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Abstract

This paper is the first of two papers entitled “Airline Planning Benchmark Problems”, aimed at developing benchmark data that can
be used to stimulate innovation in airline planning, in particular, in flight schedule design and fleet assignment. While optimisation
has made an enormous contribution to airline planning in general, the area suffers from a lack of standardised data and benchmark
problems. Current research typically tackles problems unique to a given carrier, with associated specification and data unavailable
to the broader research community. This limits direct comparison of alternative approaches, and creates barriers of entry for the
research community. Furthermore, flight schedule design has, to date, been under-represented in the optimisation literature, due
in part to the difficulty of obtaining data that adequately reflects passenger choice, and hence schedule revenue. This is Part I of
two papers taking first steps to address these issues. It does so by providing a framework and methodology for generating realistic
airline demand data, controlled by scalable parameters. First, a characterisation of flight network topologies and network capacity
distributions is deduced, based on analysis of airline data. Then a multi-objective optimisation model is proposed to solve the inverse
problem of inferring OD-pair demands from passenger loads on arcs. These two elements are combined to yield a methodology
for generating realistic flight network topologies and OD-pair demand data, according to specified parameters. This methodology
is used to produce 33 benchmark instances exhibiting a range of characteristics. Part II extends this work by partitioning the
demand in each market (OD pair) into market segments, each with its own utility function and set of preferences for alternative
airline products. The resulting demand data will better reflect recent empirical research on passenger preference, and is expected to
facilitate passenger choice modelling in flight schedule optimisation.
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1. Introduction

There has been relatively little work that has addressed the
first stage of the airline planning process, namely, flight sched-
ule design. The many algorithms and techniques reported in
the literature for later stages of the airline planning process are
difficult to compare because they are evaluated on problem in-
stances representative of a particular airline at a particular date.
Each airline operates a different network of airports, a differ-
ent fleet in terms of the size and mix of aircraft, has differ-
ent passenger quantities and itineraries, and different crew re-
quirements, bases and rules. Furthermore, the data for these
instances is considered confidential by most airlines due to its
significant commercial implications. Consequently, obtaining
real data is difficult and often requires the researcher to estab-
lish a good relationship with an airline partner over many years.
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Such issues create a barrier to entry for many prospective re-
searchers and limits potentially fruitful collaboration between
research groups.

Some first steps towards addressing these issues are taken
in this paper and its sequel Akartunalı, Boland, Evans, Wallace,
and Waterer (2011) by developing a framework for generating
realistic benchmark instances. These instances provide stan-
dardised data with which to initiate the airline planning pro-
cess. Since flight schedule design depends critically on market
demand, this initial work has focused on the generation of air-
line demand benchmark data. The addition of airline resources,
such as aircraft and crew, to these benchmarks is planned for
the future. By making these instances, and a description of
the methodology used to generate them, publicly available it
is hoped that research engagement in airline planning will be
stimulated in a similar way to what has been so successfully
achieved in areas such as vehicle routing, which flourished after
the introduction of the Solomon benchmark instances (Solomon,
1987). The DIMACS1 and ROADEF2 challenge instances have

1http://dimacs.rutgers.edu/Challenges/
2http://challenge.roadef.org/
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had a similar impact.
As a large body of literature attests, optimisation has been a

critical part of airline planning for many decades. See, for ex-
ample, Klabjan (2005), Bazargan (2004), or Barnhart and Cohn
(2004). However, as noted in Klabjan (2005), for the most
part, airline schedule planning is a manual process with only
a few manuscripts on flight schedule design. Notable among
these are two papers, Yan and Tseng (2002) and Yan, Tang,
and Lee (2007), on flight scheduling in Taiwan, and that of Lo-
hatepanont and Barnhart (2004), combining flight scheduling
with fleet assignment. The authors of this paper believe that the
dearth of optimisation research on schedule design is in part due
to the difficulty of representing passenger choice, and of collect-
ing adequate data to accurately assess schedule revenue. How-
ever, there has been a growing body of both empirical and the-
oretical research seeking to provide insight into airline passen-
ger decision processes and to develop models of passenger util-
ity. See, for example, Coldren, Koppelman, Kasturirangan, and
Mukherjee (2003), Garrow, Jones, and Parker (2007), Koppel-
man, Coldren, and Parker (2008), Walker (2006), and Wojahn
(2002). The insights provided in these papers, combined with
an empirical analysis of rich data sets from a wide range of air-
lines worldwide, including all airlines in the Star and oneworld
alliances, has led to the development of a new approach to rep-
resenting airline demand data, and a methodology for generat-
ing realistic demand data sets.

