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Abstract

In this paper, we study a lot-sizing and scheduling problem apparent in the food
industry that stemmed originally from the Brazilian meat production sector.
More specifically, we consider a production environment in which various pro-
duction lines share a set of scarce production resources. Therefore, only a subset
of the existing production lines can simultaneously operate in each period under
the limitations of the availability of resources. Moreover, we consider sequence-
dependent setup times and costs, significant inventory holding costs, backlogging,
and perishable products. The problem is formulated as a mixed integer program-
ming model, and we propose four Lagrangian-based heuristics to find high-quality
solutions for challenging instances. A computational study shows that proposed
approaches are very competitive in solving the problem, outperforming methods
already established in the literature.

Keywords: Lagrangian heuristic, production planning, scarce resources, perishable
products.
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1 Introduction

Production planning is an important management instrument that aims at the efficient
usage of the available production resources. In many industrial environments, such as
meat, soft drink, yogurt, and automotive companies (see Soler et al (2021b); Ferreira
et al (2010); Kopanos et al (2010); Almeder and Almada-Lobo (2011), respectively),
production planning involves decisions about which products must be produced in
what quantities in each period (lot sizing) and the sequence in which those products are
processed in the available production lines (scheduling). According to Almada-Lobo
et al (2015), industries face serious problems in making these decisions in practice.
Therefore, it is important to develop specialized mathematical models and solution
approaches to deal with integrated lot sizing and scheduling problems (LSP) stemming
from real-world scenarios.

In this paper, we deal with an LSP considering specific characteristics observed
in Brazilian meat industries, namely the lot sizing and scheduling problem with mul-
tiple production lines sharing scarce productive resources and considering perishable
products (LSP-PLSR). The produced items are perishable and can be stocked only
for a limited period of time. Moreover, an important characteristic of this industry is
that production lines share the same machines, tools, workstations, and workers, and
because of the scarcity of these production resources, only a subset of production lines
can simultaneously operate in any production period. The problem is also character-
ized by the existence of significant sequence-dependent setup times and costs, capacity
constraints, machine eligibility, and high inventory holding and backlogging costs.
Under these conditions, for each production period, the addressed problem consists
in deciding: i) which production lines should be assembled; ii) which products should
be produced and how much; and iii) the production sequences; with the objective of
minimizing costs incurred in the process.

The specific problem was recently introduced in the literature, and was addressed
in Soler et al (2021a,b) and Soler et al (2021c), as will be discussed in Section 3.2. The
existing literature has already established that the problem in question is NP-hard
in the strong sense and that large-sized test instances based on real-world scenarios
are computationally challenging. In order to address these challenges, we propose
efficient solution approaches for this LSP. More specifically, we develop two Lagrangian
approaches that decompose the original problem into easier-to-solve sub-problems.
We also develop a heuristic procedure to find high-quality feasible solutions from the
dual solutions obtained in the Lagrangian approaches. Finally, valid inequalities are
proposed in order to improve the quality of the obtained dual bounds. The effectiveness
of the proposed approaches is studied through extensive computational experiments,
where the analysis involves benchmarking the performance of the proposed approaches
to the performance of methods from the literature.
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The main contribution of this paper to the literature consists of an innovative and
customized application of Lagrangian approaches to solving a challenging real-world
production planning problem. The proposed approaches consider the specific struc-
ture of the problem to develop novel and efficient valid inequalities that significantly
improve the performance of the used methods and can be potentially used in other
production planning problems involving sequence-dependent setup times. Even though
the methodological approach follows a traditional framework, the developed methods
outperform methods already established in the literature. Moreover, the computa-
tional study carried out with the Lagrangian heuristics reveals some properties of the
problem in question.

The remainder of this paper is organized as follows. Section 2 presents a literature
review covering successful Lagrangian approaches to deal with production planning
problems, while Section 3 describes the addressed LSP and a mathematical model to
represent it as well as the existing literature about the addressed problem. Section 4
is devoted to the presentation of the Lagrangian-based solution approaches, including
the feasibility process and the valid inequalities to improve the Lagrangian bounds.
The computational study is presented in Section 5. Finally, Section 6 presents the
main conclusions and sketch perspectives for future works.

2 Literature review

The Lagrangian relaxation (LR) approach was originally proposed by Geoffrion (1974)
in the 70’s in order to solve integer and mixed integer programming problems. The
development of the approach was motivated by the fact that various complicated prob-
lems become significantly easier to solve in the absence of some of “complicating”
constraints. Basically, in LR approaches, the complicating constraints are included
only in the objective function weighted by dual variables (also called Lagrangian mul-
tipliers) allowing the resulting (relaxed) problem, without involving these constraints,
to be (hopefully) solved more effectively.

Naturally, there is more nuance than simply obtaining an easy-to-solve relaxed
problem. In addition to the fact that the process of identifying which constraints
to relax is very often not straightforward and problem-dependent, there is also the
danger of relaxing too many constraints, which may result in, for example, very weak
dual bounds that are not useful for the overall process. We refer the interested reader
to Jans and Degraeve (2004); Akartunalı and Miller (2012) for a thorough elaboration
on these matters (from the strength of various relaxations to their complexity to solve
in practice) in the context of production planning.

As remarked by Gaudioso (2020), approaches combining Lagrangian relaxation
and heuristic algorithms can be useful to tackle hard optimization problems inherent
in production systems (see some specific examples in Toledo and Armentano (2006),
Xiao et al (2015), and Fonseca et al (2019)). Usually, in such integrated approaches,
a heuristic procedure is developed to yield feasible solutions exploiting the dual solu-
tions obtained in the Lagrangian relaxation, making the most effective use of both
heuristic and exact methods. In line with this, we propose LR approaches involving
a construction heuristic to solve the LSP in hand. More specifically, we propose that
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the constraints linking decisions about lot sizing with scheduling decisions should be
considered as complicating constraints. In the absence of these linking constraints, the
resulting problem can be decomposed into separate lot sizing and parallel machine
scheduling sub-problems. As will be discussed in Section 4, each resulting sub-problem
is significantly smaller than the original problem and can be tackled efficiently.

As our primary focus is on building effective LR approaches, we discuss key
approaches from the literature applied successfully to solve a range of production
planning and related problems.

One of the earliest works we are aware of is the LR algorithm proposed in Trigeiro
et al (1989) to address a capacitated lot sizing problem with setup times and costs. The
capacity constraints are relaxed to decompose the problem into a set of independent,
uncapacitated, single-item lot sizing sub-problems that can be effectively solved by
dynamic programming. A heuristic procedure was also proposed to obtain feasible
solutions, and the authors presented computational results able to find high-quality
solutions for instances with up to 30 periods and 24 products.

A simultaneous lot sizing and scheduling problem in which only one type of product
can be produced in each period was addressed by Fleischmann (1990). A Lagrangian
scheme was proposed relaxing the constraints that ensure a single product type can
be produced in each period. Similar to Trigeiro et al (1989), the resulting problem was
decomposed into single-item, uncapacitated problems that were solved by dynamic
programming. The algorithm used to solve the sub-problems was slightly modified to
provide feasible solutions, and a computational study demonstrated promising results
for instances with few products and up to 100 periods.

The problem considered by Fleischmann (1990) was later extended by Fleischmann
(1994) to consider sequence-dependent setup costs. An LR approach was developed,
using the same framework established in Fleischmann (1990), to provide dual bounds,
and an independent heuristic procedure was proposed to find feasible solutions. The
computational efficiency of the method was shown using instances with up to 10
products and 150 periods.

In Diaby et al (1992), Lagrangian-based approaches were combined with a branch-
and-bound algorithm to solve a capacitated lot sizing and scheduling problem with
limited overtime. More specifically, in each branch-and-bound iteration, the bounds
were generated by Lagrangian relaxation. The authors evaluated different Lagrangian
relaxations and developed specific algorithms to solve the obtained relaxed problems.
Computational results on test instances with up to 99 items and 8 periods showed
that the proposed algorithms are effective and indicated that the capacity constraints
relaxation is superior to the demand constraints relaxation.

Millar and Yang (1994) developed Lagrangian relaxation and decomposition
approaches to tackle a capacitated lot sizing problem with backorders. The logical
constraints linking continuous and binary variables were relaxed so that the resulting
problem could be decomposed into a transportation problem (formulated as LP) and
an integer programming problem that could be solved by inspection, where further
tricks such as creating auxiliary variables were also employed in addition to customized
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heuristics. Albeit using only small-sized test instances, computational analysis demon-
strated that the proposed Lagrangian relaxation scheme performed better than the
developed Lagrangian decomposition approach.

Tempelmeier and Derstroff (1996) addressed a multilevel lot-sizing problem con-
sidering setup times and multiple capacity constraints. An LR-based approach was
proposed by relaxing the capacity constraints and the multilevel inventory balance
constraints. The relaxed problem was thus decomposed into several uncapacitated
single-item lot sizing problems that were solved by dynamic programming. The authors
also developed a feasibility procedure combining the solution of uncapacitated single-
item problems with a production transfer algorithm, and presented computational
results for instances with up to 100 products and 16 periods.

An efficient LR approach was proposed by Toledo and Armentano (2006) to deal
with a capacitated lot sizing problem on parallel machines. More specifically, the
capacity constraints were relaxed so that the resulting problem is decomposed into
single-item sub-problems solved by dynamic programming. The authors also proposed
a three-phase heuristic procedure to obtain feasible solutions from the Lagrangian
dual solutions. Fiorotto and de Araujo (2014) also proposed an LR approach for this
specific problem using the classical facility location reformulation and relaxing the
demand constraints. The resulting problem was decomposed into single period, single
machine sub-problems, and a customized branch-and-bound algorithm was developed,
along with a feasibility heuristic based on production transfer.

