
E-Companion
This document contains the supplementary material for the manuscript titled “A Machine Learning

Approach to Solve the E-commerce Box-Sizing Problem.” The contents provide a complementary view

when read with the original manuscript.

EC.1 Comparison of the prior approaches

Table EC.1 Comparison of the prior approaches

Approaches

Criterion Leung et al.
(2008)

Xu et al.
(2008)

Shih Jia Lee
and Thio
(2015)

Brinker and
Gündüz
(2016)

Yueyi et al.
(2020)

Our
Approach

Context B2B B2B B2B B2C B2C B2C

No. of Dimensions 3 3 1 3 3 3

Requires Candidates Yes Yes No Yes Yes No

Number of Candidates
Considered

10 15 Not
Applicable

2040 10 Not
Applicable

Number of SKUs
Considered

3 500 80 4,443 500 200,000

Optimization Criterion Space
Utilization

Space
Utilization

Space
Utilization

Space
Utilization

Total
Costs

Space
Utilization

Optimization
Framework

Genetic
Algorithm

Mathematical
Programming

Mathematical
Programming

Mathematical
Programming

Mathematical
Programming

Machine
Learning

ec1

ec2

EC.2 Notations

Table EC.2 Notations table

Notation Meaning

n Number of SKUs.

D Set of SKUs.

(li,bi,hi,di) A tuple representing the length, breadth, height, and expected demand of ith SKU.

P Set of packaging boxes.

(L j,B j,H j) A tuple representing the length, breadth, height of the jth packaging box.

K Number of Boxes (|P|).
xi j Binary decision variable that indicates whether SKU i is assigned to box j.

s0 A set of K packaging boxes represented as a matrix. Generated by the first stage as initial solution.

π,πθ,πθ(a|s) Neural Network model or policy parameterized by θ.

k Number of partitions of the SKU data space (= K)

t Time step in the agent game interaction process.

st A set of K packaging boxes represented as a matrix, generated at the tth time step.

at Action taken by the agent at time step t.

P(st+1|st ,at) Probability of reaching the next state, st+1 from the current state st when the agent takes action at .

rt+1 = r(st ,at , st+1) Reward function that assigns a scalar value for generating st+1 from st , by taking action at .

PF(st) Packaging factor of a solution st .

ε Clipping value for PPO.

Aπθl (s,a) Advantage estimate of taking action a from s from state s under the policy πθl .

β User-defined parameter to specify weightage in the PAAS method.

ci j Cost of placing SKU i in box j.

y j Indicator variable specifying whether box j is selected.

δl
i j,δ

b
j ,δ

h
i j Difference between length, breadth, height of the SKU i and box j

ec3

EC.3 Neural network architecture

Figure EC.1 Policy Network Architecture

EC.4 Algorithms

Algorithm 1: Algorithm to generate an initial solution
Input : K,D

Output: P

P←{};

Represent each SKU as a point in 3D space with length, breadth, & height dimensions ;

Apply k-means algorithm to generate K partitions ;

/* for each partition, find the maximal SKU */ ;

for i=1,2,3...K do
(lmax,bmax,hmax)← ((max({lu}v

u=1)), (max({bu}v
u=1)), (max({hu}v

u=1))) ;

P← P∪ (lmax,bmax,hmax)
end

ec4

Algorithm 2: Learning algorithm for training the neural networks
Input : θ0,φ0, z, ε, total steps

Output: θl+1,φl+1

step count← 0; B← 0; l← 0 ;

while step count < total steps do
reset game environment and read the initial game state s ;

for step = 1,2,3,...,z do
sample action a from the distribution πθl (a|s) ;

pass action a to the environment, observe the next state s′ and reward r ;

push (s,a, r, s′) into B, increment step count ;

if game has ended then
reset game environment and read the initial game state s ;

else
s← s′ ;

end
end

retrieve rewards and calculate advantage estimates from B ;

calculate θl+1 maximizing the PPO objective via Adam ;

calculate φl+1 minimizing value network MSE loss via Adam ;

l← l + 1 ;

clear B ;
end

Algorithm 3: Policy assisted active search algorithm (PAAS)
Input : s0,πθl+1 ,β,n rollouts,n steps,n iter

