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Abstract

In this paper, we consider a lot-sizing problem with the remanufac-
turing option under parameter uncertainties imposed on demands and
returns. Remanufacturing has recently been a fast growing area of inter-
est for many researchers due to increasing awareness on reducing waste in
production environments, and in particular studies involving remanufac-
turing and parameter uncertainties simultaneously are very scarce in the
literature. We first present a min-max decomposition approach for this
problem, where decision maker’s problem and adversarial problem are
treated iteratively. Then, we propose two novel extended reformulations
for the decision maker’s problem, addressing some of the computational
challenges. An original aspect of the reformulations is that they are ap-
plied only to the latest scenario added to the decision maker’s problem.
Then, we present an extensive computational analysis, which provides a
detailed comparison of the three formulations and evaluates the impact
of key problem parameters. We conclude that the proposed extended re-
formulations outperform the standard formulation for a majority of the
instances. We also provide insights on the impact of the problem param-
eters on the computational performance.
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1 Introduction

Lot-sizing has been an active area of research in the manufacturing sector over
the last six decades due to its significant cost savings. Primarily, the lot-
sizing problem aims to find the most cost efficient production plan for given
demands/orders over a specified planning horizon, which consists of decisions
such as when and how much to produce/stock/backlog products and when to
set up machines for manufacture of specific products, under the natural limi-
tations of a manufacturing system, such as capacities and satisfying orders on
time. As [30] demonstrate in their excellent review of mathematical models
developed for lot-sizing problems, the body of research devoted to the topic
is extensive, covering a rich set of tools including: i) exact methods such as
valid inequalities [8, 1], extended reformulations [25, 17], and decompositions
[23] often exploiting simple sub-problems, and ii) non-exact methods such as
heuristics [33, 4, 38] customized for use with real-world instances inherent in
manufacturing systems. More recent theoretical achievements worth remarking
include [5] and [26], and we refer the interested reader to [15] for a thorough
review of single-item problems, and to [16] for a recent overview on complex
multi-item lot-sizing problems.

Remanufacturing is simply the process of recovering used products by re-
pairing and replacing worn out components so that a product is created at least
at the same quality level as a newly manufactured product, providing not only
an environmentally sustainable alternative to classical manufacturing, saving
tonnes of landfill every year, but also offering many industries from car engines
to office copiers the potential for significant savings through the exploitation of
used product inventories and many precious raw materials that are becoming
scarcer ([22]). Remanufacturing can be operated either under a dedicated sys-
tem (i.e., remanufacturing only) or a hybrid system (remanufacturing combined
with manufacturing), and most remanufacturing operations in European coun-
tries, as noted by [27], employ a hybrid system. In the context of lot-sizing,
hybrid models also vary between different industries and also different prod-
ucts, some of which allow production setups to occur jointly for manufacturing
and remanufacturing, referred to as “joint setup” systems, and others requiring
separate production setups, referred to as “separate setup” system. In this pa-
per, we investigate a hybrid system with joint setups, where backlogging is also
allowed.

The lot-sizing literature for remanufacturing has been growing at an increas-
ing rate over the past two decades. The key difference from a mathematical mod-
elling point of view in this setting is that it has at least two levels of operations,
where the first level handles the returned products and hence the associated re-
manufacturing operations, whereas the second level of operations incorporates
both remanufactured products from the first level and products to be newly
manufactured in order to meet demands. The earlier works of [18] discussed
the implications of the emerging reuse efforts with a review of the mathematical
models proposed in the literature, and [19] studied a lot-sizing problem with re-
manufacturing, formulating it as a network flow model and solving by dynamic
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programming. [35] have shown the problem to be polynomially solvable when
both remanufacturing and manufacturing processes have a joint setup cost and
if they are time invariant, and the problem was shown to be NP−hard for most
general configurations, including separate setups with time invariant costs, in
[31]. Further complexity results were provided by [39] for the case of concave
costs, by [28] for constant capacities, by [3] for special cost structures and by
[29] for the case with a disposal option. We also remark some recent and ef-
fective heuristics for practical size problems as presented in [7, 32], the recent
polyhedral study of [34] comparing various reformulations and valid inequalities,
and the recent work of [24] showing optimality properties and how these can be
used to decompose the problem.

Although there is extensive literature on lot-sizing problems, the main focus
has been on deterministic problems, where problem parameters such as demands
have been assumed to be known a priori. When uncertainties are present and
they cannot be sufficiently described using probability distributions (e.g., due to
shortage of reliable data, or data not properly fitting into any distribution), ro-
bust optimization offers a solution that will be feasible for any realization taken
in the so-called uncertainty set, i.e., the collection of all possible realizations.
There has been many advances in the field of robust optimization over the last
15 years since the seminal papers of [10] describing an ellipsoid uncertainty set
and [12] proposing budgeted polytopes to handle problems with discrete vari-
ables more effectively, and we refer the interested reader to the detailed reviews
of [11] and [20]. The uncertainties are in particular critical in the remanufactur-
ing setting, where both returns (numbers and product qualities) and demands
are unknown, affecting both levels of the operations and their interactions in
between. Although, robust approaches have been considered for classical lot-
sizing problems e.g. [9, 13, 14], we are only aware of the work of [37] in this area,
who consider a lot-sizing problem with uncertain demands and returns, and use
a robust linear programming formulation. However, the robust formulation is
based on the static approach introduced for inventory problems by [13] which is
known to produce very conservative solutions for some instances, as noticed in
[14]. Our recent preliminary study presented in [6] proposed an exact approach,
and therefore, less conservative than the one from [37], which is known as adver-
sarial approach (see [20]) and was introduced by [14]. This is a decomposition
approach where a robust optimization min-max problem is decomposed into
a master (minimization) subproblem and an adversarial (maximization) sub-
problem. By exploring the properties of the adversarial problem for budgeted
polytopes, [2] proposed a general robust optimization dynamic programming
framework that is shown to work effectively in lot-sizing problems. However,
for many practical lotsizing problems, as the one considered here, the master
subproblem is computationally harder to solve than the adversarial subproblem
and, to the best of our knowledge, there is no work in this area studying the
underlying mathematical structures for the master subproblems, such as the
polyhedral characteristics or extended reformulations, which are essential ingre-
dients in many lot-sizing algorithms developed in deterministic problems. On
the other hand, it is worth to remark that stochastic programming has been used
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for such understanding, albeit in a very limited sense, e.g., see [21]. Thus, there
is clear potential to gain invaluable insights in the remanufacturing problems
by studying their mathematical properties using robust optimization.

In this paper, we primarily aim to extend our previous study that proposed
a decomposition approach for a two-stage robust lot-sizing problem with re-
manufacturing and backlogging. We propose two extended reformulations for
the computationally challenging master problem of the decomposition, where
we propose first aggregating the separate production variables but extend them
in the classical facility location formulation fashion, and then we propose an
approximate extended reformulation. We discuss some key aspects of these re-
formulations (also in comparison to the basic formulation), and then present
an extensive computational analysis in order to identify specific strengths and
weaknesses of different formulations, as well as to support our theoretical claims.
More specifically, we are extending the ideas of [36] in order to solve the robust
version of the lot sizing problem with returns and remanufacturing option. In
order to effectively handle the size of the master model which increases with the
number of scenarios, we make the key observation on the formulation that the
flow conservation only on the last scenario’s demand is sufficient, which signifi-
cantly reduces the size of the formulations. To the best of our knowledge, this is
the first use of an extended formulation technique for multiple scenarios under a
robust setting. In addition, we provide a thorough study of the structure asso-
ciated with the returns and, in particular, we observe the equivalence between
the uncertain sets with positive and negative deviations from the nominal values
for the case of returns. Finally, from a computational perspective, we present
comprehensive numerical results on the tightness of the extended formulations
by providing a threshold value for the parameter P for various input classes,
when the lower bound improvement tails off.

In the next section, we present first a deterministic formulation of the prob-
lem with a detailed explanation of the practical setting, and then propose the
robust version of this. Then, in Section 3, we propose two extended reformula-
tions of the robust problem, and also remark the theoretical strength of using
these in comparison to the basic formulation. We then present the results of
thorough computational experiments in Section 4, which evaluates the proposed
reformulations from a number of perspectives, including computational times,
lower bounds and sensitivity to input parameters. Finally, we conclude with
some key remarks and potential future directions in Section 5.

2 Problem Definition

In this section, we first introduce the deterministic lot-sizing problem with re-
manufacturing (LSR) option, where we introduce our notations and specify our
assumptions on cost structures, inventories and handling of returned items. We
then introduce the uncertainty involved in returned items and demands and for-
mally define the robust LSR (RLSR) problem. We then provide a formulation
using a min-max approach to obtain a robust production plan. A schematic
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Figure 1: The production process with returns and remanufacturing

diagram providing an overview of the production process can be seen in Figure
1.

