFL-H models, before convergence, we use
the corresponding Lagrangian bound (see, e.g., Degraeve and Jans (2007) and Vanderbeck
and Wolsey (2010)). We can still observe the good performance of the facility location
reformulations regarding the lower bound improvements, when compared to the original
formulations. For all classes, the improvements of the facility location reformulations range
from 126.6% (class 3 with AREFL* ) up to 208.9% (class 4 with AGGFL-H ). On overall
average, the improvements are about 159% and 163.9% for the AREFL* and AGGFL-H
formulations, respectively. The computational time required for solving the LP reached its
limit for class 4 while using the AREFL* model. The classes 1 and 4 were the most difficult
ones to solve when using the AREFL* model, their solution time represents 97.9% of the
total time for solving classes 1 to 3, and 99.4% of the total time for solving classes 4 to 6,
respectively. An explanation to this behavior can be seen by the features of such classes,
in which the length of the items are very small when compared to the objects, hence, the
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Table 6: Evaluation of the lower bounds obtained by the proposed mathematical models from class 1 to 6.

Classes LP relaxation solution (ZLP ) Time for LP relaxation (seconds) (TLP )
(|T |/|P |/li) ARE AGG-H AREFL* AGGFL-H ARE AGG-H AREFL* AGGFL-H
Class 1 (3/10/S) 132.15 123.6 323.62 305.59 14 0 73.15 0
Class 2 (3/10/M) 511.43 499.44 1387.21 1388.72 0.1 0 1.21 0
Class 3 (3/10/H) 781.39 772.75 1770.93 1772.24 0.03 0 0.39 0
Mean (3/10) 474.99 465.26 1160.59 1155.5 4.71 0 24.9 0
Class 4 (3/20/S) 188.76 186.2 573.65 575.18 1200 0.01 1800 0.02
Class 5 (3/20/M) 1055.22 1045.64 2653.41 2662.26 4.67 0 9.51 0.02
Class 6 (3/20/H) 1195.25 1189.72 3277.7 3343.32 0.1 0.01 1.8 0.01
Mean (3/20) 813.1 807.18 2168.25 2193.58 401.6 0 603.6 0.01
Mean 644 636.22 1664.42 1674.53 203.15 0 314.33 0

Table 7: Evaluation of the upper bounds (feasible solutions) obtained by the proposed mathematical models
from class 1 to 6.

Class MIP solution (ZLP ) Time for MIP solution (seconds) (TIP )
(|T |/|P |/li) ARE AGG-H AREFL* AGGFL-H ARE AGG-H AREFL* AGGFL-H
Class 1 (3/10/S) 635.74 1078.8 638.13 1087.71 1800 6.44 1800 4.89
Class 2 (3/10/M) 1502.97 1698.26 1515.15 1705.38 1800 0.34 1800 0.66
Class 3 (3/10/H) 1900.75 2074.84 1916.56 2083.39 1476 0.1 1800 0.35
Mean (3/10) 1346.48 1617.3 1356.13 1625.5 1692 2.26 1800 1.96
Class 4 (3/20/S) 3674.57 2217.36 2086.61 1 2224.91 1800 1213.43 1800 672.79
Class 5 (3/20/M) 2891.82 3194 2948.42 3209.96 1800 96 1800 89.8
Class 6 (3/20/H) 3455.71 3793.75 3514.51 3798 1800 5.52 1800 11.46
Mean (3/20) 3340.77 3068.37 2849.85 3077.39 1800 438.31 1800 258
Mean 2343.62 2342.83 2013 2351.44 1746 220.28 1800 130

1
Feasible solutions were found for 17 instances;

number of possible paths is considerably high, which makes it even difficult to solve the
linear relaxations.

Table 7 displays, for each formulation and class, the objective function value found for
the MIP and the time spent to solve the MIP in a similar fashion to Table 4. The ARE
formulation is able to obtain the best average solution for all classes except class 4, where
AGG-H reached a better average. On overall average, the formulations present slightly little
differences, except that AREFL* could not solve all the instances. As for the solution time,
ARE and AREFL* formulations attained the time limit for all classes except for class 3,
which are solved with an average of 1476 seconds. The AGGFL-H obtained the better time
average, with 15% faster then AGG-H for classes 1-3 and 69.8% faster for classes 4-6. In
both cases, the most difficult instances were the ones with smaller size items compared to
the object.