A capacitated lot sizing problem with setup times (but without setup costs) was
addressed by Süral et al (2009). The authors considered a strong mathematical for-
mulation for the problem and proposed a Lagrangian scheme relaxing the demand
constraints. The decomposed single period sub-problems were formulated as a varia-
tion of the knapsack problem and solved by a previously established branch-and-bound
algorithm. A primal heuristic was also developed, and computational experiments
carried out for up to 24 products and 30 periods.

Wu et al (2013) proposed an LR approach for a multi-level lot sizing problem
with backorders. They relaxed the capacity constraints to exploit decomposition into
various single end product sub-problems. A commercial MIP solver was employed to
solve the sub-problems while a relax-and-fix heuristic was developed to provide feasible
solutions. The authors also discussed some alternative reformulations for the problem
on hand.

An LR heuristic was proposed in Brahimi et al (2015) to address a two-level unca-
pacitated lot sizing problem with bounded inventory. More specifically, they relaxed
the coupling constraints between the two considered levels, decomposing the relaxed
problem into various well-solved single-item uncapacitated problems. Three smooth-
ing heuristics were employed to build feasible solutions from the dual solutions, and
computational results showed the superiority of the LR approach over a commercial
MIP solver using instances with up to 40 periods and 90 items.

Wolosewicz et al (2015) proposed an LR heuristic to deal with an integrated lot
sizing and fixed scheduling problem. Firstly, the authors proposed a new mathematical
formulation for the problem by modeling paths of the conjunctive graph associated
with the fixed sequence. Secondly, as widely explored in the literature, they relaxed the
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capacity constraints and obtained a resulting problem decomposed into a set of single-
item uncapacitated problems. A smoothing heuristics based on production transfer
between the different periods was developed to provide feasible solutions.

A hybrid Lagrangian-Simulated annealing-based heuristic was proposed in Xiao
et al (2015) to tackle a parallel-machine lot sizing and scheduling problem from semi-
conductor manufacturing with sequence-dependent setup times and costs and machine
eligibility constraints. A Lagrangian decomposition scheme was proposed in which
auxiliary variables were introduced for production variables, along with coupling con-
straints linking them to the original production variables. The auxiliary variables
were utilized to reorganize some original constraints, and the coupling constraints
were relaxed. A feasibility procedure was developed and a simulated annealing-based
heuristic was used to improve the quality of the obtained primal solutions.

Carvalho and Nascimento (2016) addressed a capacitated multi-plant lot sizing
problem. A Lagrangian heuristic was proposed by relaxing the capacity constraints
of the plants and a commercial MIP solver was used to solve the relaxed prob-
lem. Construction and improvement heuristics were proposed by exploring transfers
of production among plants and/or periods. Finally, the improvement heuristic was
hybridized with a path-relinking heuristic to enhance the quality of the solutions found.

A parallel-machine lot sizing problem with carbon emission constraints and
machine purchasing was considered by Wu et al (2018). Relaxing the capacity con-
straints, carbon emission constraints and machine purchasing constraints, the resulting
problem was decomposed into a set of single-item uncapacitated sub-problems. A
relax-and-fix heuristic was employed to find initial feasible solutions for the original
problem and a knowledge-guided improvement heuristic was developed. The efficiency
of the LR heuristic was computationally investigated using instances with up to 35
products, 24 periods, and 15 machines. For these instances, the LR dual bounds are
competitive with a Dantzig–Wolfe decomposition and a column generation method.

As’ ad et al (2020) also addressed a lot sizing problem considering carbon emis-
sion constraints, as well as perishable products and some operational characteristics
apparent in cold-chain industries (such as poultry, dairy, and vaccines). The authors
proposed an LR approach consisting of the relaxation of the carbon emission con-
straints. In this way, the resulting problem could be solved by a dynamic programming
algorithm previously established in the literature. A bisection-based algorithm was
proposed to solve the associated dual problem. A computational study was presented
considering small-sized test instances that were solved optimally in order to identify
some managerial insights.

To sum up, we observe that most commonly the Lagrangian relaxation is applied to
capacity constraints in production planning problems, though this may vary depending
on the specific characteristics of the problem on hand and identifying which constraints
to relax, as discussed earlier, is always critical to the success of the process. As we also
demonstrate in this brief review, it is also customary to build customized heuristics
such as smoothing, in order to exploit the dual bounds in the most effective way to
generate feasible solutions.
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Moreover, we observe that in the literature until the 2000s, Lagrangian approaches
were usually employed to solve classical problems without considering many charac-
teristics observed in real-world applications. In those problems, when some constraints
are relaxed, the resulting problem can be solved by polynomial algorithms. It is also
common to utilize simple heuristic procedures to repair the dual solutions to achieve
feasibility. Recently, after the enhancement of commercial MIP solvers (such as Cplex
and Gurobi), Lagrangian heuristics have been commonly developed to solve more com-
plex problems in which the main characteristics of the supply chain are considered. In
these works, the relaxed problems are usually NP-hard but can be efficiently tackled
using MIP solvers. Nowadays, it is also common the proposition of hybrid methods
combining Lagrangian relaxation with meta-heuristic approaches to obtain feasible
solutions. Finally, despite the existence of alternative methods to deal with the dual
problem, most works dealing with production planning problems observed in practice
use subgradient optimization. This fact aligns with some computational tests we have
experimented with throughout this research.

3 Problem presentation

In this section, we describe, model, and present the works related to the problem
addressed in this paper, i.e., the lot sizing and scheduling problem with multiple pro-
duction lines sharing scarce productive resources and considering perishable products
(LSP-PLSR).

3.1 Problem description and modeling

The LSP-PLSR is a production planning problem that considers a set of products
J (indexed by i and j), a set of heterogeneous and capacitated production lines L
(indexed by l), a set of production resources K (indexed by k), and a finite plan-
ning horizon of T periods (indexed by t and p). The problem also assumes dynamic
and deterministic demands, with djt denoting the demand of product j in period t.
Backlogging is allowed, i.e., the demands can be met with delay, and for each prod-
uct j backlogged, a time-independent backlogging cost, denoted by bj , is incurred per
period. On the other hand, when the products are produced in advance of demand,
they are charged a time-independent unit inventory holding cost hj for product j.

In the LSP-PLSR, the production lines need to be assembled at the beginning of
each period by assigning the necessary production resources. In order to assemble line
l, rkl units of resource k are required. The production environment is constrained such
that the available amount of resource k, denoted by Rk, is not sufficient to assemble
all production lines simultaneously, requiring a decision on which production lines to
assemble in each period. If production line l is assembled in period t (incurring a setup
cost of acl), then it operates in that period with a production capacity Clt. W.l.o.g.,
we also assume that each product can only be produced on a specific production line,
i.e., if we let Pl be the set of products produced in line l, then Pl1 ∩ Pl2 = ∅,∀l1, l2 ∈
L with l1 ̸= l2. This assumption is based on the common practice of specialized
production lines in food companies (as discussed in Soler et al (2021b)) and also
dictates which products can be produced in a period. We explore this feature in the
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feasibility procedure described in Section 4.4. We remark that our proposed heuristics
can also be applied to a setting where each product can be produced on more than
one production line.

Each production line admits a unique configuration, obtained by allocating the
necessary productive resources. Therefore, we only need to decide which production
lines to assemble in each period, without considering alternative configurations for
each line.

We also consider sequence-dependent setup times and costs, denoted by stlij and
sclij , respectively, when the production of item i is followed by the production of
product j on line l. If item j is produced in a period, a minimum mj units must be
produced, with each unit consuming alj units of the capacity of the production line
l. Finally, in the LSP-PLSR we suppose that the produced items are perishable, and
hence, each item j can remain in stock no longer than its shelf life, i.e., slj periods.

As we noted in Section 2, the LSP-PLSR was previously studied in Soler
et al (2021b,a,c), and in particular, Soler et al (2021c) explored different modeling
techniques to yield nine mathematical models for the LSP-PLSR. The extensive com-
putational study presented by the authors indicated that a strong formulation can be
obtained from the traditional CLSD model, as proposed in Haase (1996), by making
the binary production variables explicit, using the facility location reformulation for
the lot sizing decisions, and the single commodity flow constraints to eliminate pro-
duction sub-sequences. Therefore, in this paper, we add the perishability constraints
into the FL-CLSDw

SCF model of Soler et al (2021c), and use this as the base model
for the proposed Lagrangian approaches.

To describe the model, we define a parameter hbjtp to indicate the unit inventory
holding (if t ≤ p) or backlogging (if t > p) cost incurred when item j is produced in
period t to meet the demand of period p. Using the parameters introduced earlier, the
parameter hbjtp can be defined as

hbjtp =

{
(p− t)hj , if t ≤ p

(t− p)bj , if t > p
.

Finally, we define the decision variables of the model, as follows:
xljtp Amount of item j produced on line l in period t to meet the demand of period

p = 1, . . . ,min{t+ slj , T};
δlt 1, if line l is assembled in period t; 0, otherwise;
wljt 1, if item j is produced on line l during period t; 0, otherwise;
yljt 1, if item j is the first item produced on line l and period t; 0, otherwise;
zlijt 1, if there is change of production from item i to j on line l during the period t;

0, otherwise;
Vlijt Auxiliary variable used in the single commodity flow constraints to eliminate

sub-sequences. This variable can be interpreted as the amount of a hypothetical
commodity that is transferred on line l from item i to j in period t.
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The mathematical model, which we will refer to as FL-CLSDw
SCF , is as follows.

Min
∑
l,j,t,p

hbjtpxljtp +
∑
l,i,j,t

sclijzlijt +
∑
l,t

aclδlt (1)

s.t.