2.1 Deterministic LSR Formulation

We now consider LSR presented in the preliminary study of [6]. In this problem,
we consider a time horizon T , a set of deterministic demands, D = {D1, D2, . . . , DT },
and a set of deterministic returns, R = {R1, R2, . . . , RT }, over the time hori-
zon. Demands are to be satisfied by items that are produced, which can be
achieved either by manufacturing an item from scratch or remanufacturing a
returned item. We consider the setting where the costs involved are time in-
variant. At every time period, we incur a variable cost of m (resp. r) per item
manufactured (resp. remanufactured) and a fixed joint set up cost of K if an
item was produced in that period. Note that all costs are positive. We assume
that both manufactured and remanufactured items, referred to as “serviceable
items”, achieve the minimum quality level necessary for satisfying the demand.
In a given time period, the serviceable items at hand can be in excess or short
of the demand at that period. Excess serviceable items are carried over as ser-
viceable inventory at a cost of hs per item to the subsequent time period, and
can be used to satisfy future demands. Unsatisfied demands are backlogged at
a cost of b per item from the subsequent time period, and have to be satisfied
by serviceable items that are produced at a future time period. At each time
period, we have the option to remanufacture the returned items at hand or
carry them over to the next time period as unprocessed returns in the “return
inventory” at a cost of hr per item, or dispose them at a cost of f per item.

The output of LSR comprises of a production plan that satisfies the demand
at every time period and minimizes the overall costs involved. A production plan
needs to specify the amount of manufactured and remanufactured items, return
and serviceable inventory levels, amount of backlogged and disposed items for
every time period over the planning horizon. Table 1 presents a complete list of
the decision variables.

We define the vectors xm := (xm1 , x
m
2 , . . . , x

m
T ), xr := (xr1, x

r
2, . . . , x

r
T ), d :=

(d1, d2, . . . , dT ), y := (y1, y2, . . . , yT ), and sr := (sr1, s
r
2, . . . , s

r
T ) associated with
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xmt Number of items manufactured in period t.
xrt Number of items remanufactured in period t.
Hs
t Serviceables inventory cost incurred in period t.

Hr
t Returns inventory cost incurred in period t.

yt 1 if setup occurred in period t, and 0 otherwise.
dt Number of returns disposed in period t.

Table 1: Decision variables for the deterministic LSR problem.

production (manufacturing and remanufacturing), disposal, setup and returns
inventory variables, respectively. Let x := (xm, xr, d, y). Then, the objective is
to minimize the total operational cost defined by:

θD,R(x) +

T∑
t=1

(Hs
t +Hr

t ),

where

θD,R(x) =

T∑
t=1

(Kyt +mxmt + rxrt + fdt)

W.l.o.g., we assume initial inventory levels are zero. Then, a mixed integer
program (MIP) formulation for LSR is as follows:

min θD,R(x) +

T∑
t=1

(Hs
t +Hr

t ) (LSR-D)

st.

Hs
t ≥ hs

t∑
i=1

(xmi + xri −Di) ∀t = 1, . . . , T (1)

Hs
t ≥ −b

t∑
i=1

(xmi + xri −Di) ∀t = 1, . . . , T (2)

Hr
t ≥ hr

t∑
i=1

(Ri − xri − di) ∀t = 1, . . . , T (3)

Mtyt ≥ xmt + xrt ∀t = 1, . . . , T (4)

xm, xr, d ≥ 0, (5)

y ∈ {0, 1}T (6)

The above formulation implies that demand is satisfiable through manufac-
turing (xm) and/or remanufacturing (xr), whose sum is referred to as “service-
ables”. Constraints (1) and (2) determine the total holding and backlogging cost
for serviceables in period t. Note that, for a given time period t, at most one
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of these two constraints’ right hand side can be non-negative, making the other
constraint redundant. Returns inventory cost is determined by constraint (3).
Constraint (4) ensures a joint set up when manufacturing and/or remanufac-
turing takes place in a given time period t, with an appropriate choice of Mt.
Finally, constraints (5) and (6) enforce nonnegativity and integrality restrictions
on the variables. For a fixed y, it is easy to observe that the problem reduces
to a network flow problem.

2.2 Robust LSR Formulation

Determining accurate values for the input parameters of the problem is often
a challenging task in practice. In addition, many input parameters in realis-
tic applications are naturally uncertain (e.g., any quantities in the future), and
there is often a danger that an optimal solution may become severely infeasi-
ble or expensive even when small changes occur in input parameters (see [10]).
Although stochastic optimization is very effective in some cases, it makes the
critical assumption that the uncertainty has a probabilistic description, which is
not realistic in many applications. In such cases, robust optimization provides
a suitable framework for handling parameter uncertainties by defining them as
parts of predefined uncertainty sets. We refer the interested reader to [10, 11] for
a detailed discussion on general motivations for choosing a robust optimization
approach for tackling input uncertainty. As noted by [14], complexities in man-
ufacturing systems varying from long production leadtimes to complex supply
chains result in significant inadequacy of demand data, which often dictates the
use of uncertainty sets for most effective treatment of uncertainties. Moreover,
return of items for remanufacturing purposes entail further complications such
as customer behavior or variation in the levels of use of the products, further
motivating the case for a robust optimization framework.

A robust solution is defined as a solution that remains feasible over the entire
uncertainty set. Such solution assumes that the production quantities represent
“here and now” variables, corresponding to decisions taken before the uncertain
parameters are revealed while the inventory levels are adjustable to the material-
ized parameters. Although such solutions provide immunity to all eventualities,
considering an exhaustive number of cases may lead to solutions which may be
poor for most of the reasonable scenarios. Such a solution, in order to retain
feasibility, has to potentially accommodate extreme case scenarios that have a
negligible chance of realisation. In order to avoid this, we employ the method
introduced by [12], which controls the number of scenarios in the uncertainty
set using budgeted polytopes, as discussed below. Moreover, uncertainty sets of
this type are known to be tractable and computationally easier to handle.

Following the approach of [6], we model the uncertainty in demands and
returns as budgeted polytopes. We assume the uncertainty in demands and
returns are independent of each other. For each time period, t = 1, . . . , T , we
are provided with the nominal demands (resp. returns) D̄t (resp. R̄t) and the
maximum possible deviation from the nominal value D̂t (resp. R̂t). In other
words, the uncertain demand (resp. return) Dt (resp. Rt) in time t takes a
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value in the interval [D̄t, D̄t + D̂t] (resp. [R̄t, R̄t + R̂t]). For each time period,
t, we introduce the variables zDt ∈ [0, 1] (resp. zRt ∈ [0, 1]), in order to model
the proportion of deviation we have from the nominal demand (resp. return),
namely Dt = D̄t + D̂tz

D
t (resp. Rt = R̄t + R̂tz

R
t ). Only positive deviations

are considered as this corresponds to the worst case for demands (where the
production is lower than expected leading to backlogged demands), and for
returns we can show that feasibility implies that only the expected minimum
number of items can be used (see further discussion in Section 2.3), which
allows to conclude that the case of positive deviations is equivalent to the case
of negative deviations. In order to avoid over-conservative estimation of the
parameters, we introduce the parameters ΓDt (resp. ΓRt ) in order to constrain
zDt (resp. zRt ):

ZD(ΓD) := {zD ∈ [0, 1]T :

t∑
i=1

zDi ≤ ΓDt , ∀t = 1, . . . , T} (7)

ZR(ΓR) := {zR ∈ [0, 1]T :

t∑
i=1

zRi ≤ ΓRt , ∀t = 1, . . . , T} (8)

Then, the independent uncertainty sets for demands and returns, respectively,
can be defined as follows:

UD(ΓD) := {D ∈ RT+ : Dt = D̄t + D̂tz
D
t , z

D ∈ ZD(ΓD)} (9)

UR(ΓR) := {R ∈ RT+ : Rt = R̄t + R̂tz
R
t , z

R ∈ ZR(ΓR)} (10)

We will sometimes refer to the uncertainty set given in (9) and (10) as
UD+(ΓD) and UR+(ΓR) to indicate we are considering positive deviations from
the nominal value.

Recall returns inventory variables sr := (sr1, s
r
2, . . . , s

r
T ). For the number of

returns, we can use the implicit balance constraints

sri−1 +Ri = di + xri + sri , ∀i = 1, . . . , T

to derive the following (since sr0 = 0)

srt =

t∑
i=1

(Ri − di − xri ), ∀t = 1, . . . , T.

Non-negativity of srt implies

t∑
i=1

(Ri − di − xri ) ≥ 0, ∀t = 1, . . . , T. (11)

Under the robust setting, if the returns R belong to a given uncertainty set U
then, for all t = 1, . . . , T, (11) becomes

t∑
i=1

(di + xri ) ≤ min{
t∑
i=1

Ri|R ∈ U}. (12)
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The following proposition establishes that there is no loss of generality in
considering positive deviations. Consider the uncertainty set with negative de-
viations:

UR−(ΓR) := {R ∈ RT+ : Rt = R̄t − R̂tzRt , zR ∈ ZR(ΓR)} (13)

Proposition 1. Let At = max{
t∑
i=1

R̂iz
R
i |zR ∈ ZR(ΓR)} for t = 1, . . . , T , let

S̄1 = R̄1 − A1, S̄t =
∑t
i=1 R̄i − At −

∑t−1
i=1 S̄i for t = 2, . . . , T and Ŝt = R̂t for

t = 1, . . . , T , where S̄t signifies the smallest possible return realization in period
t under the return deviations Ŝ. Then, for t = 1, . . . , T , the following equalities
hold:

a) minR∈UR−(ΓR)

∑t
i=1Ri = minS∈UR+(ΓR)

∑t
i=1 Si.

b) maxR∈UR−(ΓR)

∑t
i=1Ri = maxS∈UR+(ΓR)

∑t
i=1 Si.

where St indicates a single scenario in the corresponding uncertainty sets.

