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ABSTRACT
The distance-based critical node problem involves identifying a subset of nodes
in a network whose removal minimises a pre-defined distance-based connectivity
measure. Having the classical critical node problem as a special case, the
distance-based critical node problem is computationally challenging. In this paper,
we study the distance-based critical node problem from a heuristic algorithm
perspective. We consider the distance-based connectivity objective whose goal is
to minimise the number of node pairs connected by a path of length at most k,
subject to budgetary constraints. We propose a centrality based heuristic which
combines a backbone-based crossover procedure to generate good offspring solutions
and a centrality-based neighbourhood search to improve the solution. Extensive
computational experiments on real-world and synthetic graphs show the effectiveness
of the developed heuristic in generating good solutions when compared to exact
solution. Our empirical results also provide useful insights for future algorithm
development.

KEYWORDS
Distance-based critical node problem; Hop distance; Heuristics; Centrality;
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1. Introduction

Assessment of system vulnerability to adversarial attacks has become an important
concern to organisations especially in the wake of security threats around the world.
Moreover, natural hazards such as environmental disasters and disease epidemics in
recent times have led to large scale disruptions in social and economic activities.
Although it could be rather impossible to avoid some of these occurrences, it is indeed
necessary to curtail their impact on system performance. A strategic way of doing this
is to identify elements of a system that are critical in maintaining optimum system
performance in order to protect them. In other words, we are identifying the parts
of a system whose failure would result in a break down of the system. The notion of
performance in a network connotes different meaning depending on the topology of the
system and the application being considered. For instance, in transportation networks,
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performance is reflected in the speed of commute of passengers, goods and services
from an origin point to a destination point. In communication networks, efficiency in
communication is key since certain crucial information need to be transmitted within
a specific time space or to as many individuals or groups of individuals as possible. The
associated problem as studied in the optimisation community is termed critical node
detection problem (CNP), as introduced in Arulselvan, Commander, Elefteriadou, and
Pardalos (2009). Given an undirected graph G = (V,E) with n = |V | nodes (vertices)
and m = |E|, the problem (CNP) is to identify a subset of nodes of limited cardinality,
whose deletion results in a subgraph of maximum disconnectivity with respect to a
predefined connectivity metric.

CNP finds interesting applications in various fields such as telecommunication
networks (Arulselvan, Commander, Pardalos, & Shylo, 2007), studies on biological
molecules and drug design (Boginski & Commander, 2009), epidemiology (Arulselvan
et al., 2007; Nandi & Medal, 2016), emergency response and transportation engineering
(Matisziw & Murray, 2009). In social network analysis, the concept of key players
relates to the idea of critical nodes where members of a social network that are
influential for diffusion of information or rumours are targeted (Borgatti, 2006). This
is of practical benefit in a public health context where crucial health information is
to be disseminated across communities as well as to stop the widespread of malicious
news. Similarly, in security and defence operations, “neutralising” certain individuals
in a terrorist network ensures disruption of communication within such a network,
eventually limiting the possibility of the launch of a large scale attack (Arulselvan et
al., 2007).
Studies on the critical node problem can be grouped into two broad categories, namely
fragmentation-based connectivity objective and distance-based connectivity objective.
Within fragmentation-based CNP, popular connectivity metrics are to:

• minimise the total number of connected node pairs in the resultant
subgraph (e.g. Addis, Di Summa, & Grosso, 2013; Aringhieri, Grosso, Hosteins,
& Scatamacchia, 2016b; Arulselvan et al., 2009; Di Summa, Grosso, & Locatelli,
2012; Purevsuren, Cui, Win, & Wang, 2016; Ventresca, 2012; Ventresca &
Aleman, 2015; Veremyev, Boginski, & Pasiliao, 2014; Zhou, Hao, & Glover, 2018)
• maximise the total number of connected components in the residual

graph (e.g. Aringhieri, Grosso, Hosteins, & Scatamacchia, 2016a; Shen & Smith,
2012; Veremyev, Prokopyev, & Pasiliao, 2014)
• minimise the size of the largest connected component in the residual

graph (e.g. Aringhieri et al., 2016a; Shen & Smith, 2012; Shen, Smith, & Goli,
2012)

Other variants of the fragmentation-based CNP studied in literature include the
cardinality-constrained critical node problem (Arulselvan, Commander, Shylo, &
Pardalos, 2011) and the component-cardinality-constrained critical node problem
(Lalou & Kheddouci, 2019; Lalou, Tahraoui, & Kheddouci, 2016). Bi-objective variants
of the CNP have also been considered. Ventresca, Harrison, and Ombuki-Berman
(2018) considered a bi-objective CNP that maximises the number of connected
components while minimising the variance of the sizes of the components. Recently,
Li, Pardalos, Xin, and Chen (2019) studied a bi-objective variant that simultaneously
minimises pairwise connectivity of the induced graph and the cost of removing the
critical nodes. This latter bi-objective variant is important when the budget on the
critical node set is not known a priori thus allowing the decision maker to optimise
the connectivity objective as well as the cost of deleting the critical node set. A
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similar multi-objective problem that is based on a cascade model was studied in
Zhang, Xia, Cheng, Qiu, and Zhang (2020). The stochastic and robust versions of
the critical node problem have also been studied (e.g. Hosteins & Scatamacchia,
2020; Naoum-Sawaya & Buchheim, 2016). It is worth noting that the aforementioned
studies on the fragmentation-based CNP are restricted to individual node removals and
hence do not consider the structural relationships of the critical node set. Walteros,
Veremyev, Pardalos, and Pasiliao (2019) studied a generalisation of the CNP to the
so-called critical node structure detection problem where the set of nodes to be deleted
form a specific structure, Thus, the problem becomes further constrained by the desired
structure of the critical node set such as cliques and stars giving rise to the new terms
critical cliques and critical stars.