T∑
p=max{1,t−slj}

xljpt = djt, ∀l, j ∈ Pl, t (2)

mjwljt ≤
∑
p

xljtp ≤
Clt

alj
wljt, ∀l, j ∈ Pl, t (3)

∑
j∈Pl

wljt ≤ |Pl|δlt, ∀l, t (4)

∑
l

rklδlt ≤ Rk, ∀k, t (5)∑
j∈Pl,p

aljxljtp +
∑
i,j

stlijzlijt ≤ Clt, ∀l, t (6)

wljt = yljt +
∑
i∈Pl

zlijt, ∀l, j ∈ Pl, t (7)

∑
j∈Pl

yljt ≤ 1, ∀l, t (8)

yljt +
∑

i∈Pl\{j}

zlijt ≥
∑

i∈Pl\{j}

zljit, ∀l, j ∈ Pl, t (9)

∑
j∈Pl

Vl0jt ≤ |Pl|, ∀l, t (10)

Vl0jt ≤ |Pl|yljt, ∀l, j ∈ Pl, t (11)∑
i∈Pl∪{0}

Vlijt −
∑
i∈Pl

Vljit = yljt +
∑
i∈Pl

zljit, ∀l, j ∈ Pl, t (12)

Vlijt ≤ (|Pl| − 1)zlijt, ∀l, i, j ∈ Pl, t (13)

xljtp ≥ 0, ∀l, j ∈ Pl, t, p (14)

wljt ∈ {0, 1}, ∀l, j ∈ Pl, t (15)

δlt ∈ {0, 1}, ∀l, t (16)

yljt ∈ {0, 1}, ∀l, j ∈ Pl, t (17)

zlijt ∈ {0, 1}, ∀l, i ∈ Pl, j ∈ Pl, t (18)

Vlijt ≥ 0, ∀l, i ∈ Pl, j ∈ Pl, t. (19)

The objective function (1) consists of minimizing the total costs associated with
inventory holding, backlogging, sequence-dependent setups, and assembly of the pro-
duction lines. Constraints (2) ensure the fulfillment of the customer demands. The right
inequality of constraints (3) ensures that each type of item can only be produced if the
production line is set up for the respective item, while the left inequality introduces
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minimum lot sizes. Constraints (4) guarantee that production occurs only on assem-
bled production lines, while (5) are the capacity constraints related to the production
resources. Constraints (6) are the capacity constraints of the assembled production
lines, and constraints (7) ensure that the produced items are properly sequenced.
Constraints (8) establish that only one item can be the first item produced in each
production line and period, while constraints (9) ensure the flow balance for sequenc-
ing of lots. Constraints (10) to (13) are the single commodity flow (SCF) constraints to
eliminate sub-sequences in the production sequences. Finally, constraints (14) to (19)
define the domains of variables.

We remark the SCF constraints were introduced by Gavish and Graves (1978)
to eliminate sub-tours in formulations for the traveling salesman problem and were
used by Guimarães et al (2014) and Soler et al (2021c) to eliminate sub-sequences
in the production planning context. The SCF approach requires polynomial numbers
of constraints and variables. In the proposed model, assuming that each produc-
tion line produces the same number of different products, the SCF approach has(
L+ 2J + J2

)
T constraints and requires J2T specific continuous variables. For a test

instance with 14 periods, 10 production lines, and 110 products, these expressions
correspond to 172,620 constraints and 169,400 variables. According to the results
presented by Guimarães et al (2014) and Soler et al (2021c), the SCF constraints
outperform the widely used MTZ constraints proposed by Miller et al (1960).

3.2 Related works

To conclude this section, we review the existing literature on production planning
problems similar to the LSP-PLSR.

Jain and Palekar (2005) addressed a multi-level lot sizing problem in which vari-
ous machines are connected to form different production lines. Moreover, production
lines can operate in a fraction of the periods and in-process inventory is not allowed.
The problem was formulated as a mixed integer programming problem and heuris-
tic approaches were developed to provide high-quality feasible solutions in reasonable
running times for real-size instances. The problem studied by Jain and Palekar (2005)
differs from LSP-PLSR because sequencing decisions are not considered and the
products are not of perishable nature.

The LSP-PLSR was originally introduced in Soler et al (2021b). The authors
adapted the mixed integer programming model proposed in Haase (1996) to consider
the specific characteristics of the problem. More specifically, variables and constraints
were introduced to control the age of the products in stock and to decide which produc-
tion lines should be assembled in each period. A relax-and-fix heuristic was presented
in which the original problem could be decomposed into easier-to-solve sub-problems.
The computational results showed that the proposed heuristic was able to find high-
quality feasible solutions and competitive dual bounds, outperforming a commercial
MIP solver and other traditional relax-and-fix heuristics.

Soler et al (2021c) studied the problem emphasizing the achievement of strong
mathematical formulations. The perishability aspect was not considered and the
authors proposed nine mathematical models exploring different techniques to model
the setup, the sequencing, and the lot sizing decisions. An extensive computational
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study showed that an efficient model is obtained from the model proposed in Soler et al
(2021b) by making explicit the binary setup variables, using the single commodity flow
constraints to eliminate any sub-sequences, and the facility location reformulation to
define the continuous lot sizing variables. In this paper, we introduce the perishability
aspect in the best model proposed in Soler et al (2021c) and use it as the basis line
for the proposed Lagrangian approaches.

Finally, Soler et al (2021a) proposed construction and improvement heuristics for
the LSP-PLSR. More specifically, in the construction heuristic, an aggregated model
was used only to determine the production lines to be assembled in each period. Next,
these decisions were fixed in the original problem, and then, the resulting sub-problem
decomposed by production lines. A local search heuristic, induced by local branching
constraints, and a stochastic fix-and-optimize heuristic were proposed to improve the
initial feasible solutions found by the constructive procedure. A computational study
found that the proposed solution methods outperformed the relax-and-fix heuristic
introduced by Soler et al (2021b).

From the literature, we observe that large-sized test instances commonly observed
in industrial settings (especially with more than 80 products, 10 periods, and 10
production lines) are computationally challenging, requiring the development of new
solution approaches. We also observe a lack of specialized exact methods to obtain
strong primal and dual bounds.

4 Lagrangian based heuristics

This section is devoted to the elaboration on the proposed Lagrangian solution
approaches. Firstly, we introduce a Lagrangian scheme in which we dualize the con-
straints that link the lot sizing and the sequencing decisions. Secondly, exploring
the same decomposition framework of the original problem, we develop a Lagrangian
decomposition approach characterized by the duplication of the production variables
xljtp. Finally, we discuss dual problems and propose feasibility procedures.

4.1 A Lagrangian Relaxation scheme

The Lagrangian Relaxation (LR) scheme proposed in this paper is obtained from
the dualization of constraints (6) and (7) that link the lot sizing and the scheduling
decisions in the FL-CLSDw

SCF model. To present the LR approach, let λ = (λlt) ≥ 0
and α = (αljt) be the dual variables (i.e., Lagrangian multipliers) associated with
constraints (6) and (7), respectively. The Lagrangian sub-problem S(λ, α) can then
be formally defined as

Z(λ, α) = Min
∑
l,j,t,p

(hbljtp + λltalj)xljtp +
∑
l,j,t

αljtwljt +
∑
l,t

aclδlt

+
∑
l,i,j,t

(sclij + λltstlij − αljt)zlijt −
∑
l,j,t

αljtyljt (20)
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−
∑
l,t

λltClt

s.t. (x,w, δ, y, z) ∈ X

where X = {(x,w, δ, y, z)|(2)−(5), (8)−(19)}. Note that the last term of the objective
function is a constant for any given λ. We observe that in the Lagrangian sub-problem
S(λ, α), the decisions about which lines to assemble and the size of the production
lots do not depend on the sequencing decisions. Therefore, S(λ, α) can be decomposed
into a lot sizing problem with choices of production lines to assemble, denoted by
LC(λ, α), and a scheduling problem SC(λ, α), as follows.
•LC(λ, α) :

ZLC(λ, α) = Min
∑
l,j,t,p

(hbljtp + λltalj)xljtp +
∑
l,j,t

αljtwljt +
∑
l,t

aclδlt (21)

s.t. (x,w, δ) ∈ {(2)− (5), (14)− (16)}

•SC(λ, α) :

ZSC(λ, α) = Min
∑
l,i,j,t

(sclij + λltstlij − αljt)zlijt −
∑
l,j,t

αljtyljt (22)

s.t. (y, z) ∈ {(8)− (13), (17)− (19)}

Using this decomposition and for any λ ≥ 0 and α, we have that

Z(λ, α) = ZLC(λ, α) + ZSC(λ, α)−
∑
l,t

λltClt.

Our computational experiments find that problem LC(λ, α) is significantly easier-
to-solve than the original problem using a MIP solver. Moreover, the convergence of
the solver’s algorithm can be accelerated by using the branching rule suggested in Soler
et al (2021b), i.e., by prioritizing branching the δlt variables before wljt. On the other
hand, problem SC(λ, α) can be further decomposed into |L| single-machine scheduling
problems. We denote the scheduling problem associated with line l by SCl(λ, α). Each
sub-problem SCl(λ, α) considers only |Pl| ≤ |J | different types of products.

Note that, for any Lagrangian multipliers λ ≥ 0 and α, the optimal value Z(λ, α)
of the Lagrangian sub-problem S(λ, α) is a dual bound for the original problem FL-
CLSDw

SCF . In this paper, we propose two approaches to improve the quality of the
bounds obtained by the LR approach. Firstly, we offer a slight reformulation of the
original capacity constraints and prove that the dualization of the reformulated con-
straints provides tighter dual bounds than those obtained by dualizing the original
constraints. Secondly, we develop valid inequalities for the original problem that are
employed in the Lagrangian sub-problem to obtain better dual bounds and facili-
tate the construction of high-quality feasible solutions. The reformulated capacity
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constraints are stated as follows:∑
j∈Pl,p

aljxljtp +
∑
i,j

stlijzlijt ≤ Cltδlt,∀l, t. (23)

Constraints (23) simply state that the capacity of production line l can only be
used in period t if this line is assembled. The relaxation of constraints (23), rather
than (6), generates a reformulated Lagrangian sub-problem, denoted by S

′
(λ, α), as

follows:

Z
′
(λ, α) = Min

∑
l,j,t,p

(hbljtp + λltalj)xljtp +
∑
l,j,t

αljtwljt +
∑
l,t

aclδlt

+
∑
l,i,j,t

(sclij + λltstlij − αljt)zlijt −
∑
l,j,t

αljtyljt (24)

−
∑
l,t

λltCltδlt

s.t. (x,w, δ, y, z) ∈ X

We observe that for any Lagrangian multipliers λ ≥ 0 and α, the optimal value
Z

′
(λ, α) of the reformulated Lagrangian sub-problem is greater than or equal to the

value Z(λ, α). This is formally presented in Proposition 1.
Proposition 1. For any λ = (λlt) ≥ 0 and α = (αljt),

Z
′
(λ, α) ≥ Z(λ, α).