Output: s∗

s← s0; f ← PF(s0) ;

s∗← s; f ∗← f ;

for i=1,2,...,n iter do
calculate WPFs from all child nodes using β,πθl+1 , for n playouts with n steps ;

observe the child node with the lowest WPF , say s′ ;

if PF(s′)< f ∗ then
s∗← s′; f ∗← PF(s′) ;

end

s′← s
end

ec5

EC.5 Parameters for training the neural networks

The experiments are conducted on an HPC instance with 24 (Intel Xeon 6140) cores and 192GB RAM. Note

that the training time majorly depends on the generation of samples from the designed RL environment. Our

environment can generate 500 to 2500 samples per second, and our training requires 5 million to 10 million

samples based on the number of SKUs and assortment size. This translates to a training time of 34 minutes

on a 2000 SKU, 10-box assortment problem. On the other hand, the training time reaches a little less than

9 hours on 150K SKU, 40-box assortment problem. We also found that the training times are roughly the

same on the M1 architecture MacBook Pro laptops. Table EC.3 shows the set of parameters that we found

ideal for all the problem and SKU sizes for training the neural networks. In the PAAS method, we use 20

rollouts while looking 50 steps ahead with β = 0.99,n iter = 3000.

Table EC.3 Parameters
Assortment
size (K)

Parameters Policy Network Value Network

10 γ = 1, lr = 10−4, z = 4096, bs = 512,
ε = 0.05, activation = tanh,
total steps = 5x106

30,72,72,61 30,72,72,1

20 γ = 1, lr = 10−4, z = 6144, bs = 512,
ε = 0.05, activation = tanh,
total steps = 5x106 60,120,120,121 60,120,120,1

30 γ = 1, lr = 10−4, z = 8192, bs = 512,
ε = 0.05, activation = tanh,
total steps = 5x106 90,196,144,108,181 90,196,144,108,1

40 γ = 1, lr = 10−4, z = 10240, bs = 512,
ε = 0.045, activation = tanh,
total steps = 10x106 120,272,232,196,241 120,272,232,196,1

EC.6 Advantage Estimation

The clipped PPO objective is scaled by Aπθl (s,a) in Equation 4. More precisely, Aπθl (st ,at) is the advantage

estimate of taking action at at state st . It is calculated using the Equation (EC.1).

Aπθl (st ,at) = r(st ,at , st+1)+ γV πθl (st+1)−V πθl (st) (EC.1)

Here, r(st ,at , st+1) is the reward observed from the environment when action at is taken from st . These

values are observed during the agent environment interaction process. The discount factor, γ, adjusts the

influence of future rewards on current estimates. It takes a value between 0 to 1. A lower value makes the

estimate short-sighted as it reduces weight on future rewards, while a larger value makes the estimates far-

sighted as they account for future rewards that can arise from the next state st+1. V πθl (st) is the expected

ec6

return (cumulative sum of rewards) that can be yielded by following the policy πθl from st . Similarly,

V πθl (st+1) is the expected return from the next state, st+1. A neural network with a similar architecture as

the policy network (EC.3) is used to estimate the values. As shown in Algorithm-2 (EC.4), the network is

trained along with the policy network to reduce the mean squared loss between predicted values and value

targets. The value targets are computed using the expression: r(st ,at , st+1)+ γV πθl (st+1). For further details,

the reader can refer to Schulman et al. (2017).

EC.7 Illustration of the three-stage framework

Figure EC.2 Three Stage Illustration

In this section, we illustrate the three-stage optimization framework. Figure EC.2 shows the inputs and

outputs of the respective stages. The inputs to stage 1 are the SKU dataset, D, and the required number of

boxes, K. As shown in the figure, the SKU dataset consists of the length, breadth, height, and demand of the

SKUs that must be covered. Using these inputs, the stage-1 generates an initial solution s0. Since K = 3 in

the illustrated figure, we can observe a 3×3 matrix representing the initial solution. The initial solution, s0,

and the SKU dataset are passed to stage 2 for learning an improvement policy through RL. The output of the

ec7

Figure EC.3 Iterative demonstration

second stage is a neural network policy that can improve the generated initial solution s0. We can directly

apply the learned policy and generate a final solution; however, by searching as described in stage 3, the

performance of the final solution can be improved significantly. This is because stage 3 serves as a policy

ec8

improvement operator and improves the learned policy, thereby generating a better final solution. The stage-