In Table 8, we present the average values for the absolute and relative gaps obtained by
each formulation in each class in the same fashion as in Table 5. However, the relative gap
of the AGG-H and AGGFL-H is obtained via formula (6.2), where ZBestLB is now the best
lower bound of the ARE formulation for each respective instance. It is no surprise that the
facility location reformulation obtained a better absolute gap when compared to its original
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Table 8: Evaluation of the mean absolute and relative gaps obtained by the proposed mathematical models,
classes 1 to 6.

Classes Absolute Gap (GapA) (%) Relative Gap (GapR) (%)
(|T |/|P |/li) ARE AGG-H AREFL* AGGFL-H ARE AGG-H FLARE* AGGFL-H
Class 1 (3/10/S) 79.13 88.85 49.15 71.9 45.68 68.32 47.5 68.57
Class 2 (3/10/M) 66.7 70.6 8.4 18.5 1.5 12.91 3.5 13.27
Class 3 (3/10/H) 58.9 62.75 7.6 14.95 0.33 8.8 1.9 9
Mean (3/10) 68.26 74.1 21.76 35.12 15.83 30 17.63 30.28
Class 4 (3/20/S) 92.43 91.61 72.5 1 78.14 85.92 78.87 56.38 74.1
Class 5 (3/20/M) 63.51 67.28 10 27.07 5.7 27.88 8.62 17.98
Class 6 (3/20/H) 65.41 68.64 6.73 11.97 1.18 10 4.29 10
Mean (3/20) 74.59 75.84 29.74 39 31 38.91 28.28 34
Mean 71.42 74.97 25.75 37 23.41 34.45 22.95 32.14

1
Feasible solutions were found for 17 instances;

Table 9: Evaluation of the LP relaxation and number of feasible solutions obtained by the proposed math-
ematical models for instances from class 7 to 12.

Class LP Relaxation Number of integer feasible solutions
(|T |/|P |/li) ARE AGG-H AREFL* AGGFL-H ARE AGG-H AREFL* AGGFL-H
Class 7 (6/10/S) 196.3 182.53 610.48 595.55 20 20 6 20
Class 8 (6/10/M) 865.54 852.44 2844.38 2811.18 20 20 20 20
Class 9 (6/10/H) 1149 1035.64 3280 3299.73 20 20 20 20
Mean (6/10) 736.94 690.2 2249.95 2235.47 20 20 15.3 20
Class 10 (6/20/S) 224.25 352.53 727.69 1229.1 0 20 0 20
Class 11 (6/20/M) 1436.79 1422.3 5108.58 5039.21 20 20 20 20
Class 12 (6/20/H) 1855.96 1836.53 6380 6404.46 20 20 20 20
Mean (6/20) 1172.33 1203.77 4072.09 4224.1 13 20 13 20
Mean 954.64 947 3161.02 3229.79 16.5 20 14.15 20

formulation. For the relative gaps, the ARE and AGG-H formulations obtained a better
performance than AREFL* and AGGFL-H only for classes 1-3. We note that increasing
the size of instances implies in greater absolute and relative gaps when varying the items’
length.

As the instance size increases, the solver struggles to solve the small item class instances
within the time limit. The analysis of the remaining classes (7-12) is presented in Table 9.
Even though the ARE model obtained feasible solutions for all instances of class 7, either
ARE and AREFL* models could not solve any of the instances of class 10. The upper
bound solution time reached it limit of 1800 seconds as well for classes 7 to 12 using ARE
and AREFL* models, while the AGG-H and AGGFL-H models reached the time limit
only for classes 7,8,10 and 11. In a overall way the AGGFL-H model was 18% faster when
obtaining integer solution than the AGG-H model for classes 9 as 12.

Even though the overall aspects presented in this section differ from the analysis pre-
sented in Section 6.1, where the use of the facility location reformulation resulted in a better
performance in aspects such as MIP values, absolute and relative gaps, the results obtained
from the item length analysis are still encouraging to justify the use of the extended refor-
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mulations in cutting stock problems, both in terms of obtaining much stronger lower bounds
and also directing the search effectively to high quality solutions of the problem with good
computational performance.

7. Conclusion

This paper considers the multi-period cutting stock problem with setup costs for the
cutting patterns. One formulation was adapted from the literature, while five others are new
formulations proposed for the problem, three of which are reformulations based on the facility
location problem with stronger lower bounds. A thorough theoretical study regarding lower
bound strength was conducted in order to establish a comparative understanding among
these formulations. In addition, a computational study was performed based on randomly
generated instances to evaluate the formulations in term of computational performance and
in a practical context so that theoretical relationships can be better understood.