Proof. Firstly, we remark that the feasible region for the original (S(λ, α)) and of
the reformulated (S

′
(λ, α)) Lagrangian sub-problems are identical, i.e., they are both

(x,w, δ, y, z) ∈ X. Let L(x,w, δ, y, z) and L
′
(x,w, δ, y, z) be the objective function

value of the original (S(λ, α)) and of the reformulated (S
′
(λ, α)) Lagrangian sub-

problems, respectively, for a fixed vector of (x,w, δ, y, z). Since 0 ≤ δlt ≤ 1 (due to
(16)), λlt ≥ 0 (by definition) and Clt ≥ 0 (by definition), it follows that

−
∑
l,t

λltCltδlt ≥ −
∑
l,t

λltClt.

Hence,
L

′
(x,w, δ, y, z) ≥ L(x,w, δ, y, z) (25)

Since both problems have the same feasible region of X, (25) ensures that Z
′
(λ, α) ≥

Z(λ, α).

As S(λ, α) is an uncapacitated lot sizing and scheduling problem, the absence
of capacity constraints allows solutions with high production quantities, and conse-
quently, the production lines tend to be assembled for a reduced number of periods.
These dual solutions far from feasibility may provide weak dual bounds. Hence, in
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order to improve dual bounds, we develop valid inequalities that represent sequence-
independent capacity constraints for the original problem that can be considered in
the lot sizing part of the Lagrangian sub-problem (LC(λ, α)), as follows.
Proposition 2. Let STlj be the minimum setup time to produce item j on line l, and
STml be the maximum among the minimum setup times associated to line l, i.e.,

STlj = min
i∈Pl,i̸=j

{stlij}, ∀l, j ∈ Pl; and STml = max
j∈Pl

{STlj}, ∀l.

Then, sequence-independent setup capacity (SISC) inequalities (26) are valid for the
original problem FL-CLSDw

SCF .∑
j∈Pl,p

aljxljtp +
∑
j∈Pl

STljwljt ≤ Clt + STml,∀l, t. (26)

Proof. We note, ∀l and ∀t

∑
i,j∈Pl

stlijzlijt ≥
∑

i,j∈Pl

STljzlijt =
∑
j∈Pl

STlj

(∑
i∈Pl

zlijt

)
=
∑
j∈Pl

STlj (wljt − yljt)

=
∑
j∈Pl

STljwljt −
∑
j∈Pl

STljyljt ≥
∑
j∈Pl

STljwljt − STml (27)

where the first inequality holds due to STlj ≤ stlij (by definition), the first equation
is a simple rearrangement, the second equation holds due to constraints (7), the third
equation is a rearrangement, and finally, the last inequality is due to the following
relationship established by the definition of parameter STml (i.e., STml ≥ STlj) and
constraints (8) and (17):∑

j∈Pl

STljyljt ≤
∑
j∈Pl

STmlyljt = STml

∑
j∈Pl

yljt ≤ STml

Substituting (27) into the original capacity constraints (6), we have

Clt ≥
∑

j∈Pl,p

aljxljtp +
∑
i,j

stlijzlijt ≥
∑

j∈Pl,p

aljxljtp +
∑
j∈Pl

STljwljt − STml (28)

In Section 5 we study the impact of using SISC inequalities (26) with respect to
the quality of the dual bounds as well as the feasible solutions built.

4.2 A Lagrangian Decomposition scheme

The Lagrangian Decomposition (LD) technique was proposed by Guignard and Kim
(1987) aiming to allow the decomposition of complex problems into easier-to-solve sub-
problems. The LD approach is particularly suitable to deal with problems resulting
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from the integration of two or more well-studied problems. In traditional Lagrangian
relaxation approaches some constraints of the original problem are relaxed, being only
considered in the objective function of the Lagrangian sub-problem. On the other hand,
in LD approaches all the original constraints appear in the Lagrangian sub-problem.
The LD approach consists of creating identical copies of some decision variables and
using one of these copies in each set of constraints. Additional constraints enforcing
the equality between the copy and original variables are introduced in the model and
dualized.

In this paper, we propose an LD scheme in which the obtained Lagrangian sub-
problem can also be decomposed into a lot sizing problem with decisions about the
lines to be assembled and various single-machine scheduling problems. A similar LD
approach was studied in Xiao et al (2015) to solve a parallel machine lot sizing
and scheduling problem from the semiconductor manufacturing industry. In our LD
approach, we define copy variables Aljtp for the production variables xljtp, and present

the reformulated model, denoted by M
′
, as follows:

Min (1)

s.t. (2)− (5), (8)− (19)∑
j∈Pl,p

aljAljtp +
∑
i,j

stlijzlijt ≤ Clt, ∀l, t (29)

∑
p

Aljtp ≤
Clt

alj
(yljt +

∑
i∈Pl

zlijt), ∀l, j ∈ Pl, t (30)

xljtp = Aljtp, ∀l, j, t, p (31)

Aljtp ≥ 0, ∀l, j, t, p (32)

Capacity constraints (29) use the copy variables Aljtp instead of the original vari-
ables xljtp, while constraints (30) ensure that the production of each item occurs only if
that item appears in the production sequence of the respective line. Finally, constraints
(31) enforce the equality between the copy (Aljtp) and original (xljtp) variables, while
constraints (32) define the variable domain of Aljtp. We observe that constraints (30)
together with constraints (31) and the right side of constraints (3) guarantee that, for
each l, j and t, wljt = 1 if and only if yljt +

∑
j zlijt = 1. Therefore, the constraints

(7) are excluded in the model M
′
.

The proposed LD approach consists of dualizing constraints (31). For this purpose,
let β = (βljtp) be the dual variables associated with these constraints. The Lagrangian
sub-problem SLD(β) is then as follows:
•SLD(β) :

ZLD(β) = Min
∑
l,j,t,p

(hbjtp + βljtp)xljtp +
∑
l,t

aclδlt

+
∑
l,i,j,t

sclijzlijt −
∑
l,j,t,p

βljtpAljtp (33)

s.t. (2)− (5), (8)− (19), (29), (30)
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Now, we note that the Lagrangian sub-problem SLD(β) can be decomposed into a
lot sizing problem with decisions about assembling the production lines, denoted by
LCLD(β), and a parallel machine scheduling problem, denoted by SCLD(β), as defined
below.
•LCLD(β) :

ZLCLD (β) = Min
∑
l,j,t,p

(hbljtp + βljtp)xljtp +
∑
l,t

aclδlt (34)

s.t. (2)− (5), (14)− (16)

•SCLD(β) :

ZSCLD (β) = Min
∑
l,i,j,t

sclijzlijt −
∑
l,j,t,p

βljtpAljtp (35)

s.t. (8)− (13), (17)− (19), (29), (30), (32)

Problem LCLD(β) has the same feasible region as the problem LC(λ, α). On the
other hand, beyond sequencing decisions, problem SCLD(β) also considers some lot
sizing aspects. However, similar to problem SC(λ, α), problem SCLD(β) can also be
decomposed into |L| single machine scheduling problems.

Using the proposed decomposition of the Lagrangian sub-problem, we have that,
for each Lagrangian multiplier β = (βljtp), the optimal value of the Lagrangian sub-
problem associated with our LD approach is given by

ZLD(β) = ZLCLD (β) + ZSCLD (β).

To strengthen the dual bounds obtained from our LD approach, we include
constraints (36) in SCLD(β) to enforce the satisfaction of customer demands.

T∑
p=max{1,t−slj}

Aljpt = djt, ∀l, j ∈ Pl, t (36)

Finally, we remark that SISC inequalities (26) can be used in the problem
LCLD(β).

4.3 Dual problems

4.3.1 Dual problem for the LR approach

For each pair of dual variables λ = (λlt) ≥ 0 and α = (αljt), the optimal value
Z(λ, α) of the Lagrangian sub-problem is a dual (lower) bound for the original problem.
Therefore, the dual problem associated with the LR approach is given by

max Z(λ, α)
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s.t. λlt ≥ 0, ∀l, t (37)

αljt ∈ R, ∀l, j, t.

In this paper, we use the well-established subgradient algorithm (Held et al (1974))
to solve the dual problem (37). More specifically, we start with all dual variables set
to zero, i.e., λ1

lt = 0,∀l, t and α1
ljt = 0,∀l, j, t. Then, for each iteration iter ≥ 2, we

update the dual variables according to (38) and (39).