The second category of the CNP, hereafter referred to as distance-based critical node
problem (DCNP) which is the focus of our study, incorporates a distance metric in
its connectivity objective. Unlike fragmentation-based CNP, the DCNP does not only
consider whether a pair of nodes is connected, but also seeks to measure the extent
of connectivity between them. This is particularly important in communication and
social network contexts, where disconnection cannot be limited to absence of a path
between node pairs. In such contexts, if nodes are separated by distances long enough,
they can be seen as practically disconnected (Borgatti, 2006; Veremyev, Prokopyev, &
Pasiliao, 2014). The importance of distance-based measures was reiterated in a study
on network robustness from an information theory perspective (Schieber et al., 2016).
The authors observed that certain structural deviations from the input network are
left undetected by traditional CNP metrics.

Traditional exact algorithms such as branch-and-bound and branch-and-cut have
been employed to solve critical node detection problem (e.g. Arulselvan et al., 2009;
Di Summa et al., 2012; Veremyev, Boginski, & Pasiliao, 2014). However, due to its
combinatorial nature, the complexity of the CNP grows significantly with the size
of the network. As a result, the CNP has only been solved exactly on medium
sparse network instances up to an instance with 1612 nodes and 2106 edges in
reasonable computational time (see Veremyev, Boginski, & Pasiliao, 2014, p.1257). To
mitigate this gap, heuristic algorithms have been developed to provide good solution
to larger instances of the CNP. For example, Ventresca and Aleman (2015) proposed
a greedy heuristic algorithm that is based on a modified depth first search. Two
new neighbourhoods were developed by Aringhieri et al. (2016b) and used within
a variable neighbourhood search solution framework. The new neighbourhoods are
more computationally efficient than the traditional two node exchange. Aringhieri
et al. (2016a) proposed a genetic algorithm for the classic CNP as well as its
cardinality-constrained variant. A Greedy Randomised Adaptive Search Procedure
(GRASP) with Path Relinking (PR) mechanism was proposed for the classic CNP by
Purevsuren et al. (2016). Recently, Zhou et al. (2018) developed a memetic algorithm
for both classic and cardinality-constrained variants of CNP. For a detailed discussion
on heuristic solution methods as well as current developments in their application
to combinatorial optimisation problems, we refer the reader to Silver (2004) as well
as Aickelin and Clark (2011). To the best of our knowledge, the memetic algorithm
proposed by Zhou et al. (2018) is the current state-of-the-art heuristic algorithm
for the traditional critical node problem based on computational experiments on
26 real-world and 16 synthetic benchmark instances. Memetic algorithm has seen
successful applications as a solution method to network problems related to the critical
node detection problem as well as other NP-hard problems (e.g. Wang, Gong, Liu, &
Wu, 2020; Yadegari, Alem-Tabriz, & Zandieh, 2019)
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Unlike the fragmentation-based critical node problem, research studies on the
distance-based critical node problem are quite limited in number. The only
computational studies on the DCNP are those by Veremyev, Prokopyev, and Pasiliao
(2015) and much recently by Hooshmand, Mirarabrazi, and MirHassani (2020) and
Alozie, Arulselvan, Akartunalı, and Pasiliao (2021) all of which follow traditional exact
route hence were limited to small to medium graph sizes. The remaining two studies on
the DCNP are those of Aringhieri, Grosso, Hosteins, and Scatamacchia (2016c; 2019).
The first was a preliminary analysis of the DCNP with some suggestions on design
of heuristic algorithms. In the latter, the authors analysed the complexity of some
classes of the DCNP, then proposed polynomial and pseudo-polynomial algorithms for
those classes of the DCNP on graphs with special structure such as trees and paths.
However, no computational results was presented in either of their studies.
To the best of our knowledge, our study is the first to address the distance-based
critical node problem from a heuristic perspective. We demonstrate the efficiency of
our proposed algorithm in comparison to the current state-of-the-art algorithm on
both real-world and synthetic graphs.

Contributions

Our main contributions consist of the following:

i. We describe a new heuristic algorithm for the distance-based critical node
problem. The feasible solution construction procedure utilizes centrality
measures along with the idea of backbone-based crossovers to construct
good feasible solutions. The neighbourhood search procedure uses a newly
developed two-stage node exchange strategy to focus local search on a reduced
centrality-based neighborhood thus making the search more efficient.

ii. The proposed algorithm yields competitive results on both real-world and
synthetic graphs. In particular for the real world instances, our heuristic
algorithm matches the exact optimal solutions for all 28 instances. For the
synthetic graphs which comprise of 54 instances, the heuristic achieves the
optimal objective value or best known upper bounds on 10 of the instances
and discovers new upper bounds on 33 of the instances within very short time
duration in comparison to the exact algorithm.

iii. Our empirical results provide useful insights to the effect of topological structures
of certain model networks on algorithm behaviour.

