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ABSTRACT
The physician assignment process consists of coverage of shifts and duties allocated
to physicians in a planning period, taking into account work regulations, individ-
ual preferences, and organizational rules, which mostly conflict with each other. In
this work, we propose a reformulated mixed-integer programming model based on
the literature to tackle fairness in physician scheduling in Emergency Rooms. In
particular, we propose two mixed-integer quadratic programming formulations that
consider quadratic costs and two models with linear costs. Our approaches provide
balanced schedules concerning target hours and weekends in terms of fairness. Our
models also provide a high degree of demand coverage, providing decision-makers a
significant advantage.
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1. Introduction

Emergency rooms are usually the main entry points to hospitals. They are divisions
that operate around the clock every day of the year to provide adequate and immediate
treatment. The visits to these divisions include a wide range of illnesses, often because
ER usually provides the only medical treatment free of charge in some countries such
as Spain, Brazil, and the USA (Cabrera et al., 2012). As a result, ERs often work 50%
or even more over the capacity, despite services being provided 24 hours a day (Barish
et al., 2012).

One of the most concerning situations in the ER is crowding associated with in-
creased mortality and a more extended stay in the hospital, primarily due to unin-
sured patients waiting for approximately twice as long as recommended, which leads
to overuse as mentioned by (Sun et al., 2013; NEHI, 2010). Some approaches to tackle
this problem include the use of co-location of a primary care clinician, doctor triage,
rapid assessment, and patient streaming (Edwin, 2016). Indeed, these measures lead
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to reduced patient time in emergency rooms. However, these measures do not suffice
to create fair schedules between the physicians.

The recent work of Erhard et al. (2018) provides a comprehensive review of quanti-
tative methods, relevant characteristics, modeling features, and fairness in nurse and
physician scheduling. Physician scheduling consists of coverage of shifts and allocation
of duties to physicians in a specified planning period, taking into account a set of work
regulations, individual preferences, and organizational rules, which often conflict. As
emphasized by Gendreau et al. (2007), fairness needs to be carefully observed to bal-
ance the distribution of different types of shifts among physicians, particularly with
often extensive overtimes. This aspect becomes paramount in the ER setting.

This paper proposes an overarching mixed-integer programming model for Physician
Scheduling Problem in Emergency Room (PSP-ER), a reformulation and expansion of
previous models from the literature. In order to effectively tackle fairness, we suggest
two objective functions with quadratic costs, resulting in mixed-integer quadratic for-
mulations, and two objective functions with linear costs. One function estimates the
target values of hours and weekends for the quadratic costs, and the other uses pa-
rameters from the instances. We also study some approaches to linearize the quadratic
models and alternative distance functions. Our experiments using benchmark instances
demonstrate that the proposed techniques result in fairer schedules without sacrificing
the high degree satisfaction of demand coverage.

The remainder of this paper is organized as follows: in Section 2, we present a
brief literature review on the physician scheduling problem in emergency rooms. Sec-
tion 3 presents the problem, as well as the most important features to consider, and
a discussion of the model reformulation. We report the computational experiments in
Section 4, along with an extensive discussion.

2. Literature Review

PSP-ER has been studied in the literature since the mid-80s. To the best of our
knowledge, the first approach was proposed by Vassilacopoulos (1985) with a dynamic
program to determine the number of doctors to cover each shift every week at Saint
Peter Hospital in England. Since then, operations research and computer science prac-
titioners have proposed a range of methods to solve this NP-hard problem.

The general trend in physician scheduling problems consists of applying exact solu-
tion methods over heuristics, with the majority of the literature using modeling derived
from mathematical programming (Erhard et al., 2018). The same review notes that
around 53% of the literature about emergency room physician scheduling was produced
before 2010, and 69% uses mathematical programming-based approaches.

2.1. Solution approaches for the PSP-ER

Earlier mathematical programming approaches include Beaulieu et al. (2000), solv-
ing the problem with an integer programming model, and Carter & Lapierre (2001),
proposing a generic mathematical model. A combination of heuristics and mathemat-
ical programming has also been effective in tackling this highly constrained problem,
e.g., Rousseau et al. (2002) proposed a general and hybrid method integrating con-
straint programming, local search, and genetic algorithms. Gendreau et al. (2007)
gathered a series of generic constraints to describe emergency room physician schedul-
ing based on the characteristics of five Canadian hospitals and reviewed alternative
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solution techniques, namely Tabu Search, column generation, mathematical program-
ming, and constraint programming. In this paper, the authors explore techniques and
features of the problem formerly explored by Beaulieu et al. (2000), Carter & Lapierre
(2001) and Rousseau et al. (2002).

The computational limitation was one of the major impediments faced by OR prac-
titioners in the early 2000s when solving mid-sized instances of the PSP-ER via math-
ematical programming approaches. A common measure was easing the problem’s con-
straints to find a feasible solution. As an example, due to the size of the instances used
in the PSP-ER, Beaulieu et al. (2000) noted in their earlier work that it was imprac-
tical to solve the entire problem. Instead, they approached the problem by removing
all conflicting constraints and then adding the constraints iteratively when a partial
branch-and-bound procedure found an acceptable solution.

An essential subset of ER physicians is residents, who are part of the graduate
medical education seeking a full license in ER specialty. Topaloglu (2006) proposed
a goal programming model and applied the analytical hierarchy process (AHP) in
a university hospital to measure the relevance of each of the soft constraints of the
problem when scheduling emergency medicine residents.

A derivation of PSP-ER is the Resident Scheduling Problem (RSP), where the
residents are assigned to day and night shifts over a given planning horizon subject
to numerous working regulations and staffing requirements. It is important to remark
that residents have a unique position as learners and providers of services, working
long duty hours.

With time, computational performance improved, and some techniques could be
effectively implemented. Unlike Beaulieu et al. (2000), who removed conflicting con-
straints considering the challenging sizes of the instances and highly constrained struc-
ture, Topaloglu & Ozkarahan (2011) proposed a mixed-integer programming model
for small instances of the RSP, while employing column generation (CG) to larger
instances. As the reader can notice, the current paper and Topaloglu & Ozkarahan
(2011) have benefited from computational evolution. A difference is in the application
of MIP even for larger instances in our case, whereas Topaloglu & Ozkarahan (2011)
used CG. Therefore, we can infer that computational resources can have an impact
when solving problems.

The conflicts of work regulations, organizational requirements, and personnel pref-
erences are particularly magnified in new hospitals. Therefore, Ferrand et al. (2011)
proposed a mixed-integer programming model to create cyclic schedules for ER physi-
cians, with an application in a children’s hospital in Cincinnati. This work had a
significant impact since it helped physicians identify trade-offs in formulating their
requests and classifying what was critical instead of desirable.

Carter & Lapierre (2001) applied a Tabu Search (TS) to solve computational issues
inherent in PSP-ER. TS procedure was in general satisfactory in generating feasible
schedules, where fairness was nominally achieved even though not every physician
could have their desired schedule.

Rousseau et al. (2002) proposed a general hybrid method merging Constraint Pro-
gramming (CP), Local Search, and Genetic Algorithms. However, not all solutions
were suitable, which led to an improvement process that combines the proper indi-
vidual schedules from different solutions into a single complete roster. This method
is part of two real-world scheduling problems for physicians in Montreal and is also
included in the study of Gendreau et al. (2007).

Gendreau et al. (2007) proposed a series of generic constraints to describe PSP-ER
based on the characteristic of five Canadian hospitals. The variety and specificity of
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constraints made the authors conclude that it is challenging to come up with general
solution methods to solve the problem and to obtain fair comparisons of different
techniques.

Puente et al. (2009) addressed another particular case using Genetic Algorithms
(GA) to automate the creation of timetables in a Spanish hospital. The problem is
less constrained, as hard constraints are limited and primarily soft constraints are
used. The work proposed an encoding type that allows creating feasible solutions
and a crossover operator that allows finding new feasible solutions evolving favorably
according to fitness measures. (Frey et al., 2009) also applied GA in PSP-ER with
data from a Swiss hospital, where only two sets of hard constraints were used among
various soft constraints.