The methodology developed in these two papers is a four
step framework. Figure 1 illustrates the four steps in the frame-
work which are:

1. Generate the flight network including passenger load on
arcs;

2. Calculate origin-destination (OD) pair demand;
3. Define passenger groups;
4. Allocate OD-pair demand to each passenger group.

The flight network connects the set of airports to be served,
and the network topology defines arcs indicating airport pairs
between which direct non-stop services are to be offered. Pas-
senger load on an arc indicates the total number of passengers
expected to travel on the direct non-stop service over some time
period, for example, a day.

This paper presents the methodology behind the first two
steps in this framework. The first step generates realistic flight
networks and passenger loads with specified characteristics that
capture the features of a large fraction of existing airline net-
works. These networks are scalable so that the effect of dif-
ferent scheduling strategies, and different parameters such as
network type and size, or fleet mix, on algorithm performance
and solution cost can be readily compared. The second step
of the framework solves an inverse problem to determine OD-
pair based demand that is compatible with the passenger loads
on each arc. This data, sometimes called market demand, can
be of use in its own right. For example, in performing sched-
ule design, Yan and Tseng (2002) work directly from such data
collected from airlines in Taiwan.

The second paper (Akartunalı et al., 2011) presents the method-
ology behind the third and fourth steps in this framework. The

Figure 1: Framework for generating sets of realistic airline planning benchmark
problem instances

third step partitions the market demand into passenger groups,
according to characteristics that differentiate behaviour in terms
of airline product selection. Each passenger group has an ori-
gin, a destination, a size (number of passengers), a departure
time window, and a departure time utility curve indicating the
passengers’ willingness to pay for departure in time sub-windows.
This data is much richer than simple market demand and can be
expected to provide better estimates of schedule revenue in a
form that is useful in schedule design optimisation. The in-
tegrated airline schedule design and fleet assignment problem
studied in a companion paper (Akartunalı, Boland, Evans, Wal-
lace, Waterer, and Smith, 2010) demonstrates passenger groups
to be a potential alternative to the commonly used spill models
(Dumas and Soumis, 2008; Jacobs, Smith, and Johnson, 2008;
Barnhart, Farahat, and Lohatepanont, 2009) for estimating pas-
senger flow in an airline network. The fourth step in the frame-
work allocates the previously determined OD-pair demand to
each passenger group using a standardised demand profile, a
generic percentage-wise allocation of passengers throughout a
day.

The design of this methodology readily permits the gener-
ation of realistic airline data “from scratch” in a way that sup-
ports experimentation with key characteristics of that data, as
well as providing an approach that other researchers can still
use when they have access to partial data. For example, if an ex-
isting flight network is already known, and, perhaps, observed
passenger loads are also known for that network.

1.1. Terminology, notation, and assumptions

An airline network consists of a set S of airports to be
served, and a set A ⊆ S × S of directed arcs indicating an or-
dered pair of airports between which at least one direct non-stop
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service is offered. An airline’s fleet is denoted by the set F of
aircraft subtypes, and an aircraft from the fleet f ∈ F has ca-
pacity c f . The basic time unit used is one day. Let T denote the
length of a day in minutes.

Let K̄ ⊂ S × S denote the set of ordered potential passen-
ger origin-destination pairs, or OD-pairs. For each OD-pair
(o, d) ∈ K̄, the OD-pair demand Dod is the total passenger de-
mand over a day to travel from airport o to airport d. In the case
that an OD-pair is not an arc then the only way passengers can
complete their travel is to connect to successive arcs by tran-
siting at an intermediate airport. The passenger load ni j on arc
(i, j) ∈ A is the number of passengers observed traversing the
arc over the course of a day.

1.2. Overview of the paper

Section 2 describes methodology to characterise airline net-
works. This is the first step in the framework for generating sets
of realistic airline planning benchmark problems. Section 3 de-
scribes methodology to characterise airline demand using lim-
ited data. This is the second step in the framework. A descrip-
tion of the generated benchmark instances is provided in Sec-
tion 4 and an analysis of the instances is given in Section 5.
Section 6 presents some conclusions and a brief description of
future work.

2. Characterising airline networks

An airline network’s topology depends on factors such as
the geographical positions of the airports serviced by the net-
work, the desired operating practices of the airline, the structure
of the network of any competitors, and also passenger demand.
This paper concentrates on the commonly occurring hub-and-
spoke topology. This topology consists of a single hub airport
connected by flight legs to a number of spoke airports. The
spoke airports are only connected to the hub, that is, no flight
legs exist between spoke airports.