Organisation

The rest of the paper is structured as follows. In Section 2, we recapitulate the
description of distance-based critical node problem with definitions of distance
connectivity measures. Section 3 describes the proposed heuristic algorithm in detail.
In Section 4, parameter settings and results of our computational experiments
are presented. For real-world and synthetic network instances, we compare the
performance of our proposed heuristic algorithm with results of exact algorithms.
We conclude the paper with some future work in Section 5.
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2. Problem Description

Given an input graph G = (V,E) with n = |V | nodes (vertices) and m = |E ⊆ V ×V |
edges, as well as a positive integer B, the distance-based critical node problem aims
to find a subset of nodes of cardinality at most B, whose removal minimises a certain
distance-based connectivity objective. Different distance-based connectivity functions
were defined by Veremyev et al. (2015), however, computational studies have focused
on three main distance-based connectivity measures:

• Minimise the total number of pairs of nodes connected by a hop distance of at
most k (Alozie et al., 2021; Veremyev et al., 2015).
• Minimise Harary index or efficiency (Alozie et al., 2021; Veremyev et al., 2015).
• Minimise Weiner index or characteristic path length (Hooshmand et al., 2020).

In this study, we focus on the first distance-based connectivity objective which
is the most studied and which has interesting real life applications, for example in
transportation engineering. The distance function is defined by:

f(d) =

{
1, if d ≤ k
0, if d > k

(1)

where d is the distance (shortest path length) between node pairs in the induced
subgraph GS = G[V \ S], and k is a given positive integer representing the cut-off
hop distance. The special case where k ≥ n − 1 is the traditional CNP version
which minimises the number of connected node pairs in the residual graph. Interesting
instances for this class are graphs with a small diameter, and thus a large proportion
of nodes connected within a small number of hops. We refer to this proportion as the
initial percentage k-distance connectivity (% k-Conn).

3. Heuristic for distance-based critical node problem

This section describes the proposed heuristic algorithm for the distance-based critical
node problem. The underlying idea of the proposed heuristic framework is akin to
the memetic algorithm recently proposed for the classical critical node problem (Zhou
et al., 2018) however with some striking differences as described later in the paper
(Section 3.4).

3.1. Representation and evaluation of feasible solution

Given an input graphG = (V,E), a feasible solution to the DCNP is any collection of B
distinct nodes. For any feasible solution S, the objective function value f(S) according
to equation (1) evaluates the number of node pairs connected by a hop distance less
or equal to k in the induced subgraph GS = G[V \S]. By running an all-pairs shortest
path algorithm on G[V \ S], one can calculate f(S) by counting the number of such
pairs whose shortest path is less than or equal to k. The fastest of such algorithms
requires O(|V |3) time which is quite expensive given that the objective function would
be evaluated multiple times for different feasible solutions. Instead, we compute f(S)
by generating a k-depth breadth first search tree for each node. The k−depth BFS
tree runs the general breadth first search up to a given depth k (see Figure 1). This
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Figure 1. An illustration of a k-depth BFS tree

results in time complexity of O(|V ||E|). Note that this complexity can be significantly
improved to O(bk), when we are restricting BFS trees to depths of k, where b is the
branching factor (or average outdegree) of the tree. For small values of k, this reduces
to linear time complexity and it empirically makes an immense difference.

3.2. General framework of heuristic

The proposed heuristic algorithm consists of three components: an initial
solution generation procedure, a backbone-based crossover and a centrality-based
neighbourhood search procedure. The algorithm begins with generation of
centrality-based solutions. An improved offspring solution is generated from the
centrality-based solutions by a backbone-based crossover (Section 3.4). This
offspring solution is further improved by a centrality-based neighbourhood search
procedure (Section 3.5). A pseudocode of the general framework of the proposed
algorithm is presented in Algorithm 1. Its three components are described and
explained in the subsequent sections.

3.3. Initial solution generation

The proposed algorithm begins with construction of initial feasible solutions using
three centrality metrics. The first is the popular degree centrality where nodes are
ranked according to their degrees. The other two measures could be seen as specialised
adaptations of the Katz and betweenness centralities. The first which we refer to
as k−Katz centrality ranks nodes according to the size of the k-depth breath first
search (BFS) tree rooted at each node. The last centrality metric which we refer
to as k-betweenness ranks nodes according to the number of their direct offspring
summed over all generated k-depth BFS trees. We refer the interested reader to Paton,
Akartunalı, and Higham (2017) for detailed discussion and a numerical analysis of
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Algorithm 1 The proposed heuristic algorithm for DCNP

1: Input: Graph G = (V,E), an integer B
2: Output: the best solution S∗ found

// construct initial centrality-based solutions, section 3.3
3: P 0 = {C1, C2, C3} ← centralitysolution()
4: S∗ = argmin {f(C1), f(C2), f(C3)}

// generate offspring solution, section 3.4
5: S1 ← backboneCrossover(C1, C2, C3)

// perform local search, section 3.5
6: S+ ← neighbourhoodSearch(S1)
7: if f(S+) < f(S∗) then
8: S∗ = S+

9: end if

centrality measures.
Let v be an arbitrary node in a graph, we summarise the centrality definitions as
follows:
Definition 1 (degree centrality): The degree of a node v is the number of edges
incident on v, i.e., the number of direct neighbours of v.
Definition 2 (k−Katz centrality): The k−Katz of v is the number of nodes reachable
from v at a hop distance less than or equal to k.
Definition 3 (k−betweenness centrality): The k−betweenness of v is the number of
direct offsprings of v summed across all generated k-depth BFS trees.
Let R1,R2 and R3 denote 3 different collections of all nodes in the input graphs
ordered according to the three defined centrality measures. From each of these
collections, we generate 3 feasible centrality-based solutions C1, C2 and C3 through
a probabilistic selection of B nodes. For example, to generate C1, we sequentially add
each node in R1 into C1 with probability p = 0.90 until the required budget is attained.
We also extend the budget value by a certain number, ε = max(5, 0.2B) and then select
the next ε top nodes in each of R1,R2 and R3. The union of these extended budget
solutions which we denote by Xε is used in the backbone crossover phase (details in
Section 3.4).