Proof. Since the proofs of (a) and (b) are almost identical, we only prove (a).

min
R∈UR−(ΓR)

t∑
i=1

Ri = min
zR∈ZR(ΓR)

t∑
i=1

(R̄i − R̂izRi )

=

t∑
i=1

R̄i + min
zR∈ZR(ΓR)

t∑
i=1

− R̂izRi =

t∑
i=1

R̄i − max
zR∈ZR(ΓR)

t∑
i=1

R̂iz
R
i =

t∑
i=1

R̄i −At

=

t∑
i=1

S̄i = min
zR∈ZR(ΓR)

t∑
i=1

(S̄i + Ŝiz
R
i ) = min

S∈US+(ΓR)

t∑
i=1

Si

Example 2.1. Consider T = 3 and Γi = 1, ∀i = 1, ..., T . Let R̄ = (5, 5, 5)
R̂ = (1, 2, 3). Here we provide a numerical example for case a) from Proposition
1, where:

A1 = max
zR∈[0,1]1

{zR1 |zR1 ≤ 1} = 1

A2 = max
zR∈[0,1]2

{zR1 + 2zR2 |zR1 + zR2 ≤ 1} = 2

A3 = max
zR∈[0,1]3

{zR1 + 2zR2 + 3zR3 |zR1 + zR2 + zR3 ≤ 1} = 3

In order to represent the minimum of a returns uncertainty set with nega-
tive deviations as one with positive deviations, we need to compute S. From
Proposition 1, we have the following:

S̄1 = R̄1 −A1 = 5− 1 = 4
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S̄2 =

2∑
i=1

R̄i −A2 − S̄1 = (5 + 5)− 2− 4 = 4

S̄3 =

3∑
i=1

R̄i −A3 −
2∑
i=1

S̄i = (5 + 5 + 5)− 3− (4 + 4) = 4

In this case, the minimum number of cumulative returns for the uncertainty
set S ∈ UR+(ΓR)

∑3
i=1(S̄i+ Ŝiz

R
i ) can be found as

∑3
i=1 S̄i = 12, in which case

zR = (0, 0, 0). This is equivalent to the number of minimum cumulative returns
derived from the uncertainty set where R ∈ UR−(ΓR), which can be calculated

as
∑3
i=1 R̄i −A3 = (5 + 5 + 5)− 3 = 12.

Note that Proposition 1 does not imply the equivalence of sets S and R in
terms of optimality. Instead, we show that one set can be written as the other
to maintain feasibility properties.

Hence we focus only on positive deviations, that is, when U = UR+(ΓR). In
this case inequalities (12) can be written as follows

t∑
i=1

(R̄i − di − xri ) ≥ 0, ∀t = 1, . . . , T . (14)

A favourable aspect of considering only positive deviations is that the deci-
sion maker has one absolute optimal production plan (since production variables
are scenario independent). This is also favourable from a computational point
of view, since the number of variables considered when we only have positive
deviations is significantly less compared to the case where both negative and
positive deviations are considered. On the other hand, from a practical per-
spective, positive deviations can be observed in many production settings. For
example, in a make-to-order production environment, confirmed orders essen-
tially provide a lower bound on demand, while any potential upcoming orders
can be represented as a positive deviation in the uncertain quantity of demand.
Similarly, remanufacturers operating under contracts guaranteeing minimal re-
turns can deviate any surplus in returns with positive deviations in this setting.

An alternative characterisation for these uncertainty sets can be provided in
terms of the convex hull of its extreme points as follows, where JD (resp. JR)
indicates the number of extreme points for demands (resp. returns):

ZD(ΓD) := Conv({zD
1

, zD
2

, . . . , zD
JD })

ZR(ΓR) := Conv({zR
1

, zR
2

, . . . , zR
JR })

and
UD(ΓD) := Conv({D1, D2, . . . , DJD})

UR(ΓR) := Conv({R1, R2, . . . , RJR})
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The tth component of vector Dj (resp. Rj) is given by Dj
t = D̄t + D̂tz

Dj

t and

Rjt = R̄t + R̂tz
Rj

t , for all j = 1, . . . , JD (resp. j = 1, . . . , JR).
Under this setting, the (RLSR) problem seeks a solution that is feasible for

any demand D ∈ UD(ΓD) and return R ∈ UR(ΓR). As constraints (1)–(3) are
affected by parameter uncertainty in LSR-D, we rewrite these constraints, so
that a solution would be feasible for all D̃ ∈ UD(ΓD), R̃ ∈ UR(ΓR) resulting in
the following robust formulation for the (RLSR) problem:

min θD,R(x) + π (RLSR)

s.t.

π ≥
T∑
t=1

(Hsj
t +Hri

t )
∀j = 1, . . . , JD,
∀i = 1, . . . , JR

(15)

Hsj
t ≥ hs

t∑
i=1

(xmi + xri −D
j
i )

∀t = 1, . . . , T ,
∀j = 1, . . . , JD

(16)

Hsj
t ≥ −b

t∑
i=1

(xmi + xri −D
j
i )

∀t = 1, . . . , T ,
∀j = 1, . . . , JD

(17)

Hrj
t ≥ hr

t∑
i=1

(Rji − x
r
i − di)

∀t = 1, . . . , T ,
∀j = 1, . . . , JR

(18)

t∑
i=1

(R̄i − di − xri ) ≥ 0 ∀t = 1, . . . , T (19)

(4)− (6)

Here, the variables Hsj
t (resp. Hrj

t ) correspond to the cost of serviceable
inventory or backlogging (resp. return inventory) incurred at time t for the de-
mand Dj (resp. return Rj). The variable π stores the highest cost of inventory
and backlogging incurred by any demand or return. Constraint (19) is elabo-
rated on earlier as it is equivalent to (14), and enforces feasibility of a production
plan for all possible realisations of returns, ensuring we do not remanufacture
or dispose more than the nominal return levels. Constraints (16) - (18)are de-
fined for all demand and return vectors corresponding to extreme points of the
budgeted uncertainty sets UD(ΓD) and UR(ΓR). Hence, we have exponentially
many constraints in our formulation. We handle this using a decomposition
approach, in a similar fashion to the approach of [14], to obtain robust solutions
to (RLSR), as discussed in the next section.

An important observation in (RLSR) is that the worst costs for returns can
be generated in advance of solving the robust problem. In order to find the
worst-case scenario for returns, we introduce the variable Hrw

t , which denotes
the worst total cost associated with returns inventory at time t (t = 1, . . . , T ).
The justification for this replacement follows from the following proposition.
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Proposition 2. Let, for all t = 1, . . . , T,

Hrw
t = max

j=1,...,JR
hr

t∑
i=1

(Rji − x
r
i − di)

and suppose zRw is the optimal solution to

max
zR∈ZR(ΓR)

T∑
t=1

(T − t+ 1)R̂tz
R
t . (20)

Then,
T∑
t=1

Hrw
t =

T∑
t=1

hr
t∑
i=1

(R̄i + R̂iz
Rw
i − di − xri )

Proof.
T∑
t=1

Hrw
t =

T∑
t=1

max
j=1,...,JR

hr
t∑
i=1

(Rji − x
r
i − di)

= hr
T∑
t=1

max
zR∈ZR(ΓR)

t∑
i=1

(R̄i + R̂iz
R
i − xri − di)

= hr
T∑
t=1

t∑
i=1

(R̄i − xri − di) + hr max
zR∈ZR(ΓR)

T∑
t=1

t∑
i=1

R̂iz
R
i

Observing that

max
zR∈ZR(ΓR)

T∑
t=1

t∑
i=1

R̂iz
R
i = max

zR∈ZR(ΓR)

T∑
t=1

(T − t+ 1)R̂tz
R
t

which obtains the maximum when zR = zRw (from (20)) we obtain

hr
T∑
t=1

t∑
i=1

(R̄i − xri − di) + hr max
zR∈ZR(ΓR)

T∑
t=1

t∑
i=1

R̂iz
R
i

= hr
T∑
t=1

t∑
i=1

(R̄i − xri − di) + hr
T∑
t=1

t∑
i=1

R̂iz
Rw
i

= hr
T∑
t=1

t∑
i=1

(R̄i + R̂iz
Rw
i − di − xri )
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2.3 Min-Max Decomposition Approach

Our min-max approach involves iteratively solving a restricted version of (RLSR),
which is referred to as the “Decision Maker’s Problem” (DMP), where only a
subset of extreme points, denoted by ŨD ⊆ UD(ΓD) are considered. Note that,
since worst-case returns can be precomputed, these amounts are not considered.
A new demand point is added to the subset ŨD at every iteration by solving
a certain maximization problem that we refer to as the “Adversarial Problem”
(AP). Given an optimal production plan, AP seeks the demand D ∈ UD(ΓD)
vector with the highest inventory and backlogging cost for this specific produc-
tion plan. This demand vector is then used to update ŨD, see also [6, 14, 40].