λiter
lt = max{0, λiter−1

lt + stepiter−1 [uλiter−1 ]lt}, ∀l, t, (38)

αiter
ljt = αiter−1

ljt + stepiter−1 [vαiter−1 ]ljt , ∀l, j, t. (39)

In (38) and (39), xiter, ziter, δiter, witer, and yiter are the solutions obtained by
solving the Lagrangian sub-problem S(λiter, αiter), while stepiter is the incumbent
step size, and uλiter and vαiter are the subgradients associated with constraints (6)
and (7), respectively, i.e.,

[uλiter ]lt =
∑

j∈Pl,p

aljx
iter
ljtp +

∑
i,j

stlijz
iter
lijt − Cltδ

iter
lt ,∀l, t, (40)

[vαiter ]ljt = witer
ljt − yiterljt −

∑
i∈Pl

ziterlijt ,∀l, j, t. (41)

Finally, for each iteration iter, the step size is updated according to (42), where
Z is an upper bound for the original problem, Z(λiter, αiter) is the incumbent lower
bound (the optimal value for Lagrangian sub-problem), and the denominator is the
Euclidian norm of the subgradient vector.

stepiter = θiter−1Z − Z(λiter−1, αiter−1)

|| [uλiter−1 , vαiter−1 ] ||2
. (42)

In (42), θiter is a control parameter satisfying 0 < θiter < 2. This rule to update
the step size was proposed by Polyak (1969). As discussed by Held et al (1974),
this rule ensures the convergence of the method to Z or obtaining λiter and αiter so
that Z(λiter, αiter) ≥ Z. Moreover, as already observed by Carvalho and Nascimento
(2016), we empirically noted that better dual bounds are obtained if the step size is
reduced systematically. Therefore, we impose that lim

iter→∞
θiter = 0.

4.3.2 Dual problem for the LD approach

The dual problem associated with the LD approach is as follows:

max ZLD(β)

s.t. βljtp ∈ R, ∀l, j, t, p. (43)

Applying the subgradient algorithm to solve the dual problem (43), we again start
with the dual variables set to zero (β1

ljtp = 0, ∀, j, t, p) and, for each iteration iter ≥ 2,
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the variables β are updated according to (44).

βiter
ljtp = βiter−1

ljtp + stepiter−1[gβiter−1 ]ljtp,∀l, j, t, p. (44)

In (44), gβiter are the associated subgradient vector defined according to (45),
where xiter and Aiter are the solutions obtained by solving the Lagrangian sub-problem
SLD(β); stepiter is the incumbent step size, and the expression xiter−Aiter represents
the incumbent subgradient. Under these conditions, the step size is updated similarly
to the procedure of Section 4.3.1.

[gβiter ]ljtp = xiter
ljtp −Aiter

ljtp,∀l, j, t, p. (45)

4.4 Feasibility procedure and Lagrangian heuristics

The feasibility procedure, which is used to obtain feasible solutions from the dual
variable values, explores a specific property of FL-CLSDw

SCF . The sets Pl, l ∈ L are
disjoint, i.e., each product is produced only on its respective production line, and only
constraints (5) link different production lines through binary variables δlt, l ∈ L, t ∈ T .
Therefore, in each subgradient iteration iter, fixing the value of each variable δlt in
the feasible value δiterlt obtained by solving the Lagrangian sub-problem (S(λiter, αiter)
and SLD(βiter) for LH and LD approaches, respectively), the resulting problem can
be decomposed into |L| single machine lot sizing and scheduling problems, denoted by
FPl(δ

iter), l = 1, . . . , |L|.
Each problem FPl(δ

iter) considers only |Pl| different products rather than |J | =∑
l |Pl| products considered in the original problem. Moreover, FPl(δ

iter) considers all
original constraints concerning its respective products except constraints (5) that are
satisfied by construction, i.e., each problem FPl(δ

iter) considers the relaxed constraints
concerning to production line l. Therefore, a feasible solution for the original problem
is obtained simply by grouping the solutions found for problems FPl(δ

iter), l ∈ L.
We also observe that for each l ∈ L, we only solve the problem FPl(δ

iter) in the
iterations of the subgradient method in which the vector ∆iter

l = (δiterl1 , . . . , δiterl|T | )

differs from the feasible pattern obtained in the previous iteration (∆iter−1
l ). Prelim-

inary computational experiments indicated that few of these vectors change in each
iteration. Finally, since there is no data dependency between the problems FPl(δ

iter),
l = 1, . . . , |L|, a parallel computing approach can be used to solve all necessary
sub-problems simultaneously.

In this paper, we use a commercial MIP solver and the branching rule proposed
in Oliveira and Santos (2017) to solve the sub-problems FPl(δ

iter), l = 1, . . . , |L|. Since
the optimal solutions to these problems are not required to build a feasible solution,
we have limited the running time for each sub-problem.

Our feasibility procedure is presented in Algorithm 1, to be used as a subroutine in
the Lagrangian-based heuristics presented in Algorithm 2. In Algorithm 1, the input
parameters are (i) the current subgradient iteration iter; (ii) the current and the
previous dual solutions δiter and δiter−1; and (iii) the objective function values of each
sub-problem FPl(δ

iter−1), denoted by Z
′

l . In the first iteration, iter = 1, we consider

δiter−1 = δ0 = (0, . . . , 0) and Z
′

l = 0, for all l. Next, for each l, we define the vectors ∆l
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and ∆l to represent the current and previous assembly patterns of the production line
l respectively and check if ∆l differs from ∆l, and if so, we update Z

′

l by solving the
sub-problem FPl(δ

iter). Finally, we update the value of the current feasible solution.
We observe that Algorithm 1 obtains a feasible solution in an iteration iter if all

sub-problems FPl(δ
iter), l = 1, . . . , |L|, are feasible. Our computational experiments

found that the dual solutions δiter obtained in the proposed Lagrangian schemes usu-
ally provide feasible solutions from the first subgradient iteration onwards. However,
we highlight that if a feasible solution can not be obtained for a problem FPl(δ

iter),
we just set Z

′

l to ∞ and the heuristic proceeds normally. It is reasonable to expect
that in a later iteration, a feasible solution will probably be obtained.

Algorithm 1 Feasibility procedure(iter, δiter, δiter−1, Z
′
)

1: Initialization: Z ← 0;
2: for l = 1 . . . , |L| do
3: ∆l ← (δiterl1 , . . . , δiterl|T | );

4: ∆l ← (δiter−1
l1 , . . . , δiter−1

l|T | );

5: if ∆l ̸= ∆l then
6: if FPl(δ

iter) is feasible then
7: Z

′

l ← ZFPl(δiter);
8: else
9: Z

′

l ←∞;
10: end if
11: end if
12: Z ← Z + Z

′

l ;
13: end for

To conclude this section, Algorithm 2 presents an overview of the proposed
Lagrangian approaches. In this algorithm, the input parameters are the maximum
running time (Timemax) and the maximum number of iterations (itermax). Both
approaches start with all dual variables set at zero. Next, while the stopping crite-
ria are not reached, we first solve the associated Lagrangian sub-problem using the
decomposition schemes presented in Sections 4.1 and 4.2 and obtain a dual bound
denoted by Z. Using the solution obtained by solving the Lagrangian sub-problem
we can easily compute the subgradient vectors (see equations (40) and (41) for the
LR approach and equation (45) for LD). Then, we compute a feasible solution using
Algorithm 1 and obtain a primal bound Z. Finally, we update the step size, the dual
variables, and the processing time to start a new iteration.

5 Computational Analysis

This section presents a computational study, carried out using a data set from the
literature, with the aim of evaluating the efficiency and effectiveness of the proposed
Lagrangian approaches. Firstly, in Section 5.1 we describe the computational envi-
ronment and test instances. Secondly, in Section 5.2 we present computational results
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Algorithm 2 Lagrangian based heuristics (LR and LD)

1: Initialization: iter ← 1; time← 0; Z ←∞; Z ← 0;
LR: λ← 0, and α← 0;
LD: β ← 0;

2: while time < Timemax and iter < itermax and Z > Z do
3: Solve the Lagrangian sub-problem and obtain the dual bound Z;

LR: S(λ, α)
LD: SLD(β)

4: Compute the subgradient;
LR: uλ and vα according to (40) and (41), respectively;
LD: gβ according to (45);

5: Use Algorithm 1 to obtain a primal bound Z;
6: Update the step size step according to (42);
7: Update the dual variables;

LR: λ← max{0, λ+ step · uλ}; and
α← α+ step · vα

LD: β ← β + step · gβ
8: Update the running time (time);
9: Update the iteration: iter ← iter + 1;

10: end while

and analysis regarding the proposed methods, and finally, benchmarking our methods
with algorithms from the literature is provided in Section 5.3.

5.1 Computational setting and test instances

The mathematical model and the solution approaches considered in this paper were
implemented in C++ language using the Concert Technology library of the IBM
ILOG Cplex 20.1 Optimization solver. The computational experiments were executed
on a computer with two Intel Xeon 2.8 GHz (10 cores, 2 threads/core, and 25 MB
SmartCache) processors and 128 GB DDR3 1866 MHz RAM memory.

We consider the data set proposed in Soler et al (2021b) in line with industry
practices. The test instances are divided into 5 classes, each with 20 test instances,
representing small to large-sized companies. Table 1 presents the main characteristics
(number of periods, production lines, products, and resources) of the data set following
our notation. Table 1 also presents the values adopted for some auxiliary parameters
used to compute the other necessary parameters.

We use the notation U [a, b] to indicate that an integer value was randomly chosen
in the interval [a, b] using uniform probability distribution. The test instances have
the following specifications.

• Clt = 480, i.e., minutes in a production day of 8 hours;
• stlij ∈ U [15, 45] i.e., the setup times randomly range from 15 to 45 minutes, and
sclij = 2stlij ;

• For each product j, there is only one production line γj ∈ U [1, |L|] that can produce
it. Hence, the set of products that can be produced on line l is Pl = {j|γj = l};
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Table 1 Parameter values used in each class of the test instances.

Class |T | |L| |J | |K| φd φr
k φr

0 ϕb ϕe

1 10 7 45 5 100 0.8 0.6 0 0
2 10 10 80 6 100 0.8 0.6 0 0
3 14 10 90 6 90 0.6 0.5 0 0
4 12 10 110 7 90 0.6 0.55 100 150
5 14 10 110 7 90 0.6 0.55 50 150

Columns |T |, |L|, |J | and |K| represent the number of periods, pro-
duction lines, products, and resources, respectively. φd, φr

k, φr
0,

ϕb, and ϕe present the values adopted for the auxiliary parameters
used to compute the customer demands, the available resources,
and the costs to assemble the production lines.