3.4. Backbone-based crossover

Our notion of backbone crossover is similar to the double backbone crossover
introduced by Zhou et al. (2018) in the sense that the offspring solution inherits
elements that are common to its parent solutions as well as exclusive elements.
However, our backbone procedure differs from that of Zhou et al. (2018) primarily
in the number of parent solutions used. Secondly, our procedure for repairing a partial
offspring solution combines both greedy and random node selection. This combination
of greedy and random selection can be seen as a double-edged sword that intensifies
and diversifies the node selection. The motivation for the use of three rather than
two parent solutions is to limit the members of the partial solution inherited from the
parent solutions to only promising nodes. This is potentially useful in arriving at high
quality offspring solutions leading to fewer iterations of local search to converge to local
optimum. For the backbone crossover, we divide the elements of the centrality-based
solutions into sets as follows:
Definition 4 (3-parent elements): These consist of the intersection of all three
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centrality solution sets, denoted as X1 = C1 ∩ C2 ∩ C3.
Definition 5 (2-parent elements): These consist of elements that are only present
in exactly two parent solutions denoted as X2 = ((C1∩C2)∪ (C1∩C3)∪ (C2∩C3)) \X1.
Definition 6 (1-parent elements): These consist of elements that are only present
in exactly one parent solution denoted as X3 = (C1 ∪ C2 ∪ C3) \ (X2 ∪X1).
Definition 7 (0-parent elements): These consist of elements in the extended budget
solutions denoted by Xε.
The backbone crossover procedure proceeds as follows: An offspring solution S1 is
constructed by first inheriting all elements common to its parent solutions that is
S1 ← X1. If |S1| < B, we repair S1 by sequentially adding elements from sets X2, X3,
Xε until the budget is satisfied. At each iteration of the repair process, a new node is
selected into the offspring solution by one of greedy or random approaches according to
some specified probabilities Pgreedy and Prandom. The greedy approach entails selecting
a node u /∈ S1 which gives the best improvement to the current objective function value
f(S1), i.e u = argmax{f(S1) − f(S1 ∪ {v})}, ∀v ∈ (X2 ∪X3 ∪Xε) \ S1. The random
approach uses specified probabilities p2, p1 or p0 to determine which of the sets X2,
X3 or Xε from which a node is to be chosen at random.

3.5. Centrality-based neighbourhood search

We explore the neighbourhoods of the solution realised from the construction phase
with the aim of arriving at the optimal solution in the region. We discuss next the
neighbourhood structure as well as the node swap technique defined for our study.

Algorithm 2 Centrality-based neighbourhood search

1: Input: a starting solution S, centrality-based neighbourhood Ns

2: Output: the best solution S∗ found
3: S∗ ← S
4: iterCnt← 0
5: while iterCnt < maxIter and Ns 6= Ø do
6: v ← Ns.remove()
7: S ← S ∪ {v}
8: u← argminw∈S {f(S \ {w})− f(S)}
9: S ← S \ {u}

10: if f(S) < f(S∗) then
11: S∗ ← S
12: iterCnt← 0
13: else
14: iterCnt← iterCnt+ 1
15: end if
16: end while

3.5.1. Centrality-based neighbourhood structure

Considering the time complexity for evaluation of a candidate solution, the traditional
neighbourhood which swaps each node v ∈ S with a node u ∈ V \ S requires
a time of O(B(|V | − B)(|V ||E|)) to evaluate all neighbourhood solutions. This
becomes prohibitive when |V | is very large or when many local search iterations
are required. To mitigate this computational burden, we design a much smaller
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alternative neighbourhood. Let s be a positive integer corresponding to the size of
each centrality-based neighbourhood. Thus our centrality based neighbourhood Ns for
a given solution S consists of the union of the top s nodes ranked according to the three
defined centrality measures in the residual graph G[V \ S]. Similar to the generation
of centrality-based solutions, the top ranking nodes in each centrality measure have
a 90% chance of being selected into the corresponding centrality neighbourhood. The
cardinality of Ns is bounded below and above by s and 3s. Hence, the size of the
neighbourhood is reduced to (B|Ns|).

3.5.2. Two-phase node swap

We employ the two-phase node exchange strategy used in Zhou et al. (2018). In keeping
with its name, the two-phase node exchange strategy is composed of two separate
phases: a “removal phase” which removes a node from the resultant subgraph and
an “add phase” which adds a node back to the subgraph. At each iteration of the
two-phase node exchange strategy, a node is removed from the neighbourhood and
added into the current solution S. This makes S infeasible. The second phase repairs
this infeasibility by identifying a node v ∈ S which results in the minimum increase
in the objective function value, v is then added back to the subgraph.

4. Computational Studies

4.1. Test Instances

Our computational experiments were based on both real-world and synthetic network
instances. The real-world instances consists of a subset of networks from the Pajek and
UCINET dataset (Batagelj & Mrvar, 2006; UCINET software datasets, n.d.). The first
set of synthetic instances consist of Barabasi-Albert, Erdos-Renyi and uniform random
graphs which were generated using NetworkX random graph generators (Hagberg,
Swart, & S Chult, 2008). Characteristics of the real-world and NetworkX-generated
instances are summarised in Tables (1) & (2). Detailed descriptions of these network
instances and how to get them are available in the online supplementary material.

Table 1. Characteristics of real world graph instances.