Let J̃D be the number of extreme points in the set ŨD. Then, (DMP) can
be stated as follows:

min θD,R(x) + π (DMP)

s.t. π ≥
T∑
t=1

(Hsj
t +Hrw

t ) ∀j = 1, . . . , J̃D (21)

Hsj
t ≥ hs

t∑
i=1

(xmi + xri − (D̄i + D̂iz
Dj
i ))

∀t = 1, . . . , T ,
∀j = 1, . . . , J̃D

(22)

Hsj
t ≥ −b

t∑
i=1

(xmi + xri − (D̄i + D̂iz
Dj
i ))

∀t = 1, . . . , T ,
∀j = 1, . . . , J̃D

(23)

Hrw
t = hr

t∑
i=1

(R̄i + R̂iz
Rw
i − di − xri ) ∀t = 1, . . . , T (24)

(4)− (6), (19)

Here, the main difference between inventory and backlogging cost constraints
in (RLSR) and (DMP) formulations is that constraints (22) – (24) are written
for a subset of demand and return points, rather than the complete uncertainty
set. Also note that the entire constraint set (18) was replaced by the single
constraint (24) for each time period.

In the following discussion, we will omit the subscript D from the parameter
JD, as we are now only enumerating the extreme points of the uncertain demand

set in our formulation. Also, we let Dj
i := D̄i + D̂iz

Dj

i , for all i = 1, . . . , T, j =
1, . . . , J .

Next, we define the Adversarial Problem (AP). Here, the aim is to find a
specific demand vector that implies a higher total inventory and backlogging cost
for a given production plan. As such a maximum is given by (20) for returns, AP
only seeks a new demand vector. Under this setting, the optimal production plan
u∗ = (xm∗, xr∗, d∗, y∗) of (DMP) is the input to AP. For notational simplicity,

let X∗t =
t∑
i=1

(xm∗i + xr∗i ) for t = 1, . . . , T . Then, AP can be written as:

13



max π (AP)

s.t. π ≤
T∑
t=1

Hs
t (25)

Hs
t = max

{
hs(X∗t −

t∑
i=1

(D̄i + D̂iz
D
i )),

− b(X∗t −
t∑
i=1

(D̄i + D̂iz
D
i ))

}
∀t = 1, . . . , T (26)

t∑
i=1

zDi ≤ ΓDt ∀t = 1, . . . , T (27)

0 ≤ zDt ≤ 1 ∀t = 1, . . . , T (28)

The optimal π value indicates the worst total inventory and backlogging
costs in the uncertainty set (9), as enforced by constraints (27) and (28). Note

that the true total worst cost can be computed as π+
T∑
t=1

(Hs
t +Hrw

t ). Since Hrw
t

is a constant in (AP), we do not include this term in constraint (25). To linearize
constraint (26), a new binary variable st ∈ {0, 1}, ∀t = 1, . . . , T is introduced,
which is 1 if Hs

t represents the inventory cost, and 0 in case of backlogging.

Then, the following constraints are added to AP, where Dmax
t =

t∑
i=1

(D̄t + D̂t)

and Dmin
t =

t∑
i=1

D̄t :

Hs
t ≤ hs(X∗t −

t∑
i=1

(D̄i + D̂iz
D
i )) +M1t(1− st) ∀t = 1, . . . , T (29)

Hs
t ≤ −b(X∗t −

t∑
i=1

(D̄i + D̂iz
D
i )) +M2tst ∀t = 1, . . . , T (30)

X∗t −
t∑
i=1

(D̄i + D̂iz
D
i ) ≤ st(X∗t −Dmin

t ) ∀t = 1, . . . , T (31)

−X∗t +

t∑
i=1

(D̄i + D̂iz
D
i ) ≤ (st − 1)(X∗t −Dmax

t ) ∀t = 1, . . . , T (32)

Constraints (31) and (32) ensure the correct setting of the st variables, and
then either constraint (29) or (30) is dominated, incurring either serviceables
holding or backlogging cost, respectively. We note that M1t and M2t can be
defined as follows:

M1t = −b(X∗t −Dmax
t )− hs(X∗t −Dmax

t ) ∀t = 1, . . . , T (33)
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M2t = hs(X∗t −Dmin
t ) + b(X∗t −Dmin

t ) ∀t = 1, . . . , T (34)

Finally, we remark that convergence is ensured through constraint (21) in (DMP),
which ensures that a production plan with higher total serviceables and returns
inventory cost is obtained in each iteration. In such setting, the optimal value
for the objective function for (DMP) determines the global lower bound (GLB).
On the other hand, the optimal objective value for (AP) provides a local upper
bound in each iteration. In order to find the global upper bound on a given
iteration J̃D, we determine GUB = min

j∈{1,...,J̃D}
{π∗j + θ∗j,D,R(u∗)}, where π∗j

indicates the optimal value for π in (AP) (for iteration j) and θ∗j,D,R(u∗) is the
optimal production and disposal costs of (AP) solved in iteration j. We define
ε = GUB−GLB

GLB to represent the magnitude of convergence.

3 Extended Reformulations

Although the min-max approach is an effective method for obtaining robust op-
timal solutions, its computational efficiency is heavily dependent on the (DMP),
as initially observed in the preliminary test of [6] and also further discussed in
Section 4. Therefore, in this section, we present two extended reformulations
to (DMP): “Aggregated Extended Formulation” (DMP-EFAG) and “Approxi-
mate Extended Formulation” (DMP-EFAP). We provide a detailed explanation
on the structure of both formulations, while discussing their strengths and lim-
itations. We will empirically support our claims in the Section 4 and provide a
detailed account of our computational experience.

3.1 Extended Aggregated Reformulation

We consider a facility location reformulation for DMP, which was originally
proposed by [25]. For this purpose, we introduce the following set of decision
variables:

xEF := {x̃ ∈ R(T+1)×(T+1)
+ :

T+1∑
t=1

x̃it = xmi + xri , ∀i = 1, . . . , T}, (35)

where the new variables, x̃it, indicate the total amount of items that have been
manufactured and remanufactured in time period i, in order to satisfy the de-
mand in period t. Throughout the paper, we refer to this quantity as the
“aggregated production” quantity. This results in (T + 1) new variables for
each time period t, where the aggregated production in the (T + 1)th period in-
dicates the amount manufactured and remanufactured after the planning period
and backlogged to satisfy the demand in a period inside the planning horizon.
More specifically, we only need variables x̃(T+1)i, for all i, in order to account
for such backlogging. Note that we use the same objective function as in DMP,
along with the original production variables xmt and xrt .
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In order to keep the formulation size reasonable and effective, we consider
to apply our extended variables only to one demand scenario, namely, the one
introduced in the most recent iteration J . For any production plan, the idea
is to create an aggregated production plan corresponding to the J th scenario,
while tightening the constraint (4) by using the aggregated decision variables.
We also define separate H̃s

t and B̃t variables in order to account for the holding
and backlogging costs of serviceables in the J th scenario. For all other iterations
j = 1, . . . , J − 1, we preserve the structure from DMP, with serviceables inven-
tory cost defined through the original variables. Next, we state the extended
reformulation formally.

min θD,R(x) + π (DMP-EFAG)

s.t. π ≥
T∑
t=1

(Hsj
t +Hrw

t ) ∀j = 1, . . . , J (36)

Hsj
t ≥ hs

t∑
i=1

(xmi + xri −D
j
i )

∀t = 1, . . . , T
∀j = 1, . . . , J − 1

(37)

Hsj
t ≥ −b

t∑
i=1

(xmi + xri −D
j
i )

∀t = 1, . . . , T
∀j = 1, . . . , J − 1

(38)

H̃s
t = hs

t∑
i=1

T+1∑
k=t+1

x̃ik ∀t = 1, . . . , T (39)

B̃t = b

t∑
i=1

T+1∑
k=t+1

x̃ki ∀t = 1, . . . , T (40)

HsJ
t ≥ H̃s

t + B̃t ∀t = 1, . . . , T (41)

T+1∑
i=1

x̃it = DJ
t ∀t = 1, . . . , T (42)

T+1∑
i=1

x̃ti = xmt + xrt ∀t = 1, . . . , T (43)

x̃tk ≤ DJ
k yt

∀t = 1, . . . , T ,
∀k = 1, . . . , T

(44)

Hsj
t , x

m
t , x

r
t , dt ≥ 0

∀t = 1, . . . , T
∀j = 1, . . . , J

(45)

x̃it ≥ 0 ∀i, t = 1, . . . , T+1 (46)

y ∈ {0, 1} (47)

(19), (24)

In the formulation above, constraints (37) and (38) indicate the serviceables
holding and backlogging costs for scenarios where j 6= J . For iteration J , we de-
fine constraints (39) and (40), which indicate the total serviceables holding and
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backlogging cost for period t, respectively, and these costs are then linked to the
variable HsJ

t through constraint (41). We ensure that the demand in a given
period t is satisfied through the sum of items manufactured and remanufac-
tured (including backlogs from beyond the planning horizon) in constraint (42).
Constraint (43) is used to link the original manufacturing and remanufacturing
variables with the aggregated production variable x̃it, and finally setup periods
are determined through constraint (44). The observation we make here is that
any production plan is a feasible production plan, because we allow backlogging
to the final period. Therefore, which scenario’s demand is assigned to the x̃-
variables is insignificant, as this can be realised as a different production plan
for another scenario and consequently, its corresponding cost calculated.