However, the solution quality of generated schedules leaves room for improvement.
Despite the challenges faced by the authors to create benchmark instances, with the
progress of computational resources, they seem to be a suitable tool to compare dif-
ferent approaches, as can be observed in recent attempts of Curtois & Qu (2014);
Rahimian et al. (2017a,b).

We also note that over-staffing is not adequate to resolve overtime issues, as demon-
strated by Al-Najjar & Ali (2011) simulation of patients’ arrivals to generate schedules
for two large public hospitals in Baghdad. As this paper demonstrates, PSP-ER re-
quires an out-of-the-box solution approach, often building a hybrid method benefiting
from the strengths of mathematical programming and meta-heuristics.

2.2. Fairness in the PSP-ER

Al Ghathbar et al. (2019) proposed an ILS(Iterated Local Search) procedure to tackle
the physician scheduling problem in ERs for King Khalid University Hospital in Saudi
Arabia. Fairness measures cover an equal number of weekends off for all physicians
and night shifts for all physicians. Different from our setting, they consider weekends
off in the definition of the problem, while we consider weekends on assignment. We
can translate the measure as an even distribution of weekends, which we apply. As in
Gharbi et al. (2017), these constraints may suffer from violations in case of priority
rules such as seniority.

Savage et al. (2015) optimized the physician shift schedules by minimizing the differ-
ence between physician productivity and patient demand in the emergency room. The
problem consists of four main constraints based on uncertainty in patient arrival. This
problem and ours do not have similarities with regards to constraints but resemble in
the solution technique, as both use mixed-integer programming models.

Vermuyten et al. (2018) combined VNDS(Variable Neighborhood Descent Search)
and CG to tackle an integrated approach to staff scheduling on an Emergency Service
Health Center in Portugal named INEM. Medical doctors’ and psychologists’ sched-
ules are built by their institutions, whereas the INEM creates nurses’ and technical
personnel schedules. Fairness measures are: every person needs to work at least a pre-
determined number of night shifts, morning shifts, and afternoon shifts, and working
hours should be met as much as possible. The similarity that we find here with ours lies
in the workload. Both Vermuyten et al. (2018) and our proposal assume the desired
number of hours as a target.

Like Carter & Lapierre (2001) that compiled characteristics of a hospital and mod-
eled using MIP, Tan et al. (2019) gathered a set of management rules and physicians’
preferences between other features of a Chinese hospital to build a mixed-integer pro-
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gramming model for physician schedules in ERs. Fairness in this problem is very similar
to Topaloglu (2006), Gendreau et al. (2007), and Topaloglu & Ozkarahan (2011) since
all of them aim to schedule fairly and reasonably the number of night shifts.

After being a subject of study in the early 2000s, Hospital Sacré-Cœur was a case
of study in the late 2010s, when Camiat et al. (2019) proposed productivity-driven
schedules to emergency physicians to align physician productivity with demand with-
out losing fairness between physician. Like Beaulieu et al. (2000), fairness here is
related to the distribution of shifts. Although our proposal and Camiat et al. (2019)
aim to increase physician welfare, we address two different measures of fairness.

Fairness is a matter of concern when Damcı-Kurt et al. (2019) deals with the physi-
cian scheduling problem faced by Flagstaff Medical Center Hospitals in the United
States. In the work, authors leverage workload to obtain schedules with fewer viola-
tions through a set of equalization constraints. Particularly they try to balance the
number of night work, weekend assignments, and even distribution of other shift types
among the personnel. This type of fairness is similar to our approach as we tackle the
least absolute deviation to leverage the workload between the personnel. The authors
use mixed-integer programming model as in, e.g., Beaulieu et al. (2000), Ferrand et al.
(2011). When modeling this highly constrained problem, they apply relaxation vari-
ables to control violation, which is later penalized in the objective function. We use a
similar approach as will be described later.

Wickert et al. (2020) tackled the physician scheduling problem in multiple locations
(including ERs) at Hospital de Cĺınicas de Porto Alegre (HCPA), Brazil. The authors
tackle workload fairness in this work and formulate an extended model that obtains
high-quality results. We tackle the workload balance in our proposal by changing how
workload constraints are defined. We add the concept of the least absolute deviations.
Moreover, we reformulated the cited work by adapting some constraints and objective
functions to achieve a balance in the workload. To solve this problem, Wickert et al.
(2020) proposed a mixed-integer programming model for small-sized instances and a
fix-and-optimize math-heuristic for large instances, with a constructive heuristic based
on the challenging constraints of the problem. We also apply a similar procedure when
solving a variant of our problem, but we use a relax-and-fix heuristic to construct the
initial solution.

Another discussion we raise in this section is related to fairness. Some of the works,
e.g., Carter & Lapierre (2001), Rousseau et al. (2002), Topaloglu (2006) consider fair-
ness by simply creating bounds to certain variables like weekends, workload, and night
shifts. On the other hand, Beaulieu et al. (2000) aims to balance weekly hours, nights,
and conflicting shifts. With this measure, we can infer that fairness is not only related
to balance between the workforce but can be defined in the approximation to maxi-
mum or minimum values a variable can assume. Practitioners can be deceived if they
observe just one side of the coin. Indeed, fairness has been a topic of interest among
healthcare practitioners since the early days of Operations Research in ERs (see, e.g.,
Beaulieu et al. (2000) and Carter & Lapierre (2001)), as well as in the general context
of staff scheduling (Zhong et al., 2017). A comprehensive literature review on person-
nel scheduling considering fairness was presented recently by Wolbeck (2019). Each
problem has its specificity when it comes to deciding what to consider for fairness.
Table 1 summarizes the comparison between our paper and existing fairness aspects
in the literature, where column “Fairness Aspect” provides specific details and column
“Objective Function” notes when personal preferences are used, denoted by PP. Our
proposal is the only one considering target as a parameter to be estimated, aiming for
a fair workload among physicians.
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Table 1. Overview of PSP-ER literature including on fairness, objective functions and methods used

Author Fairness Country Fairness Aspect Objective Function Method

This Paper X BR
Target number of weekends

Target number of week hours
PP+Cost MIP

Beaulieu et al. (2000) X CA
Workload balance;

Balanced night shifts and duties;
Balance on the assignment of antagonist shift.

PP MIP

Carter & Lapierre (2001) X CA

Cyclic schedule;
Distribution of weekend shifts;

Distribution of night shifts;
Overall distribution of shifts.

PP MIP

Rousseau et al. (2002) X CA Distribution constraints PP CP, LS, GA

Topaloglu (2006) X TR
Distribution of night shifts in certain days of the week;

Distribution of supervising resident positions.
PP GP

Gendreau et al. (2007) X CA Equal distribution of types of shifts PP TS

Puente et al. (2009) X ES
Balanced number of different types of shifts;

Work the same number of Saturday and Sundays per month.
PP GA

Frey et al. (2009) X CH

Same amount of shifts;
Same amount of Sunday shifts;

Same amount of Saturday shifts;
Same amount of Thursday shifts.

PP GA

Topaloglu & Ozkarahan (2011) X TR
Balance in the number of on-call night;

Balance between on-call nights and night during the weekends
PP MIP, CG

Ferrand et al. (2011) X US Cyclic schedule PP MIP

Al-Najjar & Ali (2011) X IQ Team size Cost SIM

Lo & Lin (2011) × TW PP PSO

Savage et al. (2015) × CA PP MIP

Gharbi et al. (2017) X SA
Distribution of weekend shifts;

Distribution of night shifts.
PP GP

Devesse et al. (2017) X BR
Workload balance;

Balanced night shifts and duties;
Balance on the assignment of antagonist shift.