Graph n m diam % k-Conn

Hi-tech 33 91 5 88.3
Karate 34 78 5 85.6
Mexican 35 117 4 98.0
Sawmill 36 62 8 63.0
Chesapeake 39 170 3 100.0
Dolphins 62 159 8 58.5
Lesmiserable 77 254 5 85.4
Santafe 118 200 12 32.9
Sanjuansur 75 155 7 48.7
Attiro 59 128 8 68.0
LindenStrasse 232 303 13 12.1
SmallWorld 233 994 4 95.2
NetScience 379 914 17 13.3
USAir97 332 2126 6 84.8

The other set of synthetic networks include instances from the benchmark networks
in Ventresca (2012). Since, these benchmark instances were generated for the
traditional pairwise- connectivity CNP and not the distance-based connectivity CNP,
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Table 2. Characteristics of NetworkX-generated synthetic graph

instances.

Graph n m diam density (%) % k-Conn

ba1 100 475 4.0 9.6 99.9
ba2 100 900 3.0 18.0 100
er1 80 470 3.0 14.9 100
er2 200 1004 4.0 5.0 97.7
gnm1 200 1000 4.2 5.0 97.9
gnm2 300 1500 4.4 3.3 94.1
gnm3 300 2000 4.0 4.5 99.6

only 2 (13%) of these instances have % k-Conn greater than 20%. We use these 2
instances (labelled as FF250 and WS250a in Table 6) and generate additional instances
of similar size and order as the original benchmark networks in Ventresca (2012).

4.2. Experimental settings

Our computational study was performed on an HP computer equipped with Windows
8.1 x64 operating system, an Intel Core i3-4030 processor(CPU 1.90 GHz) and
RAM 8GB. The proposed algorithms were implemented in Python 3.6 (Anaconda
5). We used NetworkX (Hagberg et al., 2008) for random graph generation and
manipulating of the graphs. In the design of the proposed algorithm, some parameters
were selected for our computational experiments. We executed several preliminary
experiments to select most of these parameters. Final values of the parameters used
in the computational results presented in this paper are summarised in Table 3. All
experiments were run with a time limit of 3600 seconds. In line with previous studies,
we also set hop distance threshold k = 3 which is reasonable since most of the tested
instances have a large proportion of nodes connected within this hop distance.

Table 3. Parameter settings for computational experiments.

Parameter Description Values

ε extended budget limit for centrality solution max(5, 0.2B)
s size of each centrality-based neighborhood B + ε
maxIter maximum no of improvement iteration 100
Pgreedy probability of greedy node selection in any crossover iteration 0.7
Prandom probability of random node selection in any crossover iteration 0.3
p2 probability of random node selection from set X2 0.5
p1 probability of random node selection from set X3 0.3
p0 probability of random node selection from set Xε 0.2

4.3. Performance of the heuristic algorithm

We present results obtained from the proposed heuristic algorithm for different graph
instances. The results have been summarised from ten independent runs for each
instance. Values reported in the tables include objective function values minimum
(min), mean (avg), maximum (max ) and standard deviation (std) for the proposed
heuristic algorithm, as well as optimal objective function values (Opt) or best
lower bounds (LB) and best upper bounds (UB) realised from Gurobi solver 8.1.0
(Gurobi Optimization, 2016). The reported optimal objective function values or best
lower and upper bounds were generated using the integer programming models in
Veremyev et al. (2015) and Alozie et al. (2021). Computational times (in seconds) for

10



both exact and heuristic algorithms are also reported in columns labelled respectively
by t exact and t heur with the smaller run time highlighted in bold. Exact optimal
(Opt) or best upper bounds (UB) are compared with heuristic minimum objective
values (min).

Real-world instances

Results for the real world instances are summarised in Table 4, where we observe that
the proposed heuristic attains the optimal objective values for all 28 instances. Also
the average and maximum objective function values obtained by the heuristic matches
the optimal solution for 16 of the instances (see when std=0.0 in Table 4).

Table 4. Results for Real-world instances: Optimal value of objective function (Opt) and summary results

for heuristic (minimum (min), mean (avg), maximum (max) and standard deviation (std)) for budget settings
B = (0.05n, 0.1n). Values compared are Opt and min, lower values are better (best in bold).

B=0.05n B=0.1n

Graph Opt t exact min avg max std t heur Opt t exact min avg max std t heur

Hi-tech 397 0.12 397 397.0 397 0.0 0.2 293 0.59 293 294.8 297 1.9 0.5
Karate 324 0.13 324 324.0 324 0.0 0.2 147 0.11 147 150.9 186 11.7 0.4
Mexican 527 0.23 527 527.0 527 0.0 0.3 358 0.33 358 358.0 358 0.0 0.6
Sawmill 215 0.06 215 215.0 215 0.0 0.2 135 0.08 135 135.0 135 0.0 0.2
Chesapeake 696 0.6 696 696.0 696 0.0 0.3 512 1.18 512 515.2 528 6.4 1.1
Dolphins 820 1.03 820 820.0 820 0.0 1.3 583 1.71 583 591.7 616 13.4 2.5
Lesmiserable 930 0.52 930 930.0 930 0.0 1.9 323 0.97 323 323.0 323 0.0 2.9
Santafe 305 0.2 305 305.0 305 0.0 1.2 116 0.59 116 116.0 116 0.0 2.8
Sanjuansur 803 0.35 803 803.0 803 0.0 0.9 457 0.39 457 457.2 459 0.6 2.0
Attiro 743 0.31 743 743.0 743 0.0 0.5 444 0.61 444 450.4 474 10.3 0.7
LindenStrasse 1054 1.34 1054 1057.8 1090 10.7 5.9 429 2.82 429 431.7 445 4.6 12.7
SmallWorld 4629 202.87 4629 4660.5 4734 48.1 51.4 1694 117.54 1694 1694.0 1694 0.0 58.6
NetScience 2102 9.07 2102 2102.0 2102 0.0 52.9 897 7.12 897 901.0 927 8.8 112.3
USAir97 10623 377.83 10623 10697.2 10729 48.6 269.7 3100 1277.38 3100 3219.1 3405 105.9 423.6