We refer to the polytope corresponding to the LP relaxation of (DMP) (resp.
(DMP-EFAG)) as PDMP

J (resp. PDMP−EFAG
J ), where the subset of extreme

points of the uncertainty, indexed by set J, have been considered in the formu-
lation of (DMP) (resp. (DMP-EFAG)). We slightly abuse the notation here by
referring both to the index set and the index of the last scenario in the index
set by J , but we could distinguish them by context easily. We let Hs to denote
the vector (Hs1

1 , . . . ,HsJ
T ). For a polytope P := {(u, x) ∈ U ×X}, where U and

X are vector spaces, we define the projection of polytope P onto the x-space
(or onto X ) as

projx(P ) := {x ∈ X : ∃u ∈ U : (u, x) ∈ P}.

Proposition 3. For any index set J , projx,d,y,Hs,π(PDMP−EFAG
J ) ⊂ PDMP

J

Proof. It is easy to show that for any feasible solution to PDMP−EFAG, pro-
jecting out the xEF variables results in a feasible solution to PDMP . The first
thing to note is that the only difference in the two formulations is with re-
spect to scenario J . Thus, we need to show that any solution (x, d, y,Hs, π)
∈ projx,d,y,Hs,π(PDMP−EFAG

J ) satisfies constraints (22) and (23), implying
(x, d, y,Hs, π) ∈ PDMP

J . First, note that, for a specific t and in an extreme
point solution, either H̃s

t or B̃t in constraints (39) and (40) will be zero (as this
could be perceived as a flow along a negative cost cycle and hence cancelled by
sending flow in the opposite direction). Hence, for a given t, let B̃t = 0. Then,

HsJ
t ≥ H̃s

t + B̃t

= hs
t∑
i=1

T∑
k=t+1

x̃ik = hs
t∑
i=1

(

T∑
k=1

x̃ik −
t∑

k=1

x̃ik)

= hs
t∑
i=1

(
(xmi + xri )−

t∑
k=1

x̃ik

)
(due to constraint (43))

= hs

(
t∑
i=1

(xmi + xri )−
t∑

k=1

t∑
i=1

x̃ik

)
(rearranged terms)

≥ hs
(

t∑
i=1

(xmi + xri )−
t∑

k=1

DJ
k

)
(due to constraint (42))
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= hs
t∑
i=1

(
(xmt + xrt )−DJ

i

)
The argument is analogous in the case when H̃s

t = 0. Next, consider con-
straint (44). For a given t, summing up the constraint over all k, we obtain

xmt + xrt =

T+1∑
k=1

x̃tk ≤
T∑
k=1

DJ
k yt ≤Mtyt

The first equality follows from constraint (43) and the last inequality follows
from the fact that Mt needs to be chosen so the formulation is feasible for any
scenario. This concludes the proof for projx,d,y,Hs,π(PDMP−EFAG

J ) ⊆ PDMP
J .

In order to show that it is a proper subset, let us consider a specific feasible
solution to (DMP) with HsJ

t = 0, dt = R̄t, i.e., we have no inventory and
backlogging of serviceables at any time period for scenario J , and all nominal
returns are immediately disposed. For the sake of simplicity, assume that all
nominal demands are strictly positive. Then, yt > 0 holds for all t = 1 . . . T to
maintain feasibility. Then, the following condition will hold for any solution to
x in (DMP):

DJ
t ≤ xmt + xrt ≤

T∑
i=t

(D̄i + D̂i)yt ∀t = 1, . . . , T

A feasible solution satisfying this condition is when DJ
t = xmt +xrt =

T∑
i=t

(D̄i+

D̂i)yt, which implies yt = DJ
t /

T∑
i=t

(D̄i + D̂i). This produces the feasible solu-

tion
(
xm = (DJ

1 , . . . , D
J
T ), xr = (0, . . . , 0), HsJ = (0, . . . , 0), y = (DJ

1 /
T∑
i=1

(D̄i +

D̂i), . . . , D
J
T /(D̄T + D̂T ))

)
to (DMP).

Solutions of this type cannot be obtained by projection of any feasible solu-
tion for (DMP-EFAG) because constraints (42) and (44) cannot be satisfied
simultaneously. From constraint (42), we have

T+1∑
i=1

x̃it = x̃tt = DJ
t

The first equality is due to the fact that we have no backlogging or serviceable
inventory for scenario J . From constraint (44), we have

x̃tt ≤ DJ
t yt = DJ

t

DJ
t

T∑
i=t

(D̄i + D̂i)

< DJ
t
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3.2 Approximate Extended Reformulation

Even though we are able to obtain tighter lower bounds using DMP-EFAG,
the excessive number of variables can deteriorate computational performance.
For this reason, preserving a relatively tight lower bound while introducing a
smaller number of variables is crucial for improvement in computational times.
For DMP-EFAG, one way of achieving this is to eliminate aggregated production
variables that are likely to take a value of zero in the optimal solution. This is
mostly the case for x̃it when |i − t| is too high. Thus, we implement a partial
formulation for DMP-EFAG, where a predefined parameter P is used to define
the intervals for which x̃it is introduced in a similar fashion to [36]. Ideally, we
would like to choose P such that it represents an estimation for the number of
periods between consecutive setup periods.

In our study, we exploit the iterative procedure involved in the min-max
approach, where we derive P by tuning its value according to the structure of
the optimal solutions from previous iterations. More specifically, for iteration j,
let T = {t1, t2, ..., ts} be an ordered set of increasing indices with active setup
periods in the solution of iteration j−1, i.e., yt = 1, ∀t ∈ T and ti < ti+1, ∀i =
1 . . . s− 1. Then, we set P = max{t2 − t1, t3 − t2, ..., ts − ts−1} for the current
iteration j. Note that for the first iteration, P is chosen arbitrarily as P = 3,
motivated by the results given in Section 4.

Once P is determined, x̃ti is introduced for a subset of time periods, where
∀t ∈ {1, . . . , T + 1}, and i ∈ SPt such that SPt =

{
max{1, t − P}, ...,min{t +

P, T}
}

. Under these assumptions, demands in periods i 6∈ SPt are not allowed
to be satisfied through the aggregated production variables. Note that we will
also introduce non-extended variables to allow that Dj

i : i 6∈ SPt may be satisfied
through production in period t, as follows:

v1s
t :

Number of items produced in period t to satisfy demand in any period in
the interval [t+ P + 1, . . . , T ], through keeping serviceables inventory.

v1b
t :

Number of items produced in period t to satisfy demand in any period in
the interval [1, . . . , t− P − 1], through backlogging.

v2s
t : Amount of demand in period t satisfied through v1s

i : i = [1, . . . , t− P − 1]
variables.

v2b
t : Amount of demand in period t satisfied through v1b

i : i = [t+P + 1, . . . , T ]
variables.

In order to account for the inventory decisions taken through these variables,
we also introduce further variables. First, variable wst (resp. wbt ) represents the
amount that is kept in serviceables inventory (resp. backlogged) in period t
through the use of v1s, v2s (resp. v1b, v2b). The total serviceables holding and
backlogging cost associated with these amounts is given as HsPJ

t . Then, we
present the formulation formally as follows, which we discuss in detail next.

min θD,R(x) + π (DMP-EFAP)
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s.t. π ≥
T∑
t=1

(HsJ
t +HsPJ

t +Hrw
t ) (48)

π ≥
T∑
t=1

(Hsj
t +Hrw

t ) ∀j = 1, . . . , J-1 (49)

H̃s
t = hs

t∑
i=at

bt∑
j=t+1

x̃ij ∀t = 1, . . . , T (50)

B̃t = b

t∑
i=at

bt∑
j=t+1

x̃ji ∀t = 1, . . . , T (51)

HsPJ
t = H̃sP

t + B̃Pt ∀t = 1, . . . , T (52)

H̃sP
t = hs(wst +

smax
t∑

i=smin
t

v2s
i+P+1) ∀t = 1, . . . , T (53)

B̃Pt = b(wbt +

bmax
t∑

i=bmin
t

v2b
i ) ∀t = 1, . . . , T (54)

wst−1 + v1s
t = wst + v2s

t+P+1 ∀t = 1, . . . , T -P -1 (55)

wst−1 = wst ∀t = T -P, . . . , T (56)

wbt−1 + v2b
t−P−1 = wbt + v1b

t ∀t = P+2, . . . , T (57)

DJ
t =



v2b
t +

bt∑
i=at

xit,

v2s
t + v2b

t +
bt∑
i=at

xit,

v2s
t +

bt∑
i=at

xit,

bt∑
i=at

xit,

∀t = 1, . . . , v2
min

∀t = P+2, . . . , T -P

∀t = v2
max, . . . , T

if P+2 > T -P,
∀t = v2

min+1, . . . , v2
max-1

(58)

xmt + xrt =



v1s
t +

bt∑
i=at

xti

v1b
t +

bt∑
i=at

xti

bt∑
i=at

xti

v1s
t + v1b

t +
bt∑
i=at

xti

∀t = 1, . . . , v1
min

∀t = v1
max, . . . , T

if P+2 > T -P -1
∀t = v1

min+1, . . . , v1
max-1

∀t = P+2, . . . , T -P -1

(59)

x̃it ≤ (D̄t + D̂t)yi
∀i = 1, . . . , T
∀t ∈ SPi

(60)

xmt + xrt ≤Mtyt ∀t = 1, . . . , T (61)
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v1s
t ≤

T∑
i=t+P+1

(D̄i + D̂i)yt ∀t = 1, . . . , T -P -1 (62)

v1b
t ≤

t−P−1∑
i=1

(D̄i + D̂i)yt ∀t = P+2, . . . , T (63)

Hrj
t , x

m
t , x

r
t , xit, dt ≥ 0 (64)

yt, binary (65)

(19), (37)− (41)

Here, we have three different types of inventory costs. The first set arise from
the original variables in (DMP) and hence presented again by constraints (37)
and (38), through which we decide the inventory levels for demand scenarios
j = 1, ..., J − 1, and therefore, the total serviceables inventory cost as Hsj .