PP MIP, RFFO

Vermuyten et al. (2018) X PT
Even distribution of shifts;

Even distribution working hours.
Cost IP, CG, VNDS

Damcı-Kurt et al. (2019) X US
Distribution of night shifts;

Distribution of weekend;
Even distribution of shifts.

PP MIP

Al Ghathbar et al. (2019) X CN
Weekends off balance;
Balanced night shifts.

PP ILS

Tan et al. (2019) X CN Distribution of night shifts. PP MIP

Camiat et al. (2019) X CA Distribution of shifts Cost MIP

Wickert et al. (2020) X BR Balanced distribution of shifts PP+Cost MIP, FOh

Marchesi et al. (2020) × BR PP+Cost SP, DES

CG- Column Generation; CP - Constraint Programming; DES - Discrete Event Simulation; FOh - Fix-and-Optimize heuristic; GA - Genetic Algorithms; GP - Goal Programming;
ILS - Iterated Local Search; LS - Local Search; MIP - Mixed-Integer Programming; PS - Particle Swarm Optimization; SIM - Simulation Model; SP - Stochastic Programming;
TS - Tabu Search; VNDS - Variable Neighborhood Descent Search; VNS - Variable Neighborhood Search; RFFO - Relax and Fix and Fix-and-Optimize heuristic

3. Problem and Model Descriptions

PSP-ER aims to schedule available physicians P to cover the demand of shifts S,
within the days of the planning horizon D. The problem can be established by the
sequence of day-on and day-off duties in the planning horizon. The constraints are
often classified as hard and soft, where hard constraints must be satisfied under any
circumstances, while soft constraints are preferably met, with tolerance to violations.

The objective of physician scheduling is the maximization of staff satisfaction, as
physician retention is the most critical issue faced by hospital administrators, see,
e.g., Beaulieu et al. (2000); Bruni & Detti (2014). However, it is also necessary to
minimize demand violations and planned overtime. Thus, we describe next the Physi-
cian Scheduling Problem (PSP) through its objective functions and hard and soft
constraints. Table 2 shows the notation employed.
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Table 2. Sets, parameters and variables

Sets

P Set of physicians.
D Set of days.
S Set of shifts.
Υs Set of shifts conflicting with s.
M Set of months.
W Set of weeks.
Up Set of unavailable shifts for the physician p.
Dm Set of days of the month m.

Parameters

DEMds Number of physicians to assign to shift s on day d.
R+

p Maximum number of consecutive work days for the physician p.
V +
p Maximum number of weekends physician p can work.
Hs Length of shift s ∈ S, in hours.
LSps Maximum number of shifts of the type s worked by physician p.
Apm Maximum number of days physician p can be assigned on month m.
c−p Minimum number of consecutive days physician p can work.
o−p Minimum number of consecutive vacation days by physician p.

q+pds Weights for shift on requests by physician p on day d and shift s.

q−pds Weights for shift off requests by physician p on day d and shift s.

v+ds Weights for over-coverage on day d and shift s
v−ds Weights for under-coverage on day d and shift s.
hmax
pm Maximum number of month hours for physician p in month m.
hmin
pm Minimum number of month hours for physician p in month m.

Variables

xpds 1 if physician p is assigned to shift s on day d, 0 otherwise.
ypw 1 if physician p works weekend w, 0 otherwise.
σHpm Deviation between the number of hours of physician p during

month m and the target number T H
pm.

σWp Deviation between the number of weekends of a physician p
during the planning horizon and the target number of weekends.

wds Negative deviation from the demand constraint on shift s on day d.
zds Positive deviation from the demand constraint on shift s on day d.
T H
pm Target number of monthly hours for physician p in month m.

T WP Target number of weekends for physician p in the planning horizon.
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3.1. Objective functions

We introduce two objective functions that differ in how the quadratic costs are handled.
The objective function (1) maximizes the allocation of an employee for shift requests
and minimizes under- and over-staffing, as well as deviations in the number of hours
and weekends.

G(xpds, σ
H
pm, σ

W
p ) =

∑
p∈P

∑
d∈D

∑
s∈S

(
q+pds(1− xpds) + q−pdsxpds

)
+
∑
d∈D

∑
s∈S

(
v−dswds + v+dszds

)
+
∑
p∈P

∑
m∈M

(
σHpm

)2
+
∑
p∈P

(
σWp
)2

(1)

The parameters q+pds and q−pds represent the weights for the shift-on and shift-off
requests, respectively. The higher the weight, the more relevant the request is to the
employee. If there is no request, then the parameter is set to zero. The variables wds

and zds are the total numbers of staff below and above the preferred cover level for
each shift, s on the day d, and the parameters v−ds and v+ds are weights indicating
the importance of under- and over-coverage. The last term of the objective function
is the summation deviation from target hours and target number of weekends. The
inclusion of these terms is one of the key differences between our formulation and the
formulation of Curtois & Qu (2014).

The objective function (2) differs only by applying a linear approximation to de-
scribe the quadratic costs. We will later explain the piecewise linear function, N (·),
and its constraints.

H
(
xpds,N (σHpm),N (σWp )

)
=
∑
p∈P

∑
d∈D

∑
s∈S

(
q+pds(1− xpds) + q−pdsxpds

)
+
∑
d∈D

∑
s∈S

(
v−dswds + v+dszds

)
+
∑
p∈P

∑
m∈M

(
N (σHpm)

)
+
∑
p∈P
N (σWp ) (2)

3.2. Constraints

We introduce hard constraints in equations (3)-(11), and soft constraints in equa-
tions (12)-(18).

3.2.1. Set of hard constraints

H1: Single shift assignment
An employee cannot be assigned to more than one shift in a day. This constraint

was also considered by Curtois & Qu (2014), Beaulieu et al. (2000) and Topaloglu
(2006) as a hard constraint. Some hospitals require that physicians cannot be assigned
to more than a shift a day so they can be assigned to a longer stretch, while many
hospitals are required to follow this legally due to work regulations.

∑
s∈S

xpds ≤ 1 ∀p ∈ P, d ∈ D, (3)
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H2: Antagonist shift control
A minimum amount of rest is required after each shift, and hence, some shifts

cannot follow others, e.g., a morning shift cannot follow a night shift. Differently
from Beaulieu et al. (2000), Topaloglu (2006), Ferrand et al. (2011) and Topaloglu
& Ozkarahan (2011) who modelled this constraint as a hard constraint for specific
shifts, we impose it as a general constraint to tackle the antagonism between shifts,
i.e., rather than only restricting one specific pair, we define for each shift a set of
conflicting shifts.

xpds + xp(d+1)i ≤ 1 ∀p ∈ P, d ∈ {1, . . . , |D| − 1}, s ∈ S, i ∈ Υs, (4)

H3: Maximum consecutive work days
This ensures that the maximum number of days an employee can work without a

day off is not violated. From the current day to the last day in the stretch, a physician
cannot exceed the maximum established in R+

p . This constraint was described as a
soft constraint by Topaloglu (2006), whereas Beaulieu et al. (2000), Carter & Lapierre
(2001), Ferrand et al. (2011) and Topaloglu & Ozkarahan (2011) considered it as a
hard constraint.

d+R+
p∑

z=d

∑
s∈S

xpzs ≤ R+
p ∀p ∈ P, d ∈ {1, . . . , |D| −R+

p }, (5)

H4: Minimum consecutive work days and vacation days
Minimum consecutive workdays and vacation days are modeled in constraints (6)

and (7), respectively. Carter & Lapierre (2001) was the first to model this constraint,
which was also considered by Topaloglu & Ozkarahan (2011). These constraints may
stem from workplace regulations but also allow managers to design schedules with more
organized and standardized assignments (workdays) and employees having proper re-
covery periods (vacation days).