3 inputs are the SKU dataset D, initial solution s0, and the learned RL policy π. Using these inputs, stage 3

generates a final solution s∗. Figure EC.3 illustrates a few iterations showing how s0 is transformed into s∗

in stage 3. In the first iteration, the procedure starts the search at s0, expands all the child nodes, and, from

each child node, employs the neural network policy to simulate the best possible future solutions. Based on

the PFs of the future solutions, WPF scores are assigned to the child nodes in consideration. Once all child

nodes are assigned with WPF scores, the child node with the lowest WPF is selected. In the next iteration,

the search is again started from the selected child node. This process is repeated until the computational

budget is exhausted and the child node that has the lowest PF encountered in the search path is returned as

the final solution.

EC.8 Technical Discussion of Formulations

In this section, we briefly discuss some technical aspects of the MIP formulations presented in Sections 5.1

and 5.2, including how they relate to the problem we are attempting to solve. We omitted this discussion

from the main body of the paper in order to avoid disruption of the flow and practical focus of the paper,

even though this may be of interest to some readers.

Firstly, we discuss the MIP used by the company as presented in Section 5.1. We observe that the size of

the set P primarily depends on the discretization interval used (which is under our control) and the maximum

and minimum dimensions for length, breadth and height of the SKUs. Let lmin,bmin,hmin be the minimum

dimensions for SKUs (in a similar fashion to lmax,bmax,hmax) and ε > 0 be the size of the discretization

interval used, then the size of P is simply

lmax− lmin

ε

bmax− bmin

ε

hmax− hmin

ε

If we let ε > 0 to be finite but sufficiently small, one may argue that this is the ultimate problem to be

solved, with the disadvantage of |P| becoming extremely large (but still finite). We refer to this problem as

the ideal problem, denoted by IDE. In order to have a manageable problem to solve (notwithstanding the

simple practicality of packaging sizes not being able to be very finely cut), the company’s approach would

dictate the use of a discretization interval, say δ, which is significantly larger than ε, hence only providing

an approximation to the ideal problem (but with a much more manageable size of P). We note the following

result for this approximation, which we refer to as the company’s problem, denoted by COM.

PROPOSITION EC.1. Let OPT be the value of the optimal solution for the ideal problem. Then, the com-

pany’s problem provides a solution with a value at most

OPT ×
(

1+ δ(
1

hmin
+

1
bmin

+
1

lmin
)+ δ

2(
1

bminhmin
+

1
lminhmin

+
1

lminbmin
)+

δ3

lminbminhmin

)

ec9

We note that this approximation ratio can be adjusted by the user-controlled δ as needed. For example,

even if δ is set to a rather high value of at most half of any of the minimum dimensions, this provides a

guarantee of 2.375 times OPT . Next, we present the proof for this result.

PROOF. Using conventional notation, let ∗ denote an optimal solution. Then, let (L∗i j,B
∗
i j,H

∗
i j) indicate the

optimal length, breadth and height for active (i, j) pairs (i.e., x∗i j = 1) in the optimal solution of IDE. Since

COM uses a less granular grid with intervals of δ, at the worst case, there will be a feasible solution available

at (L∗i j + δ,B∗i j + δ,H∗i j + δ) for each SKU i. It is easy to observe that

OPT =∑
i∈D

diL∗i jB
∗
i jH

∗
i j

On the other hand, the objective function value of COM, denoted by OPT , will be at worst:

OPT ≤∑
i∈D

di(L∗i j + δ)(B∗i j + δ)(H∗i j + δ)

= OPT +∑
i∈D

di

(
δ(L∗i jB

∗
i j +L∗i jH

∗
i j +B∗i jH

∗
i j)+ δ

2(L∗i j +B∗i j +H∗i j)+ δ
3
)