The computational experiments were performed over two sets of instances. In the first
set, we fix the item length and vary the holding costs and the object length while in the
second we fix the holding costs and the object length and vary the item length, resulting
in more difficult instances. Both sets of instances have shown that the proposed facility
location reformulations significantly improve the quality of the lower bounds: on average,
these improvements vary from 174% up to 235% for the first set of instances, and from 126.6%
up to 208.9% for the second set of instances. Regarding the upper bound achievements of
the proposed formulations when using the first data set, the AGGFL and AREFL* are able
to find the smallest relative gaps on 22 out of 24 classes, with 1.77% and 1.97% on average,
respectively. In addition, the AGGFL and AREFL* are on average always faster than their
respective original formulations. As for the second set of instances, the formulations present
slight differences on overall averages, however, as the instances size increase, the arc-flow
formulation did not find feasible solution for the small item class with 3 and 6 periods where
the AREFL* found the smaller number of feasible solutions. To sum up, we can state that
the facility location reformulations proposed for the multi-period cutting stock problem with
setup costs not only substantially boost the lower bound values, but also result in an effective
search for high quality feasible solutions to the problem, showing the merits of this research.

For future research, efficient solution methods can be developed in order to solve bigger
instances of the problem. Algorithmic work that takes advantage of the structure of the
model can be developed, such as local search algorithms or other metaheuristics such as ge-
netic algorithms. Another interesting subject for future research is to extend the theoretical
insights and reformulations proposed in this paper to cutting stock problems considering dif-
ferent practical aspects, such as: several machines, capacity constraints, sequence-dependent
cut setups (Arbib and Marinelli, 2007; Wuttke and Heese, 2018), among others. In addi-
tion, other strength strategies, such as shortest path reformulation and (`, S) inequalities
can be extended to enhance formulations based on cutting stock problems. Considering the
capacitated case, applying Lagrangian relaxation to the capacity constraint will result in a
sub-problem similar to the one studied in this paper. A multi-objective approach can also
be applied to analyse the complex trade-offs present in the objective function.
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We also would like to highlight that the feature considered in this paper, where a cut-
ting pattern produces several items, can be extended to several process industries, where
the products are obtained by processes that can produce several types of products simul-
taneously. These processes can be a specific mode of configuration of a production system
that can produce several different items simultaneously and in varied quantities. A recent
general discussion about it can be found in Villas Boas et al. (2021). Examples of such pro-
cess industries are: refineries (Göthe-Lundgren et al., 2002; Shi et al., 2014), molded pulp
(Mart́ınez et al., 2018, 2019), electrofused grains (Luche et al., 2009), foundry (de Araujo
et al., 2008), offset printing industry (Baumann et al., 2015) industries, among others. In
practice, industries define a list of alternative processes as input data, and the decision is
related to the selection of the processes to be used in each period of the planning horizon.
However, according to Mart́ınez et al. (2019), for some production environments, the num-
ber of configurations might be large and hence the complete enumeration not possible while
considering only a subset of them may lead to sub-optimal solutions. Hence, an integrated
approach that considers the process configuration together with other decisions is also an
interesting avenue for future research.
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Alves, C., Valério de Carvalho, J.M., 2008b. A stabilized branch-and-price-and-cut algorithm for the multiple
length cutting stock problem. Computers & Operations Research 35, 1315 – 1328.

de Araujo, S.A., Poldi, K.C., Smith, J., 2014. A genetic algorithm for the one-dimensional cutting stock
problem with setups. Pesquisa Operacional 34, 165 – 187.

de Araujo, S.A., de Reyck, B., Degraeve, Z., Fragkos, I., Jans, R., 2015. Period decompositions for the
capacitated lot sizing problem with setup times. INFORMS Journal on Computing 27, 431–448.

Arbib, C., Marinelli, F., 2005. Integrating process optimization and inventory planning in cutting-stock with
skiving option: An optimization model and its application. European Journal of Operational Research
163, 617 – 630.

Arbib, C., Marinelli, F., 2007. An optimization model for trim loss minimization in
an automotive glass plant. European Journal of Operational Research 183, 1421–
1432. URL: https://www.sciencedirect.com/science/article/pii/S0377221706003146,
doi:https://doi.org/10.1016/j.ejor.2005.07.034.

Arbib, C., Marinelli, F., 2014. On cutting stock with due dates. Omega 46, 11 – 20.
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