Secondly, there is inventory cost incurred through variables x̃it and con-
straints (50) and (51), by which the inventory levels for the last scenario J are
decided. These individual costs are linked to the variable Hsj

t by constraint
(41).

Thirdly, we consider the inventory costs incurred through the non-extended
variables, where the total inventory cost is given by HsPJ

t in constraint (52).
Constraints (53) and (54) indicate the independent serviceables inventory and
backlogging costs, respectively, and we define the following measures to deter-
mine the specific variables that contribute to these costs, based on the values of
t and P :

• [smint , smaxt ] where smint = max{1, t−P} and smaxt = min{t, T −P − 1}:
Determines the interval, in which serviceables holding cost is incurred
through v2s

t for period t.

• [bmint , bmaxt ] where bmint = max{1, t − P} and bmaxt = min{t, T − P}:
Determines the interval, in which backlogging cost is incurred through v2b

t

for period t.

Constraint (48) is used to determine the total serviceables inventory and
backlogging cost for the last scenario J , where all three types of inventory
costs are summed. As the remaining demand points are handled through the
constraints in DMP-EFAG, we indicate the total inventory costs for scenarios
j = 1, ..., J − 1 through constraint (49).

Flow conservation of non-extended variables are achieved through constraints
(55)-(57). The set of constraints in (58) ensure that demand is satisfied in each
time period. Here, we have four different cases, depending on the specific values
of t and P as aggregated production variables are only introduced for the inter-
val [t − P, t + P ]. Under this setting, demand can either be satisfied by both,
none or only one of the approximate and aggregated production variables. In
order to determine the exact intervals for each of these cases, we introduce the
following:
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• v2
min = min{T−P, P+1}: Determines the period until which demand can

be satisfied through v2b
t and approximate extended production variables.

• v2
max = max{T − P + 1, P + 2}: Determines the period from which de-

mand can be satisfied through v2s
t and approximate extended production

variables.

Similarly, the flow conservation constraints given in (59) for production vari-
ables vary for specific combinations of t, P and T . In this case, the value of
the original production variables xmt and xrt is either equal to the sum of the
extended production variables, x̃it, or slip between the sum and v1s

t and/or

v1b
t . The sum of extended production variables is given as

bt∑
i=at

xti, where

at = max{1, t − P} and bt = min{t + P, T + 1}. Here, at and bt are used
to ensure that the approximate variables at the beginning and end of the plan-
ning horizon remain in the set SPi . The intervals for each case is determined
according to the following values:

• v1
min = min{T − P − 1, P + 1}: Determines the period until which the

total production (through original production variables xm and xr) is
distributed between approximate extended production variables (x̃it) and
v1s
t .

• v1
max = max{T − P, P + 2}: Determines the period from which the

total production is distributed between approximate extended production
variables and v1b (until the last period T ).

Figure 2 illustrates an example for the use of approximate variables, where T = 5
and P = 1. In contrast to DMP-EFAG, the value of the original manufacturing
and remanufacturing variables are not only distributed between the aggregated
production variables, but also v1s and v1b, where applicable. Note that Figure 2
only illustrates the decisions taken on the serviceables level, as decisions related
to returns and remanufacturing remain unchanged.

Finally, we ensure that a joint setup cost is incurred when production takes
place in constraints (60) - (63). As v1s

t is only used to satisfy demand points in

time periods [t + P + 1, . . . , T ], we set Mt =
T∑

i=t+P+1

(D̄i + D̂i) for constraint

(62). Similarly, for constraint (63), as demands that are backlogged through the
non-extended variables are defined as v1b

t are in the interval [1, . . . , t − P − 1],

we define Mt =
t−P−1∑
i=1

(D̄i + D̂i).

4 Computational Results

The computational experiments presented in this section are conducted with
datasets that have been generated and used in the study presented in [6]. More-
over, we follow the same Benders’ framework presented in [6]. In this framework,

22



DK
1 DK

2 DK
3 DK

4 DK
5

xm
1 + xr

1xm
1 + xr

1

HsJ
1H
sJ
1

xm
2 +xr

2xm
2 +xr

2

HsJ
2H
sJ
2

xm
3 + xr

3xm
3 + xr

3

HsJ
3H
sJ
3

xm
4 + xr

4xm
4 + xr

4

HsJ
4H
sJ
4

xm
5 + xr

5xm
5 + xr

5

HsJ
5H
sJ
5

v1s1v
1s
1 v1s2v

1s
2 v1s3v

1s
3

v2b1v
2b
1 v2b2v

2b
2 v2b3v

2b
3

v2b4v
2b
4

v2s5v
2s
5v2s4v

2s
4v2s3v

2s
3

ws
1w
s
1 ws

2w
s
2 ws

3w
s
3 ws

4w
s
4 ws

5w
s
5

wb
3w
b
3 wb

4w
b
4 wb

5w
b
5

v1b3v
1b
3 v1b4v

1b
4 v1b5v

1b
5

Figure 2: (DMP-EFAP) with P = 1 and T = 5

the initial upper bound (UB) and lower bound (LB) are set to∞ and 0, respec-
tively. Then, LB is updated at every iteration after the (DMP) is re-solved with
a new scenario, while UB is updated only if the AP improves UB, where the
minimum of the current UB and the cost corresponding to the new scenario will
be taken as the new UB.

For all datasets, the nominal demand is generated within the interval D̄ =
[Dmin, Dmax], where Dmin = 50 and Dmax = 100, and the serviceables holding
cost is generated in the interval hs = [5, 10]. The manufacturing and remanu-
facturing cost are defined as m = mf ∗ hs and r = 2 ∗ hr, where we refer to mf

as the manufacturing factor, which is set as mf = 2 for all datasets used in the
computational tests given below (Tables 2, 3 and 4). We set the backlogging
cost as b = 4 ∗ hs. Note that we may set the backlogging cost for the last time
period higher than b in order to account for the setup and production costs
outside the planning horizon, where bT = kb, such that k > 1. Although this
accounts for the costs incurred beyond the last time period T , it is worth noting
that bT is only an estimated measure for costs associated with decisions that are
taken beyond the planning horizon. As a result of this, the exact realization of
costs for period T + 1 may differ from what is incurred in an optimal solution.
Furthermore, we identify the following key parameters and their variations in
order to obtain a broad variety of problem characteristics:

• Very high, high, medium and low levels of the setup cost, KV = 200 ∗
hs ∗ Dmax ,K

H = 5 ∗ hs ∗ Dmax, K
M = 2 ∗ hs ∗ (Dmax+Dmin

2 ), KL =
0.1 ∗ hs ∗Dmin, respectively.

• High, medium and low levels of nominal returns, R̄H ∈ [0.7 ∗Dmin, 0.7 ∗
Dmax], R̄M ∈ [0.5 ∗ Dmin, 0.5 ∗ Dmax], R̄L ∈ [0.3 ∗ Dmin, 0.3 ∗ Dmax], re-
spectively.
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KV KH

p, d R̄H R̄M R̄L R̄H R̄M R̄L

H,G 12.0, 2.0 11.4, 2.0 9.1, 2.0 − − −
H,L 11.3, 2.0 8.9, 2.0 10.9, 2.0 9724.4, 3.0 − −
M,G 11.7, 2.0 11.8, 2.0 9.1, 2.0 − − −
M,L 10.8, 2.0 9.8, 2.0 10.3, 2.0 9362.9, 3.0 − −
L,G 14.4, 2.0 12.7, 2.0 10.9, 2.0 9144.7, 3.0 6143.3, 3.2 8725.9, 3.0
L,L 11.9, 2.0 10.3, 2.0 9.7, 2.0 5899.9, 3.2 8034.6, 3.3 8959.2, 3.0

Mean 12.0, 2.0 10.8, 2.0 10.0, 2.0 9024.2, 3.1 9030.7, 3.3 9615.3, 3.0

KM KL

p, d R̄H R̄M R̄L R̄H R̄M R̄L

H,G 4808.6, 4.8 3302.3, 5.3 2948.0, 4.6 45.2, 10.6 12.2, 9.0 12.5, 9.2
H,L 1631.0, 4.6 6378.9, 5.0 4909.3, 5.0 11.4, 8.4 17.9, 10.6 17.9, 10.2
M,G 2888.4, 3.5 1235.8, 5.0 2578.7, 5.0 56.4, 9.0 15.6, 8.8 12.3, 7.4
M,L 3999.2, 4.3 1407.9, 4.8 3794.7, 5.2 15.4, 10.4 25.3, 10.6 21.0, 10.4
L,G 2707.4, 3.8 1270.4, 4.8 166.0, 3.8 92.7, 10.4 20.8, 10.0 18.9, 9.4
L,L 973.8, 5.0 442.2, 4.6 1789.0, 4.6 16.1, 8.6 22.1, 9.2 17.0, 8.2

Mean 2834.7, 4.3 2339.6, 4.9 2697.6, 4.7 39.5, 9.6 19.0, 9.7 16.6, 9.1

“−” indicates that time limit was reached for these instances before reaching
the desired optimality gap.