• djt ∈ U

0, Clt− min
i,j
{stlij}γ − φd

|Pl|

, with φd as specified in Table 1;

• alj = 1 and mj = 2, i.e., we consider fixed processing times and minimum lot sizes;
• hj ∈ U [1, 10] and bj = 10hj ;
• rkl ∈ U [0, 2] when k > 1 and r1l ∈ U [5, 10]. In Soler et al (2021b), the authors
considered that k = 1 represents the workers, while k = 2, · · · , |K| represent other
resources, such as machines, tools, and workstations;

• Rkt = max

 max
l=1,...,L

{rkl}, φr
k

∑
l∈[L]

rkl

, with φr
k as specified in Table 1, to represent

the maximum percentage of production lines that can simultaneously operate in
each period;

• acl =
∑

k rckrkl, where rck ∈ U [ϕb, ϕe] (ϕb and ϕe as specified in Table 1). In other
words, the cost to assemble the line l is the sum of the costs of the required resources.

A more detailed description of the data set and a discussion about the relationship
between the test instances and real-world practical scenarios can be found in Soler
et al (2021b).

In this section, we frequently report the percent deviation from the objective func-
tion value to the known dual bound, denoted by gap, as a quality measure of the
computational performance of the studied methods. More specifically, for each test
instance σ, the gapσ is computed according to (46), where OFσ and DBσ are the
obtained objective function and dual bound values, respectively.

gapσ = 100 · OFσ −DBσ

OFσ
. (46)

5.2 Results and analysis of the proposed methods

In this section, we study the computational performance of the proposed Lagrangian
approaches and evaluate the impact of the SISC inequalities introduced in Proposi-
tion 2. For this purpose, we compare the following computational experiments:
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1. M: MIP solver Cplex to solve FL-CLSDw
SCF introduced in Section 3;

2. LR: Lagrangian relaxation approach (without SISC);
3. LRSISC : Lagrangian relaxation approach with SISC;
4. LD: Lagrangian decomposition scheme (without SISC); and
5. LDSISC : Lagrangian decomposition scheme with SISC.

To ensure a fair comparison, we fixed the maximum running time to 3,600 seconds
for all considered solution methods.

For each experiment and class of instances, Table 2 presents the obtained average
gap (Ave%), best gap (Best%), worst gap (Worst%), the variance of the gaps (Var%),
and the average running time (Time). For the Lagrangian approaches, the table also
presents the average number of performed iterations (It).

From the results presented in Table 2, we observe that for small-sized test instances
(classes 1 and 2), the high-performance MIP solver Cplex (experiment M) was able
to find optimal solutions for all test instances very quickly. For the same instances,
approaches LRSISC and LDSISC found mostly optimal solutions, albeit significantly
slower than Cplex. Moreover, for these instances, LR and LD approaches performed
poorly.

On the other hand, for medium to large-sized test instances (classes 3, 4, and 5),
we observe that the Lagrangian approaches with SISC constraints (i.e., LRSISC and
LDSISC) significantly outperformed the MIP solver in all the performance metrics
used. LRSISC and LDSISC in particular presented lower gap variances (Gvar), indi-
cating a reduction in the observed number of outliers (i.e., difficult test instances with
high gaps). For these classes, LR and LD demonstrated competitive results compared
with the MIP solver performance.

Next, we analyze the impact of the SISC inequalities. Comparing LR to LRSISC

(as well as LD to LDSISC), we observe that the SISC versions presented signifi-
cantly lower average, best, and worst gaps, as well as gap variances, in comparison
to their counterparts without SISC. These results indicate that LRSISC (and likewise
LDSISC) was able to find better feasible solutions and dual bounds. Moreover, the
presence of SISC constraints reduced the occurrence of outliers. However, observing
the average number of performed iterations (IT) and the average running times (RT),
we conclude that the iterations of SISC versions are more computationally expensive
than those of their respective counterparts. This stems from the presence of SISC con-
straints making the lot sizing part of the Lagrangian sub-problem more challenging.
However, this slower execution is aligned with high-quality bounds. Therefore, SISC
were highly effective in improving both proposed Lagrangian procedures.

Figure 1 presents the performance profiles of the considered approaches (accord-
ing to Dolan and Moré (2002)): the x-axis presents the relative deviation from the
minimum observed objective function value, and the y-axis presents the percentage
of test instances. For each relative deviation θ, we associate the percentage of test
instances for which the deviation from the obtained objective function value to the
minimum observed objective function value is less than or equal to θ. We note that
LR and LD were able to find the best objective function values for about 10% of the
test instances, while M and LDSISC did for about 40% and LRSISC did for about
60% of test instances. Moreover, LRSISC and LDSISC performed best with maximum
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Table 2 Results obtained for the MIP solver and the proposed Lagrangian heuristics.

Class 1 Class 2 Class 3 Class 4 Class 5 Average

M

Ave% 0.00 0.00 12.51 9.54 10.89 6.59
Best% 0.00 0.00 1.09 2.28 4.70 1.61
Worst% 0.00 0.00 41.32 18.85 21.74 16.38
Var% 0.00 0.00 109.98 25.95 25.80 32.35
Time 66 352 3600 3600 3600 2243

LR

Ave% 3.52 1.42 14.96 8.27 11.01 7.84
Best% 0.00 0.00 1.10 2.65 4.06 1.56
Worst% 31.19 5.94 67.02 16.23 57.25 35.53
Var% 47.75 3.90 323.17 11.97 138.45 105.05
It 100 100 64 44 33 68
Time 695 2760 3600 3600 3600 2851

LRSISC

Ave% 0.13 0.17 6.94 5.04 5.13 3.48
Best% 0.00 0.00 0.97 1.46 1.96 0.88
Worst% 1.35 1.30 23.69 9.42 9.11 8.97
Var% 0.10 0.09 27.39 6.36 4.13 7.61
It 100 100 31 16 13 52
Time 775 3230 3600 3600 3600 2961

LD

Ave% 2.10 1.49 14.69 10.27 9.82 7.67
Best% 0.01 0.01 1.10 2.65 4.32 1.62
Worst% 9.34 5.93 62.01 32.47 22.60 26.47
Var% 5.59 3.26 291.98 42.48 24.65 73.59
It 99 55 32 21 13 44
Time 2674 3600 3600 3600 3600 3415

LDSISC

Ave% 0.13 0.19 7.10 5.33 5.41 3.63
Best% 0.00 0.01 0.97 1.61 2.18 0.95
Worst% 1.35 1.30 23.27 10.18 9.78 9.18
Var% 0.09 0.09 30.23 7.49 4.58 8.50
It 96 45 12 11 10 35
Time 3018 3600 3600 3600 3600 3484

Ave%/Best%/Worst% present the average/best/worst gaps, respectively; Var% is
the variance of the obtained gaps; It is the average number of performed iterations;
and Time is the average running time.

deviations less than 1.05, followed by M with around 1.2, and LR and LD both above
1.5.

Figure 2 presents the obtained average GAPs against the observed average run-
ning times, considering all test instances, for the analyzed methods. Firstly, we observe
that in the absence of SISC constraints, the Lagrangian approaches, LR and LD, were
not able to outperform M. Secondly, concerning the quality of the obtained solutions,
LRSISC and LDSISC outperform the other considered approaches, presenting signif-
icant smaller GAPs. The great performance of the SISC constraints is due to the
high quality of the dual solutions obtained in the lot sizing part of the Lagrangian
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Fig. 1 Comparing the performance of the Lagrangian heuristics and the MIP solver.

sub-problems (LC(λ, α) and LCLD(β) for LRSISC and LDSISC , respectively). More
specifically, SISC constraints allow the consideration of realistic capacity constraints
without linking the lot sizing and scheduling sub-structures. This fact avoids produc-
ing infeasible lots and enables the determination of good and feasible patterns for
assembling the production lines. Therefore, as the feasibility procedure fixes the dual
decisions about assembling the lines, high-quality feasible solutions are built. It is
also important to note that the consideration of SISC constraints did not significantly
increase the running times.

Finally, we also observe that M presented the lowest average running time. This fact
occurred due to the great performance of M approach for the small-sized test instances
from classes 1 and 2. For these classes, M quickly found the optimal solutions. We
observed that LRSISC and LDSISC were also able to find optimal solutions for classes
1 and 2, however, these methods spent much more time for proving the optimality of
the solutions, i.e., the dual bounds progress more slowly than in approach M for these
small test instances.

5.3 Comparison with methods from the literature

In this section, we compare the performance of the most promising Lagrangian
approach proposed in this paper (LRSISC) with the methods established in the litera-
ture for the LSP-PLSR. More specifically, we analyze the relax-and-fix heuristic (RFH)
of Soler et al (2021b), and the decomposition-based constructive heuristic (D), the
local branching (LB), and the fix-and-optimize (FO) heuristics of Soler et al (2021a).
As heuristic approaches do usually not offer dual bounds, we used the dual bounds
obtained in this paper to compute the gaps for all methods. The results are presented
in Table 3 and Figure 3.

In Figure 3, for each method in consideration, we present the box-plot of the gaps
obtained for all test instances. We observe that for RFH and LRSISC , the first quartile
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Fig. 2 Relation between average GAPs (Ave%) and average running times (Time).

was equal to zero, indicating that optimal solutions were obtained for at least 25
test instances. On the other hand, the first quartiles for approaches D, LB, and FO
were 0.44%, 0.33%, and 0.27%, respectively. LRSISC presented the smallest median
(2.82%), followed by D (4.06%), RFH (4.47%), FO (4.55%), and LB (4.61%). For all
solution methods, we identify two outliers, corresponding to the two most challenging
test instances from class 3. For these instances, LRSISC provided the smallest gaps
and consequently better feasible solutions than other methods.