∑
s∈S

xpds + c−
d+c∑

j=d+1

∑
s∈S

xpjs +
∑
s∈S

xp(d+c+1)s ≥ 1

∀p ∈ P, c ∈ {1 . . . c−p − 1}, d ∈ {1 . . . |D| − (c+ 1)}, (6)

1−
∑
s∈S

xpds +

d+o∑
j=d+1

∑
s∈S

xpjs +
∑
s∈S

xp(d+o+1)s ≥ 0

∀p ∈ P, o ∈ {1 . . . o−p − 1}, d ∈ {1 . . . |D| − (o+ 1)}, (7)

H5: Weekend assignment
A weekend is assumed to be worked if the employee has a shift on a Saturday or

Sunday, as ensured by (8), while the maximum number of work weekends is presented
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in equation (9). Carter & Lapierre (2001) also considers weekend constraints with
a maximum number of consecutive work weekends. A weekend is regarded as being
worked if the employee has a shift on a Saturday or Sunday, in the constraints expressed
by (7*w-1) and (7*w), respectively.

∑
s∈S

(xp(7∗w−1)s + xp(7∗w)s) ≤ 2ypw ∀p ∈ P, w ∈W, (8)

∑
w∈W

ypw ≤ V +
p ∀ p ∈ P, (9)

H6: Holidays
The constraint (10) indicates days that employees cannot work, e.g., due to holidays

or training. This is a hard constraint, and can also be found in Beaulieu et al. (2000),
Topaloglu (2006) and Puente et al. (2009).

xpds = 0 ∀p ∈ P, (d, s) ∈ Up, (10)

H7: Maximum number of shifts
The constraint (11) ensures a maximum number of shifts of each type that can be

assigned to a physician, e.g., due to contractual requirements allowing only a maximum
number of night shifts. Beaulieu et al. (2000) and Topaloglu & Ozkarahan (2011)
consider this as a hard constraint.

∑
d∈D

xpds ≤ LS ps ∀p ∈ P, s ∈ S, (11)

3.2.2. Set of soft constraints

S1: Demand
The demand should be satisfied, but deviations for over- and under-staffing are

allowed, which are penalized in the objective function. This constraint is originally
found in Curtois & Qu (2014).

∑
p∈P

xpds − zds + wds = DEMds ∀d ∈ D, s ∈ S, (12)

S2: Hour balance
These constraints control fairness for hours worked by two means. The first, with

hour parameters, and the second estimating the values through a variable. We note
that the formulation of Curtois & Qu (2014) defined hour constraints as in (13), where
parameters bmin

p and bmax
p are, respectively, minimum and maximum hours a physician

has to complete in the planning horizon.
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bmin
p ≤

∑
d∈D

∑
s∈S

Hsxpds ≤ bmax
p ∀p ∈ P. (13)

We introduce the constraints in equations (17)-(20) aiming for a fair hour balance.
For this purpose, we make the necessary definitions in equations (14)-(16), where
length(m) indicates the length of the month m. In equation (14), Apm is rounded
down if not integer, to indicate the number of cycles in a month when a maximum
number of consecutive work days and a minimum number of consecutive vacation days
are used. Apm in equation (15) indicates the number of remaining days if such cycles
are used throughout the month. Finally, we calculate the total number of hours using
equation (16).

Apm =
length(m)

R+
p + o−p

∀m ∈M, p ∈ P, (14)

Apm = length(m) mod (R+
p + o−p ) ∀m ∈M, p ∈ P, (15)

T H
pm ≤ (Apm ×R+

p ) +Apm ∀p ∈ P, m ∈M. (16)

The estimation of the best target value for the number of hours a physician can
satisfy within a month is denoted by T H

pm. However, this estimation needs attention
to ensure a reasonable value for a given problem instance. Using a parameterized

approach, the target is defined by the equation LHpm =
hmax
pm +hmin

pm

2 .

σHpm ≥
∑
d∈Dm

∑
s∈S

Hsxpds − LHpm ∀p ∈ P, m ∈M, (17)

σHpm ≥ LHpm −
∑
d∈Dm

∑
s∈S

Hsxpds ∀p ∈ P, m ∈M, (18)

σHpm ≥
∑
d∈Dm

∑
s∈S

Hsxpds − T H
pm ∀p ∈ P, m ∈M, (19)

σHpm ≥ T H
pm −

∑
d∈Dm

∑
s∈S

Hsxpds ∀p ∈ P, m ∈M, (20)

S3: Weekend balance
The formerly defined weekend constraint in (9) only establishes a maximum limit

on the number of work weekends. We propose the weekend constraints as flexible
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constraints defined by (21) and (22). Thus, we have parameters for maximum weekend
assignments, V+P , and deviation variables, σWp , to control the deviations of weekend
assignments in the so-called parameterized approach (constraints (23) and (24)). On
the other hand, we employ the decision variable TW

P in the estimated approach to find
the best assignment for weekends (constraints (21) and (22)).

σWp ≥
∑
w∈W

ypw − T WP ∀p ∈ P, (21)

σWp ≥ T WP −
∑
w∈W

ypw ∀p ∈ P, (22)

σWp ≥
∑
w∈W

ypw − TV +
P ∀p ∈ P, (23)

σWp ≥ TV +
P −

∑
w∈W

ypw ∀p ∈ P, (24)

Originally, constraints (21) and (22) were defined as (9) by Curtois & Qu (2014).
Parameter V +

p is the maximum number of weekends a physician can be assigned. A
similar procedure was applied to hour balance constraints.

3.3. Parameterized and Estimated Models

The objective functions and constraints previously stated lead us to introduce four
modeling approaches to describe the PSP with considerations about fairness. The so-
called parameterized approach deals with fairness using a target parameter for work
hours and weekend assignments, while the estimated approach uses a decision variable
for fairness assignments. PSP −MIQPp is the parameterized model, whose objective
function (1) handles quadratic costs, as follows:

PSP −MIQPp: Minimize G
(
xpds, σ

H
pm, σ

W
p

)
s.t. (3)− (12), (17)− (18)

PSP −MIP formulation applies a linear approximation for the quadratic costs.
Thus, we use the objective function (2) and include constraints (26) - (29):

12



PSP −MIPp: Minimize H
(
xpds,N (σHpm),N (σWp )

)
s.t. (3)− (12)

(17)− (18)

(26)− (29)

The estimated approach works with variables to adjust work hours and weekend
assignments; therefore, we also have two formulations, which differ by the objective
functions (1) and (2).

PSP −MIQPs: Minimize G
(
xpds, σ

H
pm, σ

W
p

)
s.t. (3)− (8)

(10)− (12)

(19)− (22)

PSP −MIPs: Minimize H
(
xpds,N (σHpm),N (σWp )

)
s.t. (3)− (8)

(10)− (12)

(19)− (22)

(26)− (29)

3.4. Linear approximations

To tackle the inherent complexity of the Mixed-Integer Quadratic Programming
(MIQP) in the PSP-ER, we propose a linear approximation of the quadratic objective
function using a piece-wise linear function. The domain of the function is divided into
N linear problems as formalized in equation (25), where λpmn is an auxiliary variable
and Bn is the growth coefficient of the straight segment that models the curve, with
n = 0 . . . N − 1. σmax represents the maximum value σpm deviation variable can take.

N (σHpm) =
∑
p∈P

∑
m∈M

(
(σHpm)2

)
(25)

Through linear approximation, the quadratic objective function term in equation
(25) can be expressed by constraints (26) - (29).
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N (σHpm) =
∑
p

∑
m

∑
n

Bnλpmn (26)

σHpm =
∑
n

λpmn (27)

0 ≤ λpmn ≤
σmax

N
(28)

Bn =
(2n+ 1)σmax

N
(29)

The linear approximation defines values of λpmn depending on N linear segments
and in terms of σmax, i.e., the maximum deviation found. Constraints (26) - (29) are
later included in the model as cuts.