= OPT +∑
i∈D

diL∗i jB
∗
i jH

∗
i j

(
δ(

1
H∗i j

+
1

B∗i j
+

1
L∗i j

)+ δ
2(

1
B∗i jH∗i j

+
1

L∗i jH∗i j
+

1
L∗i jB∗i j

)+
δ3

L∗i jB∗i jH∗i j

)

≤OPT +OPT
(

δ(
1

hmin
+

1
bmin

+
1

lmin
)+ δ

2(
1

bminhmin
+

1
lminhmin

+
1

lminbmin
)+

δ3

lminbminhmin

)
The first equation is simply polynomial expansion, the second equation rewrites the expression, and the

final inequality follows the simple fact that each of the dimensions is bigger than or equal to the minimum

dimensions. □

Finally, it is also important to remark that IDE and COM are pure binary integer programs, and their

objective functions explicitly minimize PF , which is a key decision criteria for the company, despite not

considering a continuous range of values for box dimensions. As briefly discussed earlier in the paper,

there are various practical strategies such as preprocessing that enable an effective discretization and hence

computational efficiency.

Next, we briefly discuss the alternative MIP formulations of Section 5.2, particularly focusing on the first

formulation based on using 1-norm, which we will refer to as ALT1. Despite considering a continuous range

of values for box dimensions, ALT1 does not explicitly minimize PF unlike IDE or COM, as this would

require a highly nonlinear objective function due to the variable nature of box dimensions. We first remark

the following rather trivial result.

COROLLARY EC.1. ALT1 is equivalent to solving the following problem, which we refer to as ALT 1:

min{ ∑
i∈D, j∈P

di(L j +B j +H j)xi j|(14)− (16), (20)}

ec10

ALT 1 can be easily obtained by substituting equations of the form δl
i j = (L j − li)xi j (and likewise for

breadth and height) to ALT1 in order to drop the constraints (26)-(29), and then by removing the constant

part of the objective function. The proof of this result is straightforward, as one can easily check that a

solution valid for one problem is also valid for the other, and vice versa. Finally, we also note that despite

being nonlinear, this problem can be easily linearized due to its bilinear nature, simply by defining a new

variable Zi j to replace (L j +B j +H j)xi j in the objective function, and by adding new constraints of the form

Zi j ≥ (L j +B j +H j)+ (xi j− 1)(lmax + bmax + hmax) to the problem.

We observe that if one changes the objective function of ALT 1 to the nonlinear expression

∑i∈D, j∈P di(L jB jH j)xi j, the resulting MINLP will not only explicitly minimize PF (and hence be an ideal

problem itself), but will also have the closest relationship to the IDE as δ approaches zero. However, in

computational terms, this MINLP will be extremely challenging to solve, even for very small problem sizes.

Therefore, the linear problem considered in ALT1 (or ALT 1) will provide practically useful alternatives.

Finally, we remark that the second alternative MIP formulation of Section 5.2, which is based on using

inf-norm, does not provide any useful theoretical bound or guarantee for ALT1, despite having the same

solution space as ALT1. However, as observed in computational results in Section 6.4, this formulation is

significantly easier to solve than ALT1 and provides competitive solutions in practice.

EC.9 Problem instance details

Table EC.4 Problem instance specifications

Dataset Number of SKUs Maximum Length Maximum Breadth Maximum Height Number of Box Candidates

D11 2000 2000 11.5 11.0 10.2 1342

D12 2500 2500 12.5 12.0 11.9 1808

D13 3000 3000 13.0 13.0 12.2 1872

D14 3500 3500 14.0 13.4 12.6 2432

D15 4000 4000 15.0 14.5 13.6 3096

D15 4500 4500 15.5 15.4 14.2 3868

D16 5000 5000 16.5 15.9 15.8 4672

D18 5500 5500 17.5 16.9 15.8 5668

D18 6000 6000 18.5 18.0 15.8 6776

D20 6500 6500 20.0 19.5 16.0 8080

D21 7000 7000 21.0 20.3 16.0 9412

D22 7500 7500 21.5 20.9 16.0 10772

Table EC.4 shows the datasets used in the experiments discussed in Section 6. Each row identifies a

unique demand dataset and presents the specific details. Here, the column “number of SKUs” shows the

number of SKUs present in the respective dataset. “Maximum Length” reports the maximum length of all

SKUs present in the dataset. “Maximum Breadth” & “Maximum Height” show similar dimensional values.