Synthetic instances

Results for our first set of synthetic networks are summarised in Table 5 as well as
Figures 2 – 5 . Overall, the heuristic attains the best known upper bounds in 16.7%
of the instances, yielding new upper bounds in 57.1% but falls short of the best UB
in 26.2% of the instances (see Figure 2).

min < UB
57.1%

min = UB

16.7%

min > UB

26.2%

Figure 2. Summary results of heuristic algorithm compared with exact over synthetic instances
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From Figures 3 and 4, we can observe that for the instances where the heuristic
falls short, the quality of the solutions is still competitive in comparison to the best
UB.

Analysing the performance of the heuristic across the synthetic network classes,
we observed that the effectiveness of the heuristic framework is more pronounced in
the less dense instances within each random network class. For example, for both
Barabasi-Albert and Erdos-Renyi classes, the heuristic yields new upper bounds in all
of the less-dense instances in both classes (see results for ba1 and er2 instances in
Table 5).

Table 5. Results for synthetic instances: Exact Lower and Upper bounds (LB, UB) and summary statistics

for heuristic (minimum (min), mean (avg), maximum (max) and standard deviation (std)) for budget settings
B = (0.05n, 0.1n). Values compared are UB and min, lower values are better (best in bold)

B=0.05n B=0.1n

Graph LB UB t exact min avg max std t heur LB UB t exact min avg max std t heur

ba1(3) 4275.0 4275 330.19 4275 4275.0 4275 0.0 8.5 3330 3330 278.57 3330 3330.0 3330 0.0 13.6
ba1(6) 4278.0 4278 303.56 4278 4278.4 4282 1.2 9.8 3390 3390 476.99 3390 3391.0 3395 2.0 14.1
ba1(9) 4193.0 4193 169.48 4193 4193.0 4193 0.0 7.7 3328 3328 374.92 3328 3328.4 3332 1.2 13.6
ba2(3) 4384.2 4461 3600 4465 4465.0 4465 0.0 20.9 3716.0 3987 3600 4005 4005.0 4005 0.0 46.1
ba2(6) 4369.0 4369 562.95 4436 4453.4 4465 14.2 19.3 3717.5 3916 3600 3955 3955.9 3956 0.3 44.5
ba2(9) 4371.4 4463 3600 4465 4465.0 4465 0.0 18.3 3702.2 3986 3600 4004 4004.0 4004 0.0 48.6

er1(3) 2798.0 2835 3600 2842 2843.4 2845 1.2 9.6 2394.6 2474 3600 2535 2538.7 2549 5.0 20.5
er1(6) 2799.4 2835 3600 2835 2839.6 2848 5.7 11.2 2394.7 2482 3600 2485 2519.1 2540 12.8 22.9
er1(9) 2814.0 2814 1787.2 2847 2847.7 2850 0.9 8.4 2378.4 2452 3600 2528 2539.0 2548 6.0 20.6
er2(3) 15989.5 16955 3600 16842 16897.3 16909 19.9 101.5 12468.9 14886 3600 14332 14360.0 14385 14.0 213.5
er2(6) 16025.5 16930 3600 16887 16930.0 16960 28.6 91.5 12575.4 15052 3600 14364 14380.2 14403 11.9 217.2
er2(9) 15969.7 16954 3600 16899 16900.9 16908 3.4 129.1 12414.4 15038 3600 14397 14434.0 14488 24.1 255.7

gnm1(3) 15972.3 16771 3600 16706 16716.6 16740 9.3 136.4 12516.5 14730 3600 14193 14256.3 14296 31.2 252.2
gnm1(6) 16209.4 17062 3600 16975 16977.4 16987 3.5 104.6 12600.7 14658 3600 14399 14419.0 14446 13.4 221.4
gnm1(9) 16099.0 16958 3600 16843 16860.1 16886 15.9 89.0 12564.9 14803 3600 14195 14211.3 14221 12.0 178.1
gnm2(3) 34014.7 36803 3600 35332 35334.7 35341 4.1 281.4 25876.6 28978 3600 28715 28734.4 28764 21.0 637.4
gnm2(6) 33700.6 36445 3600 35236 35245.4 35252 6.0 303.4 25261.7 30635 3600 28554 28629.7 28704 48.5 647.9
gnm2(9) 33782.3 36641 3600 35331 35350.8 35388 18.8 353.9 25765.4 30805 3600 28868 28922.1 28956 25.0 709.9
gnm3(3) 36402.9 40229 3600 39978 39982.0 39983 2.0 627.3 28541.1 35847 3600 35158 35198.5 35238 25.0 1539.6
gnm3(6) 36557.1 40217 3600 39848 39876.1 39902 18.8 681.6 27307.3 35501 3600 35000 35079.6 35176 47.9 1353.8
gnm3(9) 36258.1 40176 3600 39852 39880.5 39896 14.8 605.1 28697.9 35704 3600 34785 34837.7 34935 50.7 1323.1