Comparing the results reported in Table 3 with those observed for LRSISC

(Table 2), we note that, for classes 1 and 2, RFH obtained better average gaps and
consequently better feasible solutions. For these instances, the decomposition-based
heuristic (D) presented the lowest running times. On the other hand, for medium to
large-sized test instances (classes 3, 4, and 5), LRSISC was able to find better feasible
solutions than all the other methods in consideration. Moreover, LRSISC presented
the lowest gap variance (Var%) indicating that, for each class of instances, the solution
performance is more stable and less volatile.

In general, we conclude that LRSISC outperforms the methods from the literature
concerning the quality of the obtained feasible solutions. Finally, LRSISC has the
additional significant advantage that it is also able to provide dual bounds, while the
heuristic approaches from the literature do not offer this.

5.4 Sensitivity analysis

To conclude our computational study, we present a sensitivity analysis to study the
impact of changing some key parameter values. Due to the high computational time
required to solve all test instances in a range of scenarios, this study is conducted using
5 randomly selected test instances from each class, totaling 25 test instances. The
considered methods are the model (M), the Lagrangian relaxation approach (LR), and
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Fig. 3 Box-plots of obtained gaps.
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the Lagrangian relaxation approach with SISC constraints (LRSISC). The maximum
running time was fixed in 3600 seconds for all experiments.

5.4.1 Impact of the setup costs

The original test instances, described in section 5.1, consider the existence of setup
costs proportional to the setup times. This assumption is based on the packaged meat
production system. In this production environment, most setup procedures consist of
cleaning machines and tools, requiring the utilization of chemical products and abun-
dant water. Therefore, the considered setup costs represent the cleaning products and
water consumption costs. However, we observe that in other production environments,
it may be difficult to estimate the setup costs, because these mainly represent the
opportunity cost of the setup times. Therefore, we perform additional computational
tests considering different setup cost values to investigate the performance of the
methods proposed in this paper to deal with problems arising in different industries.

More specifically, we consider the following scenarios:

• sclij = 0,∀l, i, j, i.e., without setup costs. This scenario is considered to represent
systems with ample production capacity, in which the opportunity cost of additional
setups is essentially zero;

• sclij = stlij ,∀l, i, j. This scenario represents systems with low opportunity costs of
the setup time and/or environments with tangible setup costs; and

• sclij = 2stlij ,∀l, i, j. This is the original scenario observed in some Brazilian meat
companies, as discussed earlier.

Tables 4, 5, and 6 present the computational results considering approaches M,
LR, and LRSISC , respectively. In these tables, columns Ave% and Time present the
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Table 3 Results obtained for the methods from the literature.

Class 1 Class 2 Class 3 Class 4 Class 5 Average

RFH

Obj 50974 63628 131224 194178 251472 138295
Ave% 0.09 0.05 9.69 7.36 13.19 6.07
Best% 0.00 0.00 0.97 1.55 4.06 1.32
Worst% 1.35 1.56 34.73 13.94 24.43 15.20
Var% 0.09 0.17 62.34 15.99 32.33 22.19
Time 48 3600 3600 3600 3600 2890

D

Obj 51111 64089 128768 193358 236797 134825
Ave% 0.34 0.74 8.40 7.01 7.99 4.90
Best% 0.01 0.01 1.66 3.13 2.64 1.49
Worst% 2.38 3.62 25.41 14.15 14.74 12.06
Var% 0.31 0.82 34.35 11.11 8.68 11.05
Time 19 88 3416 3481 3544 2110

LB

Obj 51032 63938 128969 194126 235898 134793
Ave% 0.19 0.52 8.55 7.36 7.66 4.86
Best% 0.01 0.01 1.66 3.55 3.36 1.72
Worst% 1.49 2.10 25.41 14.25 13.47 11.34
Var% 0.13 0.30 34.12 11.02 6.92 10.50
Time 1611 3455 3613 3614 3428 3144

FO

Obj 51017 63829 128611 193731 235752 134588
Ave% 0.18 0.38 8.32 7.20 7.60 4.74
Best% 0.00 0.00 1.65 3.55 3.36 1.71
Worst% 1.05 1.56 25.04 14.15 13.44 11.05
Var% 0.11 0.17 33.36 9.52 6.83 10.00
Time 686 3600 3600 3600 3600 3017

Note: Obj presents the average objective function values.

average GAPs and the average running times, respectively, while columns Obj, Scost,
Hcost, Bcost, and Acost present the average of the obtained objective function values,
setup costs, inventory holding costs, backlogging costs, and costs to assemble the
production lines, respectively.

Considering the M approach, Table 4 evidenced that, for small and medium-sized
test instances from classes 1, 2, and 3, the problem becomes more difficult as the
setup costs increase. However, for large-sized test instances from classes 4 and 5, the
problem becomes more difficult without setup costs.

For the LR approach, Table 5 shows that, for instances from classes 1 and 2, better
feasible solutions were obtained using higher setup costs (sc = 2st). On the other
hand, for classes 4 and 5, smaller average GAPs were observed in the absence of setup
costs. Analyzing the LRSISC approach, Table 6 shows that, for all classes, smaller
GAPs were obtained when the setup costs were not considered.

Comparing the considered solution approaches, LRSISC was able to provide better
feasible solutions for instances from classes 3, 4, and 5 and for all considered setup cost
values. For classes 1 and 2, LRSISC and M found the same feasible solutions for all
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considered setup cost values, however LRSISC spent more computational time than
M to solve these small-sized test instances. We observe that LRSISC is a promising
solution approach to deal with problems with different setup cost values. On average,
this approach outperforms M and LR for all considered scenarios.

Finally, we observe that the structure of the obtained feasible solutions slightly
varies when the setup costs change. In general, when the setup costs increased, the
inventory holding costs slightly increased and the costs to assemble the production
lines decreased slightly. This fact indicates that when setup costs are relevant, the lot
sizes increase to reduce the number of setups and the number of periods in which the
production lines need to be assembled.

Table 4 Sensitivity analysis with different setup cost values using approach M.

M

Ave% Time Obj Scost Hcost Bcost Acost

C1
sc = 0 0.01 15 40068 0 20744 19324 0
sc = st 0.01 46 44045 3957 20765 19324 0
sc = 2st 0.01 56 47966 7790 20848 19328 0

C2
sc = 0 0.01 104 51766 0 26330 25436 0
sc = st 0.01 255 59093 7248 26407 25438 0
sc = 2st 0.01 316 66231 13975 26974 25282 0

C3
sc = 0 9.72 3600 118648 0 61522 57126 0
sc = st 16.02 3600 137280 8570 67076 61634 0
sc = 2st 19.11 3600 152686 17000 65719 69968 0

C4
sc = 0 17.63 3600 194472 0 62328 72582 59563
sc = st 13.52 3600 196658 8273 64080 64434 59870
sc = 2st 13.74 3600 206974 15913 66416 66396 58249

C5
sc = 0 13.22 3600 222852 0 71803 70374 80674
sc = st 8.43 3600 223868 9541 71689 63052 79585
sc = 2st 9.47 3600 236069 18496 74088 65322 78163

Ave
sc = 0 8.12 2184 125561 0 48545 48968 28047
sc = st 7.60 2220 132189 7518 50003 46776 27891
sc = 2st 8.47 2234 141985 14635 50809 49259 27282

5.4.2 Impact of the minimum lot sizes

In the proposed model, constraints (3) introduce minimum production lot sizes. More
specifically, when a setup is performed for a product j, at leastmj units of this product
should be produced. This requirement was proposed by Fleischmann and Meyr (1997)
in the context of the simultaneous lot sizing and scheduling problem to avoid setup
state changes without product changes. More specifically, when the setup costs and/or
setup times do not satisfy the triangle inequality, i.e., there exist products i, j, and k
such that sclik+sclkj < sclij and/or stlik+stlkj < stlij , for some production line l, the
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Table 5 Sensitivity analysis with different setup cost values using approach LR.

LR

Ave% Time Obj Scost Hcost Bcost Acost

C1
sc = 0 1.75 421 40755 0 20555 20200 0
sc = st 1.45 606 44670 3972 20896 19802 0
sc = 2st 1.07 658 48474 7805 20691 19978 0

C2
sc = 0 4.00 1372 54022 0 25608 28414 0
sc = st 5.16 2583 61371 7240 25714 28416 0
sc = 2st 2.37 2896 67943 14200 26025 27718 0

C3
sc = 0 14,04 3600 128558 0 60532 68026 0
sc = st 17.81 3600 139492 8511 59255 71726 0
sc = 2st 15.09 3600 142137 17038 60137 64962 0

C4
sc = 0 6.30 3600 179972 0 57744 61622 60606
sc = st 12.04 3600 195184 8088 59138 67472 60486
sc = 2st 11.53 3600 201686 15894 59528 66822 59441

C5
sc = 0 5.42 3600 210563 0 65499 64382 80681
sc = st 7.81 3600 222504 9436 66746 65682 80640
sc = 2st 9.14 3600 235440 18473 69210 68496 79260

Ave
sc = 0 6.30 2519 122774 0 45987 48529 28257
sc = st 8.86 2798 132644 7449 46350 50620 28225
sc = 2st 7.84 2871 139136 14682 47118 49595 27740

optimal solution can present a setup for the intermediate product k without effective
production of this product. Menezes et al (2011) observed that non-triangular setup
times or costs are observed in the chemical, dyeing, and pharmaceutical industries,
requiring minimum lot sizes to be imposed.

In the application studied in this paper, setup costs and times usually satisfy the
triangle inequality. Therefore, in the original test instances, we adopted small minimum
lot sizes (mj = 2,∀j). To study the impact of this parameter, we performed additional
computational experiments relaxing this requirement, i.e., adopting mj = 0,∀j. We
observe that as the used test instances have triangular setup costs and times, the same
optimal solutions were obtained in both experiments. However, slight differences were
observed in the computational performance of the proposed methods.