“Number of Box Candidates” reports the total number of box candidates that can cover the SKUs present

in the dataset.

ec11

EC.10 Comparison with Meta-heuristics

We compare the performance of our approach with two standard meta-heuristic approaches: tabu search

(TS) and simulated annealing (SA). Both algorithms iteratively search the local neighborhood until an opti-

mal solution is found. TS exhaustively searches the whole neighborhood while SA tests a single neighbor

randomly. Refer to Chopard and Tomassini (2018) for a review. These methods cannot directly generate the

box sizes, we use them to improve our stage-1 solution. As discussed in stage 3 of the optimization frame-

work, the improvement problem can be set up as a tree-search, where the initial solution (from stage 1)

becomes the root node, and child nodes represent the possible transformations. Once such a tree is formed,

improving the solution translates to selecting a child node at each level while traversing the tree depth. We

choose the child node based on the respective heuristic rules in the meta-heuristic approaches. In TS, the

best child node not present in the tabu list is selected, while SA randomly picks a child node and selects if

it improves the solution. It can also select a child that worsens the solution with a small probability based

on the metropolis rule. Please refer to Chopard and Tomassini (2018) for a thorough understanding. The

packaging factors of child nodes are used as fitness or objective function values. At every level, the child

node selected in the previous iteration serves as a parent node, and the selection process is repeated till the

termination condition is reached. We terminate both approaches after they stop improving the solution for

1000 iterations. The best solution encountered in the search path is returned as the final solution.

Table EC.5 Packaging factors (PFs) of the solutions generated by meta-heuristic approaches

Assortment Size 10 20 30 40 50 60 70 80 90 100
Tabu Search 2.968 2.358 2.163 2.028 1.947 1.925 1.882 1.830 1.793 1.769

Simulated Annealing 3.391 2.645 2.461 2.289 2.168 2.081 2.057 1.995 1.933 1.894
PAAS 2.930 2.305 2.056 1.959 1.867 1.813 1.777 1.764 1.717 1.699

In our experiments, we generate box assortments of various sizes (ranging from 10 to 100) to cover

the SKUs present in Dreal using the two meta-heuristics and the proposed approach. All the methods start

from the same initial solution generated by the stage-1 algorithm for generating respective assortments.

Table EC.5 presents the packaging factors of box assortments generated by each approach. The proposed

approach (PAAS) performs better than the meta-heuristic approaches. On average, the solutions generated

by PAAS are 4.1% better than those generated by tabu search and 15.1% better than those generated by

simulated annealing. This is because the RL policy is far-sighted in that it selects child nodes that can result

in better future solutions, while the meta-heuristics do not have a global view of the search tree and rely

on the current child nodes alone. Among the meta-heuristic approaches, tabu search performs better than

the simulated annealing approach by 10.6% on average. This is because the SA method randomly selects a

solution and can accept worsening moves. Given the vast solution space, once it accepts a few worsening

ec12

moves, improving the solution with random moves becomes challenging. On the other hand, the tabu search

evaluates all child nodes and stays near the best solutions in every iteration, resulting in a significantly better

final solution.

EC.11 Comparison with ML-based methods

In this section, we compare the performance of the proposed framework against existing ML-based meth-

ods. In particular, we leverage the dimensionality reduction methods from unsupervised learning. Dimen-

sionality reduction methods such as PCA (principal component analysis) compress the data from a high-

dimensional to a low-dimensional space by retaining relevant information and discarding redundant infor-

mation. Specifically, they combine or transform a given set of dimensions to generate a smaller set of dimen-

sions. For instance, consider a dataset that contains m records and d dimensions; dimensionality reduction

methods transform this dataset into a new dataset with m records and d′ dimensions. Here, d′ < d. These

methods try to preserve the structure and variability of the original dataset with a smaller set of dimensions

in the transformed dataset. We leverage this compression property to generate box dimensions.