However, as the edge density increases (graph characteristics are shown in Table 2),
the heuristic falls short of the best known upper bounds matching only 1 out of
the 6 er1 instances and falling short in all ba2 instances. This behaviour might be
explained by the concept of ”Structural Equivalence” wherein some of the most central
nodes have overlapping neighbourhoods leading to redundancy of the solution set in
which they occur (Borgatti, 2006). Moreover, ba2 and er1, being highly connected
networks, are likely to suffer from the ”Problem of Ties” which affects the performance
of centrality-based algorithm on such topological structures (Ventresca & Aleman,
2015). Our empirical investigation correlates with the above concepts. We observed
the existence of multiple solutions with similar objective value differing only by one
or two nodes. Thus, based on the structure of the centrality-based neighbourhood,
the node swapping technique yielded little or no improvement as could be seen from
the heights of the bars for ba2 and er1 in Figure 5. The bars in Figure 5 represent
percentage improvement calculated based on the objective function values realised
before and after local search (InitialObj and FinalObj, respectively) averaged across
all instances in each of the displayed synthetic graph type.
For a given problem instance, the percentage improvement is calculated as

%improvement = 100 · InitialObj − FinalObj
InitialObj

%

and averaged over all 10 runs of the instance. Across the three random network classes,
the heuristics performed best in the uniform random network class, yielding new
upper bounds in all 18 instances with all maximum objective values even less than
the exact upper bounds. From Figure 5, the impact of the local search procedure
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(a) BA instance

(b) ER Instance

(c) GNM Instance

Figure 3. Comparison of gaps from best UB and Heuristic for the synthetic instances, B=0.05n
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(a) BA instance

(b) ER Instance

(c) GNM Instance

Figure 4. Comparison of gaps from best UB and Heuristic for the synthetic instances, B=0.1n
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Figure 5. Variation of average percentage improvement in objective function values following the

neighbourhood search procedure across different synthetic network types; budget settings B = 0.05n & 0.1n.

is observed to significantly improve solutions obtained in all these instances. This is
also the case for the less-dense Barabasi-Albert and Erdos-Renyi (ba1, er2) instances
where the heuristic objective values were at least as good as the exact upper bounds.
The instances in the uniform random graph class were the most challenging for the
exact algorithms. Hence, achieving these new upper bounds shows the usefulness of
the proposed algorithm in providing good solution for challenging problem instances.
Overall we also observed that classes and instances of the random graphs that were
challenging for the exact algorithms were also the most computationally intensive for
the heuristic algorithm as can be seen in average computational times reported for
the uniform random graphs on Table 5. Also, the impact of the local search procedure
increases with increase in the budget setting B as would be expected since the size of
the neighbourhood is directly proportional to B.

Benchmark instances

We extend our computational experiment to the set of benchmark synthetic graphs
which have been used as test instances for most heuristic algorithms developed for
the classical critical node detection problem. Due to the sparsity of these networks,
we focused only on instances where the initial percentage k-distance connectivity
(k-Conn%) is greater or equal to 20% (labelled as FF250 and WS250a in Table 6).
From Table 6, we observe that the heuristics realises the exact optimal objective value
for 3 out 12 of the instances and yields new upper bounds in the remaining 9 instances.
We also observed that as the budget increases especially for large dense graphs, the
heuristic algorithm struggles to terminate within the specified time limit. In particular
for BA1000 and ER1000, the heuristic algorithm was unable to terminate within the
specified time limit. These two instances were also the most challenging for the exact
algorithm as seen from the gaps between the upper and lower bounds especially for
ER1000 for which an upper bound was only achieved after 8052 seconds. A possible
way to enhance the computational burden of the proposed heuristic for the larger
instances might be to increase the probability of using a randomised node selection
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Table 6. Results for benchmark synthetic instances: Exact Lower and Upper bounds (LB, UB) and summary

statistics for heuristic (minimum (min), mean (avg), maximum (max) and standard deviation (std)). Budget
settings for each instance are specified in column labelled B. Values compared are UB and min, lower values

are better (best in bold).

Exact Heur

Graph n m k-Conn (%) B LB UB t exact min avg max std t heur

FF250 250 514 23.9 13 1587.0 1587 11.44 1587 1598.2 1601 5.6 16.7
BA250 250 1225 98.08 25 13772.0 13772 3160.27 13722 13788.25 13811 16.89 137.6
BA500 500 2475 95.18 50 24847.0 24847 3331.03 24847 24847 24847 0 1104.7
BA1000 1000 4975 84.97 100 16071.326 316735 3600 59178 60488.9 62487 909.7 3600.0
ER250 250 1190 94.04 25 17958.996 22288 3600 19894 19931.6 19970 19.89 326.45
ER500 500 2570 86.27 50 30845.690 79482 3600 68062 68129.2 68208 39.43 3189.6
ER1000 1000 5061 64.66 100 70494.315 221831 8052 173538 174326.1 175494 527.5 3600.0
WS250a 250 1246 52.9 70 1038.980 2319 3600 2034 2056.8 2093 17.0 728.7
WS250b 250 1250 79.65 25 14586.020 15223 3600 15020 15044.67 15086 16.55 316.1
WS500 500 2500 69.35 50 25907.377 53729 3600 51460 51567.2 51659 63.2 3483.39
GNM250 500 1250 96.17 25 18638.331 22711 3600 20967 20984.5 21013 17.0 453.8
GNM500 1000 2500 84.74 50 29461.785 78001 3600 65775 65892.9 65975 67.1 2883.02

when repairing the partial offspring solution. However, the quality of the offspring
solution might be affected in which case local search improvement can be employed
with the gained time. Also an approximate evaluation of objective change might be
employed during iterations of the greedy backbone crossover and the local search to
reduce the computational burden of solution evaluation.