4. Computational results

We evaluate the parameterized (PSP − MIPp, PSP − MIQPp) and estimated
(PSP −MIPs, PSP −MIQPs) models using the benchmark instances of Curtois
(2014) for the Nurse Rostering Problem. These instances are challenging for state-of-
the-art algorithms, see, e.g., Rahimian et al. (2017a,b). It is worth mentioning that the
benchmark set can be used in physician scheduling problems, such as ours, given the
similar characteristics. Table 3 summarizes the instances’ parameters. This benchmark
set has 24 instances, and each instance was solved 10 times, corresponding to once for
each objective function, once for each of the five intervals of linear approximation, and
once for the nurse scheduling problem by Curtois & Qu (2014).

The experiments were run on a PC with Intel Xeon E5-2680v2 2.8 GHz processor
and 128 GB of RAM. The four proposed models employ the L2 norm in the objective
functions for all reported results, and the linear approximation sets an 8-interval for
segments. The computational results that lead us to choose these parameter settings
are discussed in Appendix A and B. We took the model in Curtois & Qu (2014) for
comparison because this model and ours are solving a similar problem of scheduling for
medical staff (physicians in our case, nurses in Curtois & Qu (2014)), sharing similar
constraints as pointed out in Section 3. The main point for comparison against the
model of Curtois & Qu (2014) is the impact of finding fairness solutions for physicians,
the time performance to reach such solutions, and the number of benchmark instances
solved under the proposed fairness constraints. We have implemented all models, in-
cluding the one in Curtois & Qu (2014), and run under the same computer platform
and solver parameters. We used the Java version of callable libraries from IBM ILOG
CPLEX 12.8 optimization solver.
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Table 3. The characteristics of the set of benchmark instances proposed by Curtois (2014)

Instances Days Nurses Shift types Day off requests Shift on/off requests

Instance01 14 8 1 8 26
Instance02 14 14 2 14 62
Instance03 14 20 3 20 64

Instance04 28 10 2 20 71
Instance05 28 16 2 32 106
Instance06 28 18 3 36 135
Instance07 28 20 3 40 168
Instance08 28 30 4 60 225
Instance09 28 36 4 72 232
Instance10 28 40 5 80 284
Instance11 28 50 6 100 336
Instance12 28 60 10 120 422
Instance13 28 120 18 240 841

Instance14 42 32 4 128 359
Instance15 42 45 6 180 490

Instance16 56 20 3 120 280
Instance17 56 32 4 160 480

Instance18 84 22 3 176 414
Instance19 84 40 5 320 834

Instance20 182 50 6 900 2318
Instance21 182 100 8 1800 4702

Instance22 364 50 10 1800 4638
Instance23 364 100 16 3600 9410
Instance24 364 150 32 5400 13809

4.1. Parameterized vs Estimated approaches

This section presents the performance associated with each model considering fairness.
We summarize the comparison between the proposed models in terms of demand
compliance as shown in Figure 1, measuring demand satisfaction with equations (30)-
(31).

demV iolds =

{
1 If

∑
p∈P

∑
p∈P xpds − zds + wds < DEMds

0 otherwise
(30)

∆dem =

∑
d,s demV iolds

TotalDemConstr
× 100 (31)

The parameterized and estimated approaches did not find a feasible solution within
1 hour for instances 21 to 24. For other instances, PSP −MIPs and PSP −MIQPs

have mostly results below 25% in terms of demand satisfaction when compared to
PSP −MIPp and PSP −MIQPp. Indeed, PSP −MIPs outperformed the other
three models for 45% of the instances. Thus, if demand compliance is critical, the
estimated approaches are more beneficial than the parameterized ones for the set of
benchmark instances.

Another fairness aspect is the violation of weekend constraints given by equations
(32) and (33). We have XW

P = TV +
P and XW

P = T WP , respectively, for parameterized
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Figure 1. The demand satisfaction rate per instance for PSP −MIPp, PSP −MIQPp, PSP −MIPs and

PSP −MIQPs

and estimated approaches

wkndV iolp =

{
1 If |

∑
w∈W ypw −XW

P | > 0 p ∈ P,
0 otherwise

(32)

∆W =

∑
p,mwkndV iolp

TotalWknConstr
× 100 (33)

Figure 2 summarizes weekend violation rates and Figure 3 illustrates weekend de-
viations for Instance07. PSP −MIQPp violates weekend constraints in 50% of the
solved instances, and this rate decreases to 16% using PSP −MIPp. Instance 15 is
the only one where PSP −MIPs violated weekend constraints, while the constraint
is fully satisfied for instances solved by PSP −MIQPs. Again, the possibility of de-
ciding the target values for hours and weekends improves the chance of satisfying such
constraints.

Next, the fairness is evaluated by measuring work hours deviation, where H stands
for average hours accomplished and TH for average target hours as follows:

H =

∑
m

∑
d∈Dm

∑
s∈S Hsxpds

|P ||M |
(34)

TH =


∑

m,p
LHpm

|P ||M | For parameterized approach

∑
m,p

T H
pm

|P ||M | For estimated approach

(35)

Table 4 shows H and TH results for the parameterized and estimated approaches.
PSP−MIPp and PSP−MIQPp return H values that reach exactly TH for 14 out of
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Figure 2. The weekend average violation rate for all models.

Figure 3. Weekend deviations between four models in instance 07.

20 and 7 out of 20 instances, respectively. PSP −MIPs and PSP −MIQPs manage
the target variable (T H

pm) to exactly reach the work hours (Hsxpds) for physicians

in all instances. The variables set did not increase or decrease TH by a significant
amount when compared with the same average figures in the parameterized case.
Thus, the estimated models can suggest a reasonable adjustment for target hours to
decision-makers. In terms of the objective function, the models guided by the proposed
quadratic objective function seem to have more problems finding solutions for some
instances. In contrast, the linear approximation employed by MIP models returned the
same optimal solutions for some instances as the quadratic ones and found solutions
for more instances.

The depicted figures do not present a standard deviation from the average for the
majority of instances applying both approaches (estimated and parameterized) in H. It
means that the physicians were assigned to the target number of working hours, which
is relevant for fairness considerations. There are some exceptions in the parameterized
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models. PSP −MIPp has H = 121.6 ± 11.8 for instance 04, H = 83.38 ± 3.58 for
instance 09, H = 142 ± 3.61 for instance 16, and H = 141 ± 4.5 for instance 17. The
PSP −MIQPp has also H = 121.6 ± 11.8 for instance 04 and H = 84.72 ± 3.58 for
instance 09, and presents H = 123.67 ± 5.12 for instance 11, H = 22.53 ± 26.98 for
instance 12, H = 110.25 ± 16.87 for instance 14, and H = 129.40 ± 7.93 for instance
16. PSP −MIPs and PSP −MIQPs were able to adjust the target values to avoid
deviations in all instances, except for instance 13 by PSP −MIPs with a deviation
of ±0.92. Surely, this deviation leads PSP −MIPs to satisfy demand (see Figure 1)
as well as weekend assignment (see Figure 2).

Table 4. The hour compliance for PSP −MIPp, PSP −MIQPp, PSP −MIPs and PSP −MIQPs. H
stands for average hours and TH for average target hours.

Instances
PSP −MIPp PSP −MIQPp PSP −MIPs PSP −MIQPs

H TH H TH H TH H TH

Instance01 72 64 72 64 71 71 71 71
Instance02 52.57 52.57 52.57 52.57 61.70 61.70 61.70 61.70
Instance03 54 54 54 54 61.60 61.60 61.60 61.60

Instance04 121.60 128 121.60 128 136.80 136.80 136.80 136.80
Instance05 128 128 128 128 135 135 135 135
Instance06 124 124 124 124 135.10 135.10 135.10 135.10
Instance07 110 110 110 110 128.80 128.80 128.80 128.80
Instance08 120.80 120.80 120.80 120.80 125.60 125.60 125.60 125.60
Instance09 83.38 84.72 83.38 84.72 95.10 95.10 95.10 95.10
Instance10 128.15 128.15 128.15 128.15 141.75 141.75 141.75 141.75
Instance11 128 128 123.67 128 129.92 129.92 129.92 129.92
Instance12 118.67 118.67 22.53 118.67 135.07 135.07 134.80 134.80
Instance13 118.10 118.10 0 0 131.43 131.52 0 0

Instance14 124.30 124.30 110.25 124.30 124 124 124 124
Instance15 147.20 147.20 0 0 149.82 149.82 0 0

Instance16 142 138.50 129.40 138.50 134.8 134,8 134.80 134.80
Instance17 141 141.43 0 0 136.25 136.25 136.25 136.25

Instance18 130.42 130.42 0 0 129.45 129.45 0 0
Instance19 130.68 130.68 0 0 127.68 127.68 0 0

Instance20 138.52 138.52

The results show that the estimated model with the linear approximation performs
better than the parameterized models. The linear approximation is an effective alter-
native to the original quadratic formulation, providing reasonable quality solutions.
As we will report in the following sections, the linear approximation is also a better
approach when considering execution time.