Evans, Wallace, and Waterer (2010) analysed data from a
wide range of airlines worldwide, including all airlines from
Star and oneworld alliances, and found that more than 80%
of airports are connected in topologies that resemble hub-and-
spoke networks. Thus, analysing such networks is a critical
first step. Moreover, more complex topologies such as those
consisting of linked hubs, or point-to-point networks, require
significantly more analysis.

2.1. Hub-and-spoke networks

The characteristics of hub-and-spoke networks were anal-
ysed by Evans et al. (2010) using data collected from the sched-
ules operating at the end of 2007 and early 2008 for a wide
range of airlines worldwide, including all airlines in the Star
and oneworld alliances. Legs included in the analysis were re-
stricted to those operated by common turbo-fan aircraft. The
aircraft capacity on each leg was used as a surrogate for passen-
ger load due to the lack of actual passenger data. This section
provides an overview of this characterisation.

Of the 64 hub-and-spoke networks included in the analy-
sis, 41 were classified as short-haul networks as there were no
arcs with a great-circle distance greater than 5000km, 10 were
classified as long-haul as there existed arcs with a great-circle
distance greater than 9500km, and the remaining 13 networks
were classified as medium-haul. The statistical analysis of these
networks focused on characterising three distributions. The first
was the greater-circle length of the network arcs, or the arc dis-
tance. The second characteristic was the capacities of the air-
craft operating within the network, or the arc capacity. Finally,
the third characteristic was the radial direction of the arcs and
their associated capacity, or the directional capacity.

The analysis found that the distributions of arc distance for
most networks could be clustered into five groups. Each distri-
bution in a particular group was found to be statistically most
similar to the other distributions in that group. Two of these
groups corresponded to short-haul networks, two to long-haul,
and the remaining group to medium-haul. A simple analyti-
cal model of an arc distance cumulative distribution function
(CDF) was constructed for each group. The CDF was con-
structed so that it was a good fit to all of the arc distance distri-
butions in that group.

Using a similar analysis, the distributions of arc capacity for
most networks could also be clustered into five groups. Simi-
larly, a simple analytical model of an arc capacity CDF was
constructed for each group. An analysis of the correlation be-
tween arc distance and arc capacity CDFs showed that each arc
distance CDF was strongly correlated to one of only two arc
capacity CDFs. Short- and medium-haul networks shared the
same arc capacity CDF while long-haul networks shared an-
other arc capacity CDF.

To analyse the directional capacity of each network the arcs
were partitioned into radial 15-degree sectors. The first sec-
tor included spokes radiating from the hub at angles [0◦, 15◦),
where angles were measured anticlockwise from due east, with
the remaining sectors continuing in an anticlockwise direction.
The capacity of a sector is given by the sum of the capacities of
the network arcs in that sector.

The analysis found that there is often a major axis along
which most capacity is concentrated, and this is most often
closer to an East-West orientation than a North-South orien-
tation. The position of the greater lobe of the major axis was
defined to be the angle central to the four contiguous sectors
with maximum total arc capacity. The position of the lesser
lobe of the major axis was defined to be the angle central to the
four contiguous sectors with maximum total arc capacity sub-
ject to the angle being at least 90◦ from the angle of the greater
lobe. These lobes can range from being close to symmetrical
to being extremely asymmetrical, that is, in some cases almost
all capacity occurs in a lobe towards a single direction from the
hub, with only a small amount of capacity being grouped in a
lobe in an opposing direction. The capacity of the minor axis
was taken as the capacity of all slices that were not contained in
the greater or lesser lobes of the major axis. The classification
of the directional capacity is illustrated in Figure 2.

Two parameters are used to measure the distribution of the
network’s directional capacity. The parameter Rminor ma jor is de-
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Figure 2: Classification of a hub-and-spoke network’s directional capacity
(Evans et al., 2010)

fined to be the ratio of the capacity of arcs that are not along the
major axis to those that are along the major axis. The parameter
Rlesser greater is defined to be the ratio of the capacity in the lesser
lobe of the major axis to the capacity in the greater lobe of the
major axis. An analysis of the correlation between each arc dis-
tance CDF and the parameters measuring directional capacity
showed that networks have a range of geometries and that this
range varies for each arc distance CDF. Two pairs of directional
capacity parameters that best represented the networks of each
arc distance CDF were chosen.

The scheduled time for an aircraft leg between push back
from the originating airport gate and arrival at the destination
airport gate is known as the block time. This time is the sum
of the taxi time on departure, flight time, and taxi time on ar-
rival. Taxi times are relatively constant, and the flight time is
approximately a linear function of the arc distance plus extra
time involved in climbing and descending at lower speed. Pre-
vailing westerly winds mean that flight times for arcs directed
west to east are normally less than those for arcs directed from
east to west. Arcs are categorised into two groups depending
upon whether the travel direction is east-west or west-east. A
linear model of block time in minutes as a function of distance
in kilometres is fitted to each group.