Table 2: Average computational time (in sec.) and average number of iterations
required to reach convergence (given in italic, excluding instances where the time
limit is reached) for DMP with T = 50 for all datasets.

• High, medium and low probability of constraint violation caused by Γt, p
H =

0.1, pM = 0.05, pL = 0.01, respectively, where the probability measures
are calculated in a similar fashion as proposed in [12], where we use the ap-
proximation p = 1−Φ(Γt−1√

t
) to obtain the values for ΓDt and ΓRt according

to desired levels of probability.

• Disposal cost, either less or greater than the remanufacturing cost, set as
fL = r

2 , fG = 2 ∗ r, respectively.

This experimental design resulted in 72 different combinations and hence 72
datasets were generated, with five instances in each dataset. We also note that
the parameter deviations for a given period t, i.e., D̂t and R̂t, are set as 0.1∗ D̄t

and 0.1 ∗ R̄t, respectively, for all datasets.
All instances were solved as MIPs using Java API for CPLEX 12.7 on an

Intel Core i5, 3.30 GHz CPU, 3.29 GHz, 8 GB RAM machine. The terminating
condition is met when either the time limit of 10,000s is reached, or a robust
optimal solution is found, where ε = 0.01. In order to tackle the excessive time
requirements while solving the DMP, the MIP gap tolerance for earlier iterations
were kept higher, while the final iteration has a relative MIP gap optimality
tolerance of 1%. As the last iteration cannot be determined in advance, the MIP
gap tolerance is reverted to 1% when ε ≈ 0.01 is achieved, and kept unchanged
until a robust optimal solution is found.

We begin presenting the computational results for DMP, through which we
highlight the strengths and weaknesses of the extended reformulations (DMP-
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EFAG) and (DMP-EFAP). Before discussing detailed results, we note that a
common observation for all three formulations is that an optimal solution to
the adversarial problem is achieved under a maximum of 20 seconds for all
instances and datasets. On the other hand, for certain instances and datasets,
a disproportionate amount of time is required to solve the decision maker’s
problem. For this reason, we assume that the total time requirements for the
decomposition algorithm is representative of the time requirements for solving
the decision maker’s problem.

As the results in Table 2 indicate, there exists a significant difference in the
computational times when setup costs vary. We first observe that the instances
with very high (K ∈ KV ) and low (K ∈ KL) setup costs are solved very
quickly, whereas the computational times are significantly higher for instances
with medium setup costs (K ∈ KM ) and the majority of instances with high
setup costs (K ∈ KH) even exhaust the time limit of 10,000s. When setup
costs are decreased towards zero, one would naturally expect the problem to
become much easier to solve, since the binary decisions become almost obsolete
as one may set all or almost all of them to 1. On the other hand, increasing
setup costs from very low up to a certain level naturally complicates the solution
procedure, as the combinatorial nature of setup decisions becomes much more
dominating as a result of the competition between such decisions. However, once
setup costs are significantly increased, then the problem would again become
naturally easy to solve, as setups become prohibitive and hence almost all setup
variables will be set to 0. We also observe that the computational times in
general decrease as the probability of constraint violation decreases from high
(pH) to low (pL). This is not unexpected, as lower probability of constraint
violation would naturally ease the search process for feasible solutions. Finally,
although we observe a significant variation in times when nominal return levels
vary between R̄ ∈ R̄H , R̄M and R̄L or disposal costs vary between fL and fG,
we can not observe a clear tendency as to when the computational times would
increase or decrease. However, this does not mean that we should exclude their
impact, because it may be possible to observe a pattern after controlling other
factors.

Next, in the same fashion, we present the computational times for the ex-
tended aggregate reformulation (DMP-EFAG) and approximate extended re-
formulation (DMP-EFAP) in Tables 3 and 4, respectively. In comparison to
previous results, (DMP-EFAG) has a vast improvement on the overall time
performances for datasets with K ∈ KH , where we are now able to solve all
instances except one within the time limit. Although the average time require-
ments remain similar for K ∈ KM , some datasets such as those with the prob-
ability pL are solved much more efficiently, within only 243 seconds. Similar to
previous results, datasets with low values of setup costs can still be solved very
fast.

As the results in Table 4 indicate, (DMP-EFAP) has even further improved
the computational times for datasets with K ∈ KH in comparison to (DMP-
EFAG), where the average time requirement across datasets is now 11.2 seconds
for R̄ ∈ R̄H , contrary to the time performance of 347.8 seconds for (DMP-
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KV KH

p, d R̄H R̄M R̄L R̄H R̄M R̄L

H,G 1.6, 2.0 0.8, 2.0 0.8, 2.0 854.2, 2.8 472.9, 2.4 167.8, 2.4
H,L 1.6, 2.0 0.9, 2.0 0.8, 2.0 295.9, 2.2 2.0, 2.2 2.8, 2.2
M,G 1.6, 2.0 1.2, 2.0 0.7, 2.0 923.9, 2.4 1.7, 2.0 3.2, 2.4
M,L 1.3, 2.0 0.8, 2.0 0.7, 2.0 3.6, 2.4 3.2, 2.2 651.1, 2.6
L,G 1.0, 2.0 0.9, 2.0 0.7, 2.0 5.4, 2.4 4.3, 2.2 3372.1, 2.5
L,L 0.9, 2.0 0.8, 2.0 0.8, 2.0 3.7 , 2.2 3.4, 2.2 5.2, 2.6

Mean 1.3, 2.0 0.9, 2.0 0.8, 2.0 347.8, 2.4 81.3, 2.2 700.4, 2.5

KM KL

p, d R̄H R̄M R̄L R̄H R̄M R̄L

H,G 3140.5, 4.3 1122.9, 3.8 152.6, 3.2 12.3, 6.2 12.9, 6.4 13.6, 6.4
H,L 1603.3, 3.4 620.1, 3.2 1770.7, 3.8 18.4, 6.4 16.8, 7.2 12.7, 6.0
M,G 2646.4, 3.3 2036.4, 3.3 3516.4, 3.5 15.1, 6.2 12.9, 5.8 29.8, 6.8
M,L 3566.6, 3.3 459.3, 4.2 894.8, 3.4 12.0, 5.2 12.3, 6.0 13.5, 6.4
L,G 17.4, 3.0 25.8, 3.2 4.8, 3.2 12.0, 4.8 11.3, 5.4 16.2, 6.8
L,L 70.9, 3.8 8.8, 3.4 27.4, 3.4 13.6, 6.0 18.2, 7.0 22.9, 7.6

Mean 1840.8, 3.5 712.2, 3.5 1061.1, 3.4 13.9, 5.8 14.1, 6.3 18.1, 6.7

Table 3: Average computational time (in sec.) and average number of iterations
required to reach convergence (given in italic, excluding instances where the time
limit is reached) for DMP-EFAG with T=50 for all datasets.

KV KH

p, d R̄H R̄M R̄L R̄H R̄M R̄L

H,G 3.2, 2.0 2.4, 2.0 2.3, 2.0 17.4, 2.6 1099.2, 3.0 145.7, 2.4
H,L 2.9, 2.0 2.5, 2.0 2.3, 2.0 33.9, 2.6 2.7, 2.4 95.0, 2.6
M,G 2.4, 2.0 2.4, 2.0 2.2, 2.0 2.3, 2.0 2.8, 2.6 2.5, 2.4
M,L 2.5, 2.0 2.6, 2.0 2.4, 2.0 4.8, 2.8 830.9, 2.4 2001.7, 2.3
L,G 2.7, 2.0 2.5, 2.0 2.3, 2.0 4.3, 2.4 2.4, 2.0 2.5, 2.2
L,L 2.5, 2.0 2.4, 2.0 2.3, 2.0 4.3, 2.4 2.4, 2.0 2.4, 2.0

Mean 2.7, 2.0 2.4, 2.0 2.3, 2.0 11.2, 2.5 323.4, 2.4 375.0, 2.3

KM KL

p, d R̄H R̄M R̄L R̄H R̄M R̄L

H,G 6073.2, 4.5 2407.5, 3.5 248.7, 3.0 11.5, 7.2 14.7, 7.2 25.2, 8.8
H,L 2649.5, 4.2 2409.3, 3.8 8002.5, 2.0 11.2, 7.0 18.8, 8.2 14.3, 7.0
M,G 2069.1, 3.3 1645.5, 3.2 2069.6, 4.5 10.7, 5.8 18.3, 6.8 22.7, 8.0
M,L 2016.3, 2.8 43.7, 3.4 4032.7, 3.0 11.7, 6.2 16.0, 7.8 19.5, 7.6
L,G 19.6, 2.8 12.8, 3.0 4.2, 2.8 11.8, 6.2 17.4, 6.4 12.8, 6.8
L,L 21.1, 2.8 14.8, 3.2 4.8, 3.0 13.6, 6.6 24.7, 8.4 15.2, 6.2

Mean 2141.5, 3.4 1088.9, 3.3 2393.8, 3.1 11.8, 6.5 18.3, 7.5 18.3, 7.4

Table 4: Average computational time (in sec.) and average number of iterations
required to reach convergence (given in italic, excluding instances where the time
limit is reached) for DMP-EFAP with T=50 for all datasets, using the maximum
interval approach to determine P .