4.2. Analyzing PSP − MIPp and PSP − MIQPp models

In this section, we compare the results achieved by PSP −MIPp and PSP −MIQPp

against the benchmark model of Curtois & Qu (2014). There are 19 out of 24 instances
solved using PSP −MIPp, whereas PSP −MIQPp and Curtois & Qu (2014) could
solve only 14 out of 24 instances (corresponding to 79% and 58% success rates, respec-
tively). The different performance rates between the linear and quadratic approaches
are not surprising, considering that MIQPs, despite many significant computational
improvements in recent decades, often remain more challenging to solve in practice
than their MILP counterparts. Figures 4 and 5 show computational time and gap,
respectively. All instances are included, and, for cases when a model did not solve an
instance, we assume > 100% gap and > 3, 600 seconds. We consider the gap as the
optimality gap after 3,600 seconds.
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Figure 4. Gap comparison between parameterized approaches of PSP and Curtois & Qu (2014).

Figure 5. Computational time comparison between parameterized approaches of PSP and Curtois & Qu
(2014)

Excluding the ties, the model PSP −MIPp outperforms the others in 11 of the
instances in terms of the gap, and in 5 out of these 11 instances, it has reached the
optimal. It is also the only model that found solutions for four instances. The behavior
of PSP −MIPp is consistent throughout the instances, including significantly difficult
instances such as Instance13, Instance14, and Instance16. This indicates that the cuts
we have applied are not too limited to the size of the instances, and with their inclusion,
it is slightly easier for the solver to reach the feasibility region. This kind of cut can
then be useful for problems in which we aim to find a feasible solution in a faster
and reasonable amount of time, especially for MILP. In terms of computational time,
PSP −MIPp is faster in 12 of the solved instances (three times faster than Curtois
& Qu (2014)), while PSP −MIQPp has often exhausted the time limit. From the
results, we can observe that PSP −MIPp performs better than PSP −MIQPp, in
particular for medium and large-sized instances.
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4.3. Analyzing the PSP − MIPs and PSP − MIQPs models

Figures 6 and 7 compare the results from estimated models against the benchmark
model of Curtois & Qu (2014). The results indicate that 20 instances are solved by
PSP − MIPs, in comparison to 14 solved by PSP − MIQPs and Curtois & Qu
(2014) with 79% and 58% of the instances, respectively. The behavior of PSP −MIPs

is consistent throughout the instances, including significantly difficult instances such
as Instance16 and Instance17. In the set of instances solved by PSP −MIPs, only
one instance has a higher value of gap in comparison to its counterparts, albeit with
a negligible difference.
PSP −MIPs provides the overall best performance with respect to gaps and com-

putational times. For instance, the model was solved to optimality without any cost
for Instance03, which is the most desired scenario in the realm of physician scheduling.
This can be explained by the less restricted values for hours and weekends and also a
fair trade-off between demand compliance and workload disturbances.

Figure 6. Gap comparison between estimated approaches of PSP and Curtois & Qu (2014).

Figure 7. Computational time comparison between estimated approaches of PSP and Curtois & Qu (2014)

Regarding linear approximation, it acts as a cut leading to satisfactory upper and
lower bounds improvements. An example of this behavior is illustrated in Figures 8
and 9. For the PSP −MIQPs, the initial upper bound is around 400 while the lower
bound is below 50. It takes nearly 1,000 seconds to converge the upper bound towards
the lower bound, while the lower bound barely changes from its initial value. On the
other hand, PSP −MIPs starts with a shallow value for the upper bound, and the
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convergence of both bounds is steady. In general, the PSP − MIPs surpasses the
PSP − MIQPs and the parameterized approaches. Firstly, since MIQP naturally
contains MILP as a special case, we note that PSP −MIQPs faces computational
challenges for more complex instances. Another impact on this performance is consid-
ering the target number of hours as a variable. With such a measure, there is a smaller
set of constraints to compute, which allows the B&B algorithm used by the solver to
reach a more significant set of feasible solutions, even for large-sized instances.

Figure 8. The evaluation of the lower and upper bound for PSP −MIPs

Figure 9. The evaluation of the lower and upper bound for PSP −MIQPs

5. Conclusion

The Physician Scheduling Problem in Emergency Rooms, with a particular focus on
fairness in the number of worked hours and worked weekends, is investigated in this
paper. The use of L1, L2, and L∞ norms as well as linear approximations of quadratic
models were evaluated. We estimated values of target hours and weekends to achieve a
better level of satisfaction for fairness in hours and weekends, and for demand coverage.
Our formulations are closely linked to MIP models applied to classical Nurse Rostering
Problems, albeit with various extensions, particularly for handling fairness.

Using benchmark instances and a model from the literature, computational experi-
ments were conducted to gain critical insights into the behavior of different approaches.
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The quality of linear approximations was tested with different values of numbers of
intervals to approximate the curve, and different norms to define fairness aspects were
also evaluated. Computational results were analyzed mainly regarding fairness and
solutions found in the limited time. In both criteria, our approaches demonstrated
relevant results, where applying PSP −MIPp model 79% of instances were solved,
against 58% by the model of Curtois & Qu (2014). Real-world settings can benefit
from our findings, in particular, ERs where the aim is to balance the workload among
physicians. Currently, we are in the process of applying our approach in a local hospi-
tal.

Finally, of the four models proposed in the study, PSP − MIPs yielded better
demand coverage and fairer assignments for 45% instances in the tests.

For future work, one research direction is to investigate the effectiveness of decom-
position techniques for very large-scale problems, where a straightforward application
of a model is not viable. Moreover, integrating constraint programming techniques
with classical integer programming is also a promising approach for such large-scale
problems. Finally, we foresee that studying the theoretical properties of the problem
is crucial to obtain stronger lower bounds, e.g., via valid inequalities.
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Appendix A. Evaluating granularity of linear approximations

Tables A1 and A2 report results for 8, 16, 32, 64, and 128 intervals, where we remove
those instances without a solution within the time limit. The tables show upper (UB)
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and lower bounds (LB), related GAP = UB−LB
UB , and execution time (in seconds) of

CPLEX at termination.