We consider three dimensionality reduction methods for this exercise: principal component analysis

(PCA), locally linear embedding (LLE), and t-distributed stochastic neighbor embedding (TSNE). We have

chosen these methods for their superior performance on many ML tasks. PCA is known to perform well

on natural datasets (Van Der Maaten et al. 2009); however, LLE is known to outperform PCA in certain

applications (Bartenhagen et al. 2010). TSNE is a relatively recent method known for handling complex

data very well (Van der Maaten and Hinton 2008). Other methods, such as Isomap and Kernel PCA, could

not be included since they are memory intensive and require hundreds of gigabytes of memory for modeling

SKUs ≥ 100,000.

For our box sizing problem, recall that we have n SKUs in the dataset, and each SKU i can be represented

as a tuple (li,bi,hi) denoting its length, breadth, and height. Therefore, we have three dimensions describ-

ing the SKU dataset. We transform the three dimensions into one by applying a dimensionality reduction

method. The resultant dimension takes a continuous range of values and captures variability in the features

(dimensions) of the SKUs, taking similar values for SKUs of similar sizes. Suppose we require K boxes to

cover the n SKUs; we group the SKUs along the generated single dimension into K groups and generate a

box size that can fit all the SKUs in a respective group (see EC.4 Algorithm 1). For breaking the SKUs into

groups, we employ the Jenks natural breaks (JNB) algorithm. JNB breaks a continuous range of numbers

into groups by minimizing within-group variance and maximizing between-group variance. In this manner,

K boxes can be created for K groups; thereby, a K-box assortment can be produced.

In the experiments, we generate box assortments of various sizes (ranging from 10 to 100) to cover the

SKUs present in the real-world dataset Dreal using three dimensionality reduction methods and the proposed

framework.We employ the procedure described earlier in this section to generate the box dimensions with

ec13

dimensionality reduction methods. Though the described procedure is applicable once three box dimensions

are compressed into one dimension, the compression procedure varies between different approaches. For

instance, in the case of PCA, the SKU dataset is mean-centered, and a covariance matrix of the mean-

centered dataset is computed, eigenvalues and eigenvectors of the same matrix are generated, and finally, a

single dimension along the eigenvector with maximum variance is generated. For more procedural details

about other dimensionality reduction methods, readers can refer to Van der Maaten and Hinton (2008) and

Van Der Maaten et al. (2009).

Table EC.6 Packaging factors (PFs) of the solutions generated by ML methods

Assortment Size 10 20 30 40 50 60 70 80 90 100
PCA 3.749 3.289 3.127 3.041 2.998 2.951 2.941 2.935 2.891 2.895

TSNE 4.084 3.161 3.147 2.751 2.573 2.413 2.276 2.232 2.271 2.083
LLE 10.201 6.212 4.095 5.294 6.539 7.122 4.003 6.613 3.596 3.653

PAAS 2.930 2.305 2.056 1.959 1.867 1.813 1.777 1.764 1.717 1.699

We report the packaging factor values of the box assortments generated by the respective methods in

Table EC.6. From the table, we can observe that the proposed framework outperforms alternative ML-based

methods. The proposed approach, PAAS, is better than PCA, TSNE, and LLE by 57%, 35%, and 185%,

respectively. Therefore, the proposed approach is superior to the existing ML-based methods.

EC.12 Robustness Analysis

In this section, we explore the robustness of the solutions generated by our approach. In the first examina-

tion, we explore whether the generated solution is robust to changes in the SKU demand. To this end, we

alter the demand of all the SKUs present in the original demand dataset by up to 20% and analyze how the

packaging factors vary with changes in demand. The second examination explores whether the generated

solution can cover a new set of SKUs added to the warehouse. To this end, we randomly generate new

SKU dimensions and analyze how many of the generated SKUs are covered or uncovered by the gener-

ated assortment. Finally, we check whether the generated solutions can accommodate additional cushioning

requirements.