26



EFAG). One possible reason for this can be observed in Figure 7, where we
observe that for low values of the manufacturing factor mf , low values of P are
sufficient to improve the lower bound so that (DMP-EFAG) does not have an
advantage over the approximate extended formulation (DMP-EFAP). Although
the approximate extended reformulation has achieved worse times in the set
K ∈ KM when the high probability pH of infeasibility parameter is applied, it
has a better or similar time performance in comparison to (DMP-EFAG) for pM

and pL. The inferential observation from Tables 3 and 4 is that the variation
in computational times with respect to varying levels of setup costs and returns
is similar to (DMP). Although the computational times for instances with high
setup costs (K ∈ KH) are significantly reduced, instances with medium level
setup costs (K ∈ KM ) are the most challenging for extended reformulations.

Another interesting aspect to remark here is the number of scenarios needed
to reach convergence. We observe that the total number of iterations mainly
varies for different levels of the setup cost. As the results in Tables 2, 3 and Table
4 suggest, lower levels of setup costs tend to increase the number of scenarios
required to reach convergence for all three formulations. All instances for K ∈
KV have managed to reach a robust optimal solution in 2 iterations, whereas
this number is much higher for K ∈ KL. More specifically, instances with lower
setup costs require on average ≈ 9.5 iterations to converge in DMP, whereas
this decreases to ≈ 6.3 for (DMP-EFAG) and to ≈ 7.1 for (DMP-EFAP). This
behavior is also observed for setup costs where K ∈ KH ,KM . However, the
difference between reformulations is less significant for these classes of datasets,
where (DMP) requires on average ≈ 3.9 iterations, while this amount is ≈ 2.9
for (DMP-EFAG) and ≈ 2.8 for (DMP-EFAP).

R̄ ∈ R̄H R̄ ∈ R̄M R̄ ∈ R̄L
40
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Figure 3: Percentage increase in the lower bound for DMP-EFAG with respect
to DMP for J̃D = 1, for different levels of returns (R̄ ∈ R̄H , R̄M , R̄L) when
K ∈ KV (red), K ∈ KH (blue) and K ∈ KM (green).

Another important consideration is with respect to the improvement in lower
bounds when extended reformulations are applied. Figure 3 indicates the per-
centage improvement of the lower bounds at the root node in (DMP-EFAG) with
respect to (DMP). We can observe that the most significant gains are achieved
for datasets with high setup costs, where we are able to obtain an improvement
of ≈ 75% over varying levels of returns. On the other hand, the gains in lower
bounds are slightly less when the setup cost levels are medium, though they are
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Figure 4: Percentage increase in the lower bound for DMP-EFAG with respect
to DMP, for different levels of returns: R̄ ∈ R̄H , R̄M , R̄L when K ∈ KL

still very effective with an improvement of ≈ 60% over varying levels of returns.
In a similar fashion, we present the improvements in lower bounds for low

setup cost datasets in Figure 4. The tendency of increasing improvements as
returns level move towards high can also be observed in this case. However, in
comparison with previous results, low setup costs result in less significant gains,
with the improvements achieving at most a maximum of 8.0%. This is likely to
occur as the fractionality in setup variables in the LP relaxation of (DMP) would
not result in significant cost improvement compared with the integer solution
since the setup cost associated with these variables are themselves low.

Another interesting aspect for comparison is the computational behaviour
when the extended reformulations are applied, as demonstrated in Figure 5.
With the tolerance for the MIP gap set to 1%, we are able to obtain optimal
solutions for (DMP) for 71.9% of the instances among all datasets, whereas this
percentage shows a considerable increase to 97.8% and 94.4% for (DMP-EFAG)
and (DMP-EFAP), respectively. In addition, we observe that only 34.8% of
the instances were solved under 100 seconds for (DMP), majority of which are
those with K ∈ KL (as seen in Table 2 before), as they constitute 33.3% of the
total number of instances (excluding instances where K ∈ KV ). On the other
hand, for (DMP-EFAG) and (DMP-EFAP), we observe a vast increase in the
number of instances solved under 100 seconds, with 80.4% and 84.4% of the
instances, respectively. This clearly implies a strong improvement in the overall
computational performance for both reformulations. Another point to note here
is that the variance among the computational time requirements for instances
that are solved quickly (under 100 seconds) is very small for all formulations.

Although the computational time requirements for both (DMP-EFAG) and
(DMP-EFAP) have shown a significant improvement, we observe that as com-
putational time increases, (DMP-EFAG) becomes the more effective method,
achieving a higher percentage of instances solved in comparison to (DMP-
EFAP), which is observed when the time requirement surpasses 2079 seconds.
On the other hand, for cases requiring less computational time, (DMP-EFAP) is
the method of choice, achieving a higher percentage of instances solved. In ad-
dition, we remark that the choice of P plays a crucial role in the computational
time performance for (DMP-EFAP), and thus has an impact on the resulting
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Figure 5: Percentage of instances (over datasets with K ∈ KH ,KM ,KL) that
are solved to optimality, where the MIP gap tolerance is set as 1%.

computational time performance.
Next, we analyze the impact of our choice of mf and P in (DMP-EFAP) on

the optimal objective value obtained from its LP relaxation. As we increase P ,
this results in an increase in the number of extended variables and constraints
(60), which enable us to obtain tighter relaxations. However, as P increases, the
LP relaxation value of (DMP-EFAP) increases towards the LP relaxation value
of (DMP-EFAG). Hence, we define P s as the P value for which this increase
becomes negligible. We classify the increase as negligible when the difference in
the optimal objective function value between two LP relaxations is below 0.001.
The manufacturing factor mf plays a crucial role in the value of P s. As mf

increases, remanufacturing and backlogging naturally become more favorable.
This would result in a greater number of extended variables becoming active,
and hence a higher value of P s is needed.
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Figure 6: Average P s for various manufacturing factors, where K ∈ KM ,KL

and R̄ ∈ RH (dotted), RM (dashed), RL (straight).

From Figures 6 and 7, we can observe that the rate of increase in P s varies
with respect to the levels of returns and setup costs, as expected from our
discussion above. As seen in Figure 7 for high setup costs, P s remains fairly
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Figure 7: Average P s for various manufacturing factors, where K ∈ KH , and
R̄ ∈ RH (dotted), RM (dashed), RL (straight).
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Figure 8: Average P s for various manufacturing factors for T = 50, where
K ∈ KV , and R̄ ∈ RH (dotted), RM (dashed), RL (straight).

low for low values of mf (till around an average value of 18.6) and it starts
increasing with mf . This average value of mf till which P s remains low drops
to 10.6 for medium and low setup costs, as seen in Figure 6. On the other
hand, since an increase in returns allows higher rates of remanufacturing rather
than backlogging (and hence we can expect a decrease in extended production
variables), we would expect a slower rate of increase for P s with higher returns.
This behavior can be observed in Figures 6 and 7, where it is easy to see that
P s starts increasing with mf but with a gentler slope for datasets with R ∈ RH
(dotted), in comparison to the those with R ∈ RM , RL (dashed and straight
lines, respectively). On the other hand, as seen in Figure 8, datasets with
K ∈ KV have a much greater overall P s value due to the significant increase in
the setup cost. An interesting behaviour we observe here, unlike the previous
cases, is the decrease in the value of P s as mf increases. As a result of very
expensive setup costs, only a very limited number of setups is expected in the
optimal solution, and we observe this often with a single setup taking place
in the optimal solutions of these instances. As mf increases, we observe that
the setup periods start to split the horizon more equally in order to balance
remanufacturing and backlogging costs, which in turn decreases the P s value.
We also observe that occasionally a significantly higher mf value results in an
additional setup period, again contributing to the decrease in P s.
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5 Conclusions

In this paper, we study a lot-sizing problem with the remanufacturing option,
where uncertainties exist simultaneously for demand and return parameters.
Following the setting of our previous work ([6]), we define parameter uncertain-
ties in the form of polyhedral uncertainties. After a discussion of deterministic
problem formulation, we present in detail a min-max decomposition approach.
The framework iteratively solves a decision maker’s problem that evaluates a
limited number of scenarios to generate a production plan, and an adversarial
problem that generates a scenario that has not yet been considered by the deci-
sion maker using the proposed production plan. As the computational challenge
of this framework primarily lies in the decision maker’s problem, we then in-
vestigate this problem further in order to improve computational performance.
In particular, we propose a novel approach for formulating the robust lot sizing
problem with remanufacturing, which employs two different reformulations. As
detailed computational results demonstrate, these extended reformulations are
capable of improving the computational performance immensely, in particular
the case where setup costs are high. We also present a thorough understanding
on the impact of a range of problem parameters, which we believe are invalu-
able to researchers not only in the area of lot-sizing but also in the broader
community of robust optimization. In near future, we would like to address the
complexity issues of the adversarial problem. We would like to address a few
cost structures that we have not considered in this work. For instance we would
like to introduce a variable costs component for our manufacturing costs and
make the costs time variant.
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