Table A1. Linear approximation with 8, 16 and 32 intervals. Time limit = 3,600 seconds

Instance
8 intervals 16 intervals 32 intervals

UB LB GAP Time UB LB GAP Time UB LB GAP Time
Instance01 716 716 0.00% 0.94 716 716 0.00% 0.41 716 716 0.00% 0.59
Instance02 1620 1620 0.00% 0.36 1620 1620 0.00% 0.23 1620 1620 0.00% 0.27
Instance03 1900 1900 0.00% 2.07 1900 1900 0.00% 1.92 1900 1900 0.00% 2.51

Instance04 2204 2203.78 0.01% 9.08 2204 2203.78 0.01% 8.33 2204 2203.78 0.01% 11.36
Instance05 3211 3210.75 0.01% 9.85 3211 3210.75 0.01% 8.93 3211 3210.75 0.01% 19.49
Instance06 2246 2186.39 2.65% 3600 2246 2187.73 2.59% 3600 2245 2187.7 2.55% 3600
Instance07 4030 4030 0.00% 37.14 4030 4030 0.00% 35.73 4030 4030 0.00% 39.18
Instance08 2966 2946.19 0.67% 3600 2967 2946.91 0.68% 3600 2968 2946.87 0.71% 3600
Instance09 3866 3866 0.00% 23.67 3866 3866 0.00% 24.34 3866 3866 0.00% 24.98
Instance10 6329 6328.4 0.01% 1014.41 6329 6328.4 0.01% 1779.78 6329 6328.4 0.01% 1053.62
Instance11 2310 2260.44 2.15% 3600 2310 2260.44 2.15% 3600 2310 2260.44 2.15% 3600
Instance12 11721 11721 0.00% 3268.92 11722 11721 0.01% 1749.2 11721 11721 0.00% 3312.74
Instance13 9181 6558.29 28.57% 3600 9067 6558.29 27.67% 3600 8699 6558.27 24.61% 3600

Instance14 1235 1234.95 0.00% 1871.39 1235 1234.95 0.00% 1900.61 1235 1234.95 0.00% 1874.13
Instance15 4019 3758.32 6.49% 3600 4130 3758.32 9.00% 3600 4185 3758.3 10.20% 3600

Instance16 2945 2834.98 3.74% 3600 2945 2835 3.74% 3600 2943 2834.98 3.67% 3600
Instance17 4886 4267.61 12.66% 3600 5181 4267.61 17.63% 3600 4781 4267.61 10.74% 3600

Instance18 4646.13 4266.95 8.16% 3600 4728.25 4266.75 9.76% 3600 4633 4266.95 7.90% 3600
Instance19 5116.38 3450.16 32.57% 3600 5078.63 3450.16 32.07% 3600 5760.38 3450.16 40.11% 3600

Table A2. Linear approximation with 64 and 128 intervals. Time limit = 3,600 seconds

Instance
64 intervals 128 intervals

UB LB GAP Time UB LB GAP Time
Instance01 716 716 0.00% 0.92 716 716 0.00% 0.57
Instance02 1620 1620 0.00% 0.19 1620 1620 0.00% 0.27
Instance03 1900 1900 0.00% 2.1 1900 1900 0.00% 4.28

Instance04 2204 2203.78 0.01% 17.27 2204 2203.78 0.01% 8.58
Instance05 3211 3210.75 0.01% 8.69 3211 3210.75 0.01% 8.76
Instance06 2246 2187.76 2.59% 3600 2246 2187.78 2.59% 3600
Instance07 4030 4030 0.00% 36.56 4030 4030 0.00% 37.46
Instance08 2966 2946.94 0.64% 3600 2967 2946.95 0.68% 3600
Instance09 3866 3866 0.00% 23.06 3866 3866 0.00% 23.763
Instance10 6329 6328.4 0.01% 1054.23 6329 6328.4 0.01% 1013.84
Instance11 2310 2260.44 2.15% 3600.44 2310 2260.44 2.15% 3600
Instance12 11722 11721 0.01% 1758.01 11722 11721 0.01% 2020.61
Instance13 8069 6558.29 18.72% 3600 9464 6558.27 30.70% 3600

Instance14 1235 1234.95 0.00% 3315.61 1235 1234.95 0.00% 1917.12
Instance15 4027 3758.32 6.67% 3600 4055 3758.32 7.32% 3600

Instance16 2947 2835 3.80% 3600 2948 2835 3.83% 3600
Instance17 4813 4267.61 11.33% 3600 4903 4267.61 12.96% 3600

Instance18 4640.13 4266.95 8.04% 3600 4528.13 4266.95 5.77% 3600
Instance19 8063.13 3450.16 57.21% 3600 5760.38 3450.16 40.11% 3600

Appendix B. Computing L1 and L∞ norms

A question arises on whether using L1 or L∞ norms would be useful in order to achieve
a linear model or avoid convergence issues, as investigated for other problems, e.g.,
Cadoux (2010); Akartunalı et al. (2016). The L1 norm (or Manhattan distance) is
simply the sum of the magnitudes of the vector in the space, which is the magnitude
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Table A3. Deviation from UB of 8 intervals approach

Instances
Intervals

Instances
Intervals

16 32 64 128 16 32 64 128
Instance01 0,00 0,00 0,00 0,00 Instance11 0,00 0,00 0,00 0,00
Instance02 0,00 0,00 0,00 0,00 Instance12 0,01 0,00 0,01 0,01
Instance03 0,00 0,00 0,00 0,00 Instance13 -1,26 -5,54 -13,78 2,99
Instance04 0,00 0,00 0,00 0,00 Instance14 0,00 0,00 0,00 0,00
Instance05 0,00 0,00 0,00 0,00 Instance15 2,69 3,97 0,20 0,89
Instance06 0,00 -0,04 0,00 0,00 Instance16 0,00 -0,07 0,07 0,10
Instance07 0,00 0,00 0,00 0,00 Instance17 5,69 -2,20 -1,52 0,35
Instance08 0,03 0,07 0,00 0,03 Instance18 1,74 -0,28 -0,13 -2,61
Instance09 0,00 0,00 0,00 0,00 Instance19 -0,74 11,18 36,55 11,18
Instance10 0,00 0,00 0,00 0,00

of the deviation variables’ vector in our case. For L1 norm, we have the following
constraints:

N1(σ
H
pm) =

∑
p

∑
m

∆H
pm (B1)

∆H
pm ≥ σHpm ∀p ∈ P, m ∈M, (B2)

∆H
pm ≥ −σHpm ∀p ∈ P, m ∈M, (B3)

N1(σ
W
p ) =

∑
p

∆W
p (B4)

∆W
p ≥ σWp ∀p ∈ P, (B5)

∆W
p ≥ −σWp ∀p ∈ P (B6)

Then, the objective function will be as follows:

H
(
xpds,N1(σ

H
pm),N1(σ

W
p )
)

=
∑
p∈P

∑
d∈D

∑
s∈S

(
q+pds(1− xpds) + q−pdsxpds

)
+
∑
d∈D

∑
s∈S

(
v−dswds + v+dszds

)
+
(
N1(σ

H
pm) +N1(σ

W
p )
)

(B7)

Then, the formulation with the L1 norm is:
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Minimize H
(
xpds,N1(σ

H
pm),N1(σ

W
p )
)

s.t (3)− (12),

(17)− (18)

(B1)− (B6)

The other linear alternative, L∞ norm, gives us the largest magnitude among all
elements of a vector, which is equivalent to the largest deviations of hours and weekend
assignments in our context. For L∞, we have the following constraints:

N∞(σHpm) = κ (B8)

κ ≥ σHpm ∀p ∈ P, m ∈M, (B9)

κ ≥ −σHpm ∀p ∈ P, m ∈M, (B10)

N∞(σWp ) = ε (B11)

ε ≥ σWp ∀p ∈ P (B12)

ε ≥ −σWp ∀p ∈ P (B13)

Then, the objective function of the problem is as follows:

H
(
xpds,N∞(σHpm),N∞(σWp )

)
=
∑
p∈P

∑
d∈D

∑
s∈S

(
q+pds(1− xpds) + q−pdsxpds

)
+
∑
d∈D

∑
s∈S

(
v−dswds + v+dszds

)
+
(
N∞(σHpm) +N∞(σWp )

)
(B14)

The formulation with the L∞ norm then follows:
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Minimize H
(
xpds,N∞(σHpm),N∞(σWp )

s.t (3)− (12)

(17)− (18)

(B8)− (B13)

The results are detailed in Table B1, where instances not solved with any approach
are not included. The L1 norm takes a longer time than the other two norms, even for
small instances, although it has competitive performance in terms of the gap for some
instances with a planning horizon of 4 and 8 weeks. In terms of gaps, L2 performs best
for four instances, while L1 and L∞ perform best for 2 and 1 instances, respectively
(the remaining instances have ties). Although L2 outperforms the other two approaches
in terms of average execution times, the difference is not significant in comparison to
L∞ and also not conclusive as times vary from instance to instance. We decided to
use L2 norm in section 4, based on its better performance in terms of gaps and fast
execution times.