EC.12.1 Demand Variation Analysis

In our approach, we generated the solution for covering the expected demand of the SKUs; however, in

real-world settings, the actual demand deviates from the expected value. Therefore, we examine the effect of

deviations in demand on the volumetric efficiency of the generated assortment. To this end, we perturb the

expected demand values of the SKUs from the real-world dataset from 5% to 20% and check the packaging

factors when the perturbed demand is covered by the assortments generated for the unperturbed demand

values. This analysis examines how robust the solutions generated will be for future demand variations.

ec14

Table EC.7 Packaging factors for various demand variations

Assortment Size K Demand Variation (in %)
0 5 10 15 20

10 2.9489 2.9471 2.9480 2.9548 2.9608
20 2.2693 2.2688 2.2691 2.2744 2.2750
30 2.0440 2.0435 2.0443 2.0482 2.0471
40 1.9116 1.9113 1.9120 1.9153 1.9145

Table EC.7 reports the packaging factors for various demand variations for each K-box assortment. From

the table, we make two observations. First, the packaging factors change negligibly (by less than 1%) across

all the demand variations. This pattern can be consistently seen across all assortments and signifies that

the generated solution is robust to the demand changes. Secondly, variations in packaging factors of larger

assortments are relatively less compared to that of smaller assortments. As the number of boxes increases,

the assortment becomes more specific to the cluster of SKUs, and therefore, their demand slightly affects

the packaging factor.

EC.12.2 Coverage Analysis

In real-world operations, new SKUs are constantly introduced, and these new SKUs must be covered by

the box assortments already in use at the time of introduction. This analysis tests whether the generated

solutions are robust enough to cover new SKUs whose dimensions are not considered during the solution

generation process. To this end, we sample a new set of dimensions from a normal distribution of dimen-

sions parameterized by the mean and standard deviation of dimensions from the real-world dataset. In this

analysis, we sampled 100,000 dimensions, out of which 82270 dimensions are non-negative and adhere

to maximum and minimum dimension requirements. The generated dimensions act as proxies for the new

SKUs. We then test whether the generated solutions cover them.

Table EC.8 Coverage values of synthetic SKUs

Assortment size (K) 10 20 30 40
Total number of new SKUs 82270 82270 82270 82270
Number of new SKUs covered 82224 82211 82198 82198
Covered percentage 99.944% 99.928% 99.912% 99.912%
Number of new SKUs uncovered 46 59 72 72
Uncovered Percentage 0.056% 0.072% 0.088% 0.088%

Table EC.8 shows the coverage values of generated SKUs by each K-box assortment. The table shows

that the generated assortments cover more than 99.9% of the generated SKUs. We also observe that as the

assortment size increases, the number of uncovered SKUs increases. The larger assortments are specific to

ec15

the SKUs clusters, while smaller assortments are general, where every box tries to fit many dimensions.

Nonetheless, all the assortment sizes cover more than 99.9% of the new SKUs. This shows that the generated

assortments are robust to introducing new SKUs, and managers need not spend effort procuring new box

sizes as new SKUs are added.

EC.12.3 Robustness Analysis for High-value Items with Extra Cushioning

E-commerce warehouses host a variety of products, and some items may require extra cushioning for pro-

tection. The use of additional cushioning increases the effective product dimensions. For instance, if an item

has l,b,h as dimensions, adding extra cushioning e will make its effective dimensions l + e,b+ e,h+ e. In

such cases, since the dimensions of the items increase, finding a suitable box for packing the product may

become difficult. Therefore, in this section, we test whether the box assortments generated by our approach

can accommodate items whose dimensions are significantly modified due to extra cushioning. To this end,

we randomly select 10,000 items from the real-world dataset and check whether the generated box assort-

ments can accommodate them if an extra cushioning value e is added. We consider e values between 0.5

and 2.0 inches.

Table EC.9 Coverage values of SKUs requiring extra protection

Assortment Size, K Cushioning value, e (in inches)
0.5 1.0 1.5 2.0

10 99.79 99.61 99.23 98.57
20 99.71 99.29 98.86 98.41
30 99.56 99.11 98.75 98.38
40 99.56 99.11 98.75 98.38

Table EC.9 shows the percentage of items that can be accommodated or covered by a K box assortment

when a cushioning value e is added to the product. Observe that more than 99% of the items can be covered

by all the assortments if a cushioning value of ≤ 1.0 inch is used. Similarly, more than 98% of the items

can be covered if a cushioning value between 1 and 2 inches is used. This shows that the generated assort-

ments are robust to extra cushioning requirements. Nevertheless, the cushioning requirements of items can

be passed to the optimization framework during the assortment creation phase itself. For instance, say l,b,h

are the length, breadth, and height dimensions of an SKU item, and if it requires a cushioning of 0.5-inch

on all sides, the SKU dimensions can be adjusted as l + 0.5,b + 0.5,h + 0.5 in the dataset. This adjust-

ment takes care of the cushioning/protection requirements of items and helps the optimization framework

generate accurate box dimensions, resulting in 100% coverage. Our industry collaborator follows the same

procedure.