Considering the M approach, optimal solutions were obtained for all instances
from classes 1 and 2 for both considered minimum lot sizes. Moreover, no significant
differences were observed in the computational performance for these classes. For class
3, an average GAP of 19.56% was obtained for m = 0, and 19.11% for m = 2. Similar
computational performances were observed for class 4. For class 5, average GAPs of
8.63% and 9.47% were observed for m = 0 and m = 2, respectively. Considering all
test instances, the M approach presented the same running time for both adopted
minimum lot sizes and similar average GAPs of 8.43% and 8.47% for m = 0 and
m = 2, respectively.
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Table 6 Sensitivity analysis with different setup cost values using approach LRSISC .

LRSISC

Ave% Time Obj Scost Hcost Bcost Acost

C1
sc = 0 0.00 213 40068 0 20744 19324 0
sc = st 0.01 696 44045 3956 20764 19324 0
sc = 2st 0.01 749 47966 7780 20858 19328 0

C2
sc = 0 0,00 1096 51764 0 26328 25436 0
sc = st 0.01 3252 59094 7250 26406 25438 0
sc = 2st 0.12 3389 66305 14160 26709 25436 0

C3
sc = 0 3.94 3600 114894 0 59926 54968 0
sc = st 7.20 3600 123521 8596 60089 54836 0
sc = 2st 8.63 3600 132075 17051 60159 54864 0

C4
sc = 0 2.52 3600 172983 0 57836 54398 60749
sc = st 5.36 3600 181257 8285 57844 54380 60749
sc = 2st 5.85 3600 189510 16335 58201 54416 60557

C5
sc = 0 1.89 3600 202709 0 66286 55512 80912
sc = st 3.49 3600 212277 9565 66315 55686 80710
sc = 2st 3.83 3600 221845 18976 66672 55516 80681

Ave
sc = 0 1.67 2422 116484 0 46224 41928 28332
sc = st 3.21 2950 124039 7531 46284 41933 28292
sc = 2st 3.69 2988 131540 14860 46520 41912 28248

In the LRSISC approach, the average running times observed for class 1 were
698 seconds with m = 0 and 750 seconds with m = 2, representing an increase of
7.5% when minimum lot sizes are imposed. However, optimal solutions were reached
for 4 and 5 test instances for m = 0 and m = 2, respectively. For class 2, similar
performances were observed in both cases. For classes 3 and 5, slightly lower GAPs
were obtained when adopting m = 0. On the other hand, for class 4, average GAPs
of 6.48% and 5.85% were observed for m = 0 and m = 2, respectively. In general, the
minimum lot sizes have a low impact in the LRSISC method. Considering all classes,
the observed average GAPs were 3.64% and 3.69%, while the average running times
were 2981 and 2988 seconds for m = 0 and m = 2, respectively.

The most relevant impact of the minimum lot sizes was observed in the LR
approach. Except for class 5, the method found better feasible solutions for m = 2
than for m = 0. For example, for class 1, the average GAP was 3.37% adopting m = 0
and only 1.07% adopting m = 2. The average running times were similar for this class,
being 631 and 658 seconds for m = 0 and m = 2, respectively. For classes 2 and 3,
slightly smaller average GAPs were obtained for m = 2. In class 4, we observed the
most discrepant average GAPs, being 16.22% for m = 0 and only 11.53% for m = 2.
The absence of minimum lot sizes provides better results only for class 5, where the
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observed average GAPs were 7.98% and 9.14% adopting m = 0 and m = 2, respec-
tively. On average, the obtained GAPs were 9.09% for m = 0 and 7.84% for m = 2,
while the running times were 2860 and 2871 seconds, respectively.

Comparing the proposed methods, for both scenarios, LRSISC outperforms M and
LR concerning the quality of the obtained feasible solutions for classes 3, 4, and 5.
However, for classes 1 and 2, M provided the shortest running times as highlighted ear-
lier. In general, only the LR approach presented significantly different computational
performance without minimum lot sizes.

5.4.3 Impact of the backlogging costs

To study the impact of the backlogging costs on the studied problem, beyond the origi-
nal test instances with bj = 10hj ,∀j we perform computational tests using alternative
backlogging costs. More specifically, we considered two additional configurations,
bj = 5hj ,∀j, and bj = 15hj ,∀j, to represent low, medium, and high backlogging costs.
Table 7 presents the average results observed for the 25 selected test instances.

In all considered approaches, the average GAPs increased when the backlogging
increased, while the running times presented insignificant variations. As observed
in other scenarios, the LRSISC approach significantly outperformed the LR and M
approaches concerning the quality of the obtained feasible solutions. Regarding the
structure of the obtained solutions, we observe that when parameters bj increase, the
holding costs also increase indicating that the production should be anticipated to
avoid high backlogging costs. Moreover, we do not observe significant variations in the
incurred setup costs and costs to assemble the production lines.

Table 7 Sensitivity analysis with respect parameters bj .

Ave% Time Obj Scost Hcost Bcost Acost

M
b = 5h 5.53 2240 114696 14706 47640 24714 27636
b = 10h 8.47 2234 141985 14635 50809 49259 27282
b = 15h 9.38 2229 166635 14695 52120 72304 27515

LR
b = 5h 5.36 2943 113783 14655 44957 26304 27867
b = 10h 7.84 2871 139136 14682 47118 49595 27740
b = 15h 9.61 2857 163957 14648 47773 73732 27857

LRSISC
b = 5h 2.97 3024 110247 14821 44891 22439 28096
b = 10h 3.69 2988 131540 14860 46520 41912 28248
b = 15h 4.24 3029 152769 14857 47043 62571 28298

5.4.4 Impact of the setup times

To conclude this section, we evaluate the impact of changing the setup times, since
they are key parameters for the proposed SISC constraints. Beyond the original setup
times randomly chosen in [15,45], we experiment with setup times increased by 40%
and 80%, ranging in the intervals [21, 63] and [27, 81], respectively. Table 8 presents
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the obtained average results emphasizing parameters to evaluate the computational
performance of the considered methods, with column FS presenting the number of
instances in which at least a feasible solution was obtained.

Firstly, we observe that the problem becomes much more challenging, for all consid-
ered algorithms, when increasing setup times. Secondly, we highlight that concerning
the quality of the obtained solutions, LRSISC significantly outperforms M and LR
for all considered setup times. More specifically, LRSISC provided smaller Gaps and
solutions with smaller costs. Moreover, for setup times in the interval [27, 81], LRSISC

was able to provide feasible solutions for all test instances, while LR found viable
solutions for 22 test instances and M for 19 test instances, respectively. On the other
hand, LRSISC spent slightly longer computational time than M and LR.

In general, the obtained results show that SISC constraints work well for small
to large setup times, allowing viable solutions to difficult problems to be obtained
through a small increase in execution time.

Table 8 Sensitivity analysis with respect parameters stlij .

Ave% Best% Worst% Obj FS Time

st ∈ [15, 45]
M 6.59 1.61 16.38 141985 25 2243
LR 7.84 1.56 35.53 139136 25 2851

LRSISC 3.48 0.88 8.97 131540 25 2961

st ∈ [21, 63]
M 23.56 11.09 36.80 271686 23 2456
LR 14.47 9.87 21.31 162744 25 2860

LRSISC 8.40 5.85 11.93 149293 25 3017

st ∈ [27, 81]
M 39.19 34.39 45.56 476648 19 3070
LR 21.37 17.03 28.58 201229 22 2788

LRSISC 15.60 10.84 20.25 180142 25 3112

6 Conclusion and research perspectives

In this paper, we studied a lot sizing and scheduling problem, which originally stemmed
from the Brazilian food industry. More specifically, the problem considers a produc-
tion environment composed of various production lines sharing some scarce production
resources and also involves sequence-dependent setup times and costs, backlogging,
and perishable products. A mixed integer programming model was used to repre-
sent the problem and Lagrangian-based heuristics were proposed to find high-quality
feasible solutions.

Firstly, we developed a Lagrangian relaxation scheme (LR) that consists of dual-
izing the constraints linking the lot sizing and the scheduling decisions. In this
framework, the relaxed problem was decomposed into a lot sizing sub-problem and a
parallel machine scheduling sub-problem, and the scheduling sub-problem was further
decomposed into single-machine scheduling problems. To improve the quality of the
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obtained bounds, we also develop sequence-independent setup capacity (SISC) inequal-
ities to be considered in the lot sizing part of the Lagrangian sub-problem. Secondly,
we proposed a Lagrangian decomposition scheme (LD) in which identical copies of
the continuous production variables were created and one of these copies was used in
each set of constraints of the original problem. The constraints enforcing the equality
between the original and copy variables were dualized, and the relaxed problem was
also decomposed into a lot sizing sub-problem and various single-machine scheduling
sub-problems. SISC were also employed. In both approaches, we used sub-gradient
optimization to solve the associated dual problems. Finally, a MIP-based feasibility
procedure was proposed to obtain feasible solutions from the dual solutions.

We presented a computational study using a data set previously established in
the literature and composed of 100 test instances, representing small to large-sized
real-world industries. The results indicated that including SISC inequalities was very
effective in improving the quality of the obtained bounds in both Lagrangian schemes.
Our computational experiments also demonstrated that our most effective method, the
LR scheme with SISC, outperforms all the solution methods proposed in the literature
for the specific problem.

We finally consider some potential directions for future work. We believe that there
is further scope to investigate other exact solution approaches to exploit the structure
of the problem. In particular, we plan to explore the use of Benders decomposition,
column generation, and Branch-and-Price algorithms to make further use of decompo-
sition, especially when the problem has further complications. Moreover, we observe
in the literature a trend of considering different components of supply chain manage-
ment in the same mathematical model. Such integrated approaches usually offer better
solutions than the traditional hierarchical approaches. Hence, we plan on extending
the model presented in this paper to consider the distribution planning aspect and
raw material acquisition.
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