Table B1. Benchmark results for parameterized approach, testing L1, L2 and L∞. Time limit = 3,600 seconds

Instance
L1 norm L2 norm L∞ norm

UB LB GAP Time UB LB GAP Time UB LB GAP Time

Instance01 716 716 0.00% 505.05 716 716 0.00% 0.94 716 716 0.00% 1.13
Instance02 1620 1620 0.00% 272.10 1620 1620 0.00% 0.36 1620 1620 0.00% 0.29
Instance03 1900 1900 0.00% 239.11 1900 1900 0.00% 2.07 1900 1900 0.00% 2.01
Instance04 2204 2203.78 0.01% 868.31 2204 2203.78 0.01% 9.08 2204 2203.78 0.01% 8.48
Instance05 3211 3210.75 0.01% 920.29 3211 3210.75 0.01% 9.85 3211 3210.75 0.01% 18.03
Instance06 2246 2187.77 2.59% 3600 2246 2186.39 2.65% 3600 2246 2187.77 2.59% 3600
Instance07 4030 4030 0.00% 365.07 4030 4030 0.00% 37.14 4030 4030 0.00% 35.54
Instance08 2967 2946.93 0.68% 3600 2966 2946.19 0.67% 3600 2967 2946.95 0.68% 3600
Instance09 3866 3866 0.00% 243.53 3866 3866 0.00% 23.67 3866 3866 0.00% 24.45
Instance10 6329 6328.4 0.01% 1509.26 6329 6328.4 0.01% 1014.41 6329 6328.4 0.01% 1034.88
Instance11 2310 2260.44 2.15% 3600 2310 2260.44 2.15% 3600 2310 2260.44 2.15% 3600
Instance12 11722 11721 0.01% 1666.92 11721 11721 0.00% 3268.92 11722 11721 0.01% 1541.38
Instance13 9075 6558.29 27.73% 3600 9181 6558.29 28.57% 3600 9181 6558.29 28.57% 3600
Instance14 1235 1234.95 0.00% 1832.49 1235 1234.95 0.00% 1871.39 1235 1234.95 0.00% 1772.02
Instance15 4404 3758.32 14.66% 3600 4019 3758.32 6.49% 3600 4136 3758.32 9.13% 3600
Instance16 2947 2835 3.80% 3600 2945 2834.98 3.74% 3600 2948 2835 3.83% 3600
Instance17 4806 4267.61 11.20% 3600 4886 4267.61 12.66% 3600 4813 4267.61 11.33% 3600
Instance18 4646.13 4266.95 8.16% 3600 4646.13 4266.95 8.16% 3600 4536.13 4266.95 5.93% 3600
Instance19 8365.25 3450.16 58.76% 3600 5116.38 3450.16 32.57% 3600 8265.25 3450.16 58.26% 3600
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Appendix C. Detailed models evaluation

Tables C1 and C2 provides detailed results comparing the four proposed models, using
fairness constraints, and the literature model in Curtois & Qu (2014) that does not
handle fairness explicitly.

Table C1. Benchmark results for PSP −MIPp and PSP −MIQPp, in comparison to the Curtois & Qu

(2014) model. Time limit = 3,600 seconds

Instances
PSP −MIPp PSP −MIQPp Curtois & Qu (2014)

UB LB GAP TIME UB LB GAP TIME UB LB GAP TIME

Instance01 716 716 0.00% 1.51 716 716 0.00% 1.77 607 607 0.00% 0.62
Instance02 1620 1620 0.00% 1.82 1620 1620 0.00% 2.59 828 828 0.00% 1.55
Instance03 1900 1900 0.00% 2.49 1900 1900 0.00% 143.31 1001 1001 0.00% 205.18
Instance04 2204 2203.78 0.01% 13.76 2204 2204.00 0.00% 970.29 1716 1716 0.00% 759.55
Instance05 3211 3210.75 0.01% 18.75 3211 3211.00 0.00% 1374.96 1143 1143 0.00% 1064.94
Instance06 2246 2186.39 2.65% 3600 2446 2045.93 16.36% 3600 1950 1950 0.00% 2857.30
Instance07 4030 4030 0.00% 45.26 4031 4029.85 0.03% 3600 1056 1050.52 0.52% 3600
Instance08 2966 2946.19 0.67% 3600 3667 2941.51 19.78% 3600 1315 1272.38 3.24% 3600
Instance09 3866 3866 0.00% 34.48 3867 3865.41 0.04% 3600 439 182.5 58.43% 3600
Instance10 6329 6328.4 0.01% 1339.48 7381 6324.74 14.31% 3600 4631 4627.02 0.09% 3600
Instance11 2310 2260.44 2.15% 3600 85775 1387.44 98.38% 3600 3443 3443 0.00% 415.73
Instance12 11721.0 11721 0.00% 2262.58 1.35E+08 11719.20 99.99% 3600 4043 4035.37 0.19% 3600
Instance13 9181 6558.29 28.57% 3600 9398 1347 85.67% 3600
Instance14 1235 1234.95 0.00% 2616.4 69472 1232.76 98.23% 3600
Instance15 4019 3758.32 6.49% 3600
Instance16 2945 2834.98 3.74% 3600 6077 2340.06 61.49% 3600
Instance17 4886 4267.61 12.66% 3600
Instance18 4646.13 4266.95 8.16% 3600
Instance19 5116.38 3450.16 32.57% 3600 4186 2942.11 29.72% 3600

Table C2. The benchmark results for PSPER − (HW )s and PSPER − (HW )2s in comparison with the

original model run in CPLEX solver for 3600 seconds

PSP −MIPs PSP −MIQPs Curtois & Qu (2014)
Instance

UB LB GAP TIME UB LB GAP TIME UB LB GAP TIME

Instance01 13 13 0.00% 0.21 13 13 0.00% 0.77 607 607 0.00% 0.89
Instance02 5 5 0.00% 0.25 5 5 0.00% 2.06 828 828 0.00% 152.55
Instance03 0 0 0.00% 0.66 0 0 0.00% 127.45 1001 1001 0.00% 120.45
Instance04 1112 1112 0.00% 1.20 1112 1112 0.00% 3.98 1716 1716 0.00% 1620.95
Instance05 22 22 0.00% 695.91 22 18.56 15.63% 3600 1150 874.81 23.93% 3600
Instance06 117 117 0.00% 22.16 117 117 0.00% 674.76 1950 1950 0.00% 2938.24
Instance07 14 14 0.00% 13.48 14 14 0.00% 1124.75 1056 1050.08 0.56% 3600
Instance08 1225 1225 0.00% 148.57 1225 1225 0.00% 3572.58 1642 1268.42 22.75% 3600
Instance09 32 32 0.00% 1.64 32 32 0.00% 29.76 444 185 58.33% 3600
Instance10 7 7 0.00% 103.61 248 7 97.18% 3600 4631 4626.28 0.10% 3600
Instance11 1 1 0.00% 20.18 1 1 0.00% 627.47 3443 3443 0.00% 92.13
Instance12 15 15 0.00% 335.99 730 15 97.95% 3600 4168 4035.92 3.17% 3600
Instance13 224 224 0.00% 1267.20
Instance14 1217 1217 0.00% 15.80 1217 1217 0.00% 3351.52
Instance15 3865 3747.82 3.03% 3600
Instance16 119 20.76 82.55% 3600 219 22.56 89.70% 3600
Instance17 27 14 48.15% 3600 21847 14 99.94% 3600
Instance18 1097 963.11 12.21% 3600
Instance19 47 32 31.91% 3600 6813 2942.81 56.81% 3600
Instance20 240 240 0.00% 128.27
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