ec16

EC.13 Optimization Software

Figure EC.4 shows the implementation of the proposed optimization framework. The SKU dataset, which

consists of dimensions and demand, is read as an input file (items.csv). The number of boxes required to

cover the SKUs can be entered into the variable NO OF FRESH BOXES. To ensure that the generated

boxes comply with the minimum length, breadth, and height requirements, MIN L,MIN B,MIN H vari-

ables are made available. If the user wants to fix a predefined set of boxes, which should be a part of the

final assortment, they can be passed as a numpy matrix to f ixed boxes. Figure EC.5 shows the output of the

program. It reports the running time, the packaging factor of the generated box assortment, and finally, the

box assortment itself.

Figure EC.4 Program Input

ec17

Figure EC.5 Program Output

EC.14 Choice of assortment size

As the assortment size increases, the packaging factor (PF) decreases. However, the marginal contribution

to the reduction in PF becomes low after a point. For instance, consider the following plot that shows how

packaging factors vary with the increase in the number of boxes. These results are obtained when 200,000

SKUs are covered using the assortments of respective sizes.

In plot EC.6, observe that as the number of boxes increases from 35 to 40, the incremental benefit in

PF becomes less. On the other hand, operating with a large number of boxes increases the cost per unit

packaging, increases packing time due to increased search time, and increases other stocking complexities.

Therefore, it is preferable to choose a smaller but optimal assortment. The company has chosen 35 boxes

based on the assortment size that they can handle.

ec18

Figure EC.6 PF vs Assortment Size

ec19

References
Bartenhagen, Christoph, Hans-Ulrich Klein, Christian Ruckert, Xiaoyi Jiang, Martin Dugas. 2010. Comparative study

of unsupervised dimension reduction techniques for the visualization of microarray gene expression data. BMC
bioinformatics, 11 (1), 567.

Brinker, Jan, Halil Ibrahim Gündüz. 2016. Optimization of demand-related packaging sizes using a p-median
approach. The International Journal of Advanced Manufacturing Technology, 87 (5-8), 2259-2268.

Chopard, Bastien, Marco Tomassini. 2018. An introduction to metaheuristics for optimization. 1st ed. Natural com-
puting series, Springer International Publishing, Cham, Switzerland.

Leung, S.Y.S., W.K. Wong, P.Y. Mok. 2008. Multiple-objective genetic optimization of the spatial design for packing
and distribution carton boxes. Computers Industrial Engineering, 54 (4), 889-902.

Schulman, John, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov. 2017. Proximal policy optimization
algorithms. URL https://arxiv.org/abs/1707.06347. (Accessed 03 August 2023).

Shih Jia Lee, Loo Hay Lee, Ek Peng Chew, Julius Thio. 2015. A study on crate sizing problems. International Journal
of Production Research, 53 (11), 3341-3353.

Van der Maaten, Laurens, Geoffrey Hinton. 2008. Visualizing data using t-sne. Journal of Machine Learning Research,
9 (86), 2579-2605.

Van Der Maaten, Laurens, Eric O Postma, H Jaap van den Herik, et al. 2009. Dimensionality reduction: A comparative
review. Journal of Machine Learning Research, 10 (66-71), 13.

Xu, Jing, Hu Qin, Rendao Shen, Chenghao Shen. 2008. An optimization framework for the box sizing problem. 2008
IEEE International Conference on Service Operations and Logistics, and Informatics, vol. 2. 2872-2877.

Yueyi, Li, Zhang Xiaodong, Wang Pei. 2020. A cost-minimization model to optimal packaging size in e-commerce
context. Proceedings of the 2019 Annual Meeting on Management Engineering. AMME 2019, Association for
Computing Machinery, New York, NY, USA, 35–41.