4.4. Two-parent versus three-parent backbone crossover

We conclude the discussion on computational experiments by comparing the proposed
three-parent backbone crossover to a two-parent approach. Recall that three initial
feasible solutions are generated based on three centrality measures which are all used to
generate offspring solutions (see Sections 3.3 & 3.4). We compare this to a two-parent
approach in which we randomly select two out of the initial solutions as was done in
Zhou et al. (2018). Using the two selected parent solutions, we construct an offspring
solution using a combination of greedy and random backbone crossover. Specifically,
the initial offspring solution is repaired using the greedy approach 70% of the time
and the random approach 30% of the time just as with the three-parent approach.
The random approach selects from the corresponding 1-parent elements or 0-parent
elements based on probabilities 0.6 and 0.4 respectively. Comparative performance of
the proposed three-parent backbone crossover and its alternative two-parent in terms
of the minimum objective value (min) and mean objective value (avg) are displayed
in Figures 6a and 6b respectively. The x-axis represents the instances while the y-axis
represents the percentage gap between the objective values (minimum values and mean
values) realised by the heuristic and the exact upper bounds (UB). The percentage
gaps are calculated as

%gap = 100 · obj − UB
obj

%

where obj is the minimum or mean objective value. A gap less than zero implies that
the heuristic approach (three-parent or two-parent) realises a new upper bound for the
given instance. From Figure 6 and Table 7, we observe that the three-parent approach
obtains better minimum and mean objective values respectively for 10 instances and 9
instances out of the 14 tested instances. On the other hand, the two-parent approach
obtains better minimum and mean objective values respectively in 1 instance and
2 instances. Both approaches perform alike obtaining the same minimum and mean
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(a) minimum objective values

(b) average objective values

Figure 6. Comparison of three-parent and two-parent backbone crossover approaches.
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objective values respectively for the smaller Barabasi-Albert instances (ba1 3, ba2 3)
as well as the Smallworld instance. The advantage of the three-parent approach is
more pronounced for the tested benchmark instances which spans all the random graph
class. We observed that while the three-parent approach yields 3 new upper bounds and
achieves the exact optimal for 2 of the 5 tested benchmark instances, the two-parent
approach obtains minimum objective values which are worse than the exact upper
bounds. Actual minimum and mean objective values along with run times for both
three-parent and two-parent backbone crossover can be seen in Table 7. Overall, the

Table 7. Comparison of the proposed heuristics using three-parent and two-parent backbone crossover
approaches on a set of test instances, B = 0.1n except for FF250 where B = 13 as recorded from the

source of the data. Values compared are minimum (min) and mean (avg) objective values obtained from both

approaches as well as run times (t heur), lower values are better (best in bold). The exact upper bounds are
given in column labelled UB

three-parent two-parent

Graph n m k-Conn (%) UB min avg t heur min avg t heur

SmallWorld 233 994 95.2 1694 1694 1694 58.6 1694 1694 45.6
USAir97 332 2126 84.8 3100 3100 3219.1 423.6 3168 3232.4 293.5
ba1 3 100 475 99.9 3330 3330 3330.0 13.6 3330 3330.0 13.8
ba2 3 100 900 100 3987 4005 4005.0 46.1 4005 4005.0 42.9
er1 3 80 470 100 2474 2535 2538.7 20.5 2534 2540.7 17.75
er2 3 200 1004 97.7 14886 14332 14360.0 213.5 14348 14370.4 183.9
gnm1 3 200 1000 97.9 14730 14193 14256.3 252.2 14244 14249.8 196.3
gnm2 3 300 1500 94.1 28978 28715 28734.4 637.4 28718 28729.8 568.1
gnm3 3 300 2000 99.6 35847 35158 35198.5 1539.6 35171 35235.0 1353.5
BA250 250 1225 98.08 13722 13722 13788.3 137.6 13844 14292.3 165.62
ER250 250 1190 94.04 22288 19894 19931.6 326.45 20107 20275.8 263.99
WS250b 250 1250 79.65 15223 15020 15044.7 316.1 15275 15370.3 211.46
GNM250 250 1250 96.17 22711 20967 20984.5 453.8 21088 21253.1 431.09
FF250 250 514 23.9 1587 1587 1598.2 16.7 1615 1694.2 16.2

results indicate that the three-parent approach performs better than the two-parent
approach in terms of minimum and mean objective values howbeit at higher cost of
run times. This could be attributed to the higher number of iterations of the greedy
procedure required to complete the initial offspring solution obtained from the common
elements of all three parents. An approximate method to evaluate changes in objective
value changes within the greedy procedure could be useful to improve the run times.

5. Conclusion

In this study, we considered a class of distance-based critical node detection problem.
The proposed heuristic algorithm generates good solutions following a combination
of greedy and randomised backbone-based crossover on initial feasible solutions.
We also presented an improvement scheme that is derived from a centrality-based
neighbourhood search. Extensive computational experiments on both real-world and
synthetic graphs show the usefulness of the developed heuristics in generating good
solutions when compared to exact solutions particularly for challenging problem
instances. In the future, it will be interesting to develop more efficient neighbourhoods
to overcome the problem of ties inherent in edge-dense instances of the Barabasi-Albert
and Erdos-Renyi network classes. It will also be useful to extend the proposed
framework to other classes of the distance-based critical node problem. Given the
computational burden of evaluating feasible solutions of the DCNP for larger instances,
an alternative scheme for solution evaluation is an interesting future problem.
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