To model time zone effects, a time zone offset is applied to
airports that are at a large east-west distance from the hub. It is
assumed that the hub is positioned at the equator at the centre of
a one hour time zone. Assuming the mean radius of the Earth
is 6371km, the width of each one hour time zone at the equator
is 1668km.

In Section 4 it is explained briefly how this analysis is used
to generate flight network topologies and arc passenger loads,
from given parameters; full details can be found in Evans et al.
(2010).

2.2. Airline network data

An airline network topology and passenger loads is insuffi-
cient to deduce likely OD-pair demands. Additional exogenous
information that can be readily estimated from existing airline
network data is required. Two characteristics of such data are
the fraction of passenger load arising from single-leg travel, and
the fraction of transiting multi-leg passengers arriving at an air-
port on an incoming arc and connecting to an outgoing arc.

Type Example θ

Point-to-point Australia Domestic 0.77
Point-to-point Southwest Domestic 0.64
Hub United to/from LAX 0.58
Hub United to/from ORD 0.34
Hub United to/from DEN 0.31
Heavy Hub Delta to/from ATL 0.19

Table 1: Typical values of θi j for a variety of airlines and networks (Evans and
Waterer, 2011)

Single-leg passenger fractions. Single-leg passenger fraction
data was analysed by Evans and Waterer (2011) using data from
one of the main Australian domestic carriers and data from the
US Department of Transportation Origin and Destination Sur-
vey DB1BCoupon data set for Q1 2008 (US DOT, 2008). The
range of carriers in the US were selected to include examples
that should have quite different characteristics. For example,
Southwest is known as a point-to-point carrier, United has sev-
eral moderate to large hubs, and Delta has a main very large
hub in Atlanta. Only purely domestic legs were included in the
Australian data, and only legs purely in the lower 48 states were
included in the US data (although connections to and from in-
ternational legs were included). Furthermore, only legs with
at least 5% of the passenger capacity of the busiest legs were
included to minimize data sampling variation.

Let θi j denote the expected proportion of single-leg passen-
gers on arc (i, j) ∈ A. Evans and Waterer (2011) suggests that,
in general, the values of θi j and θ ji are likely to be very similar,
and depend upon the topology of the network. For example,
typical values for θi j range from around 0.75 for arcs in a point-
to-point network, to 0.4 for arcs in a hubbing network, and this
value decreases the larger the hub airport the arc is incident to.
Table 1 gives typical values of θi j for a variety of airlines and
networks.

Transit passenger fractions. The percentage of passengers tran-
siting through an airport who connect to a given other arc in
the airline network is strongly influenced by the geographical
location of the airports with respect to each other. To calcu-
late OD-pair passenger demand from the passenger load data,
knowledge of these passenger transit fractions is needed.

Through value, the desirability to passengers of being able
to stay on the same aircraft rather than having to change air-
craft at the connecting airport reflects the likely benefit to the
airline if the connection can be advertised as a one-stop ser-
vice. Through values are used in later stages of the airline plan-
ning process such as aircraft rotation, or through assignment
(see e.g. Clarke, Johnson, Nemhauser, and Zhu, 1997; Barn-
hart, Boland, Clarke, Johnson, Nemhauser, and Shenoi, 1998;
Gopalan and Talluri, 1998; Ahuja, Goodstein, Mukherjee, Or-
lin, and Sharma, 2001; Sherali, Bish, and Zhu, 2006). While
through values are based on flight to flight connections, they
are clearly related to the likelihood of a connection being used
by passengers, and so are closely related to transit passenger
fractions.
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Hub Code Hub City Airline Spokes Paths

ATL Atlanta Delta Air Lines 155 10999
CLT Charlotte US Airways 102 4908
CVG Covington Delta Air Lines 110 3116
DEN Denver United Air Lines 126 5434
ORD Chicago United Air Lines 114 5601
PHL Philadelphia US Airways 82 2584
PHX Phoenix US Airways 73 2748
SLC Salt Lake City Delta Air Lines 95 2880

Table 2: Hubs used for transit passenger fraction analysis (Evans and Waterer,
2011)

Let ∆i j denote the great-circle distance between any two air-
ports i, j ∈ S , and note that ∆ii = 0. Let Γi j denote the maxi-
mum ratio of the direct distance between airports i and j and the
total distance a passenger would travel between these airports.
Note that there may not be any flights between the airports i and
j, that is, (i, j) < A, and there may be multiple indirect routes.
The value of Γi j provides a measure of “directness” of travel
between airport i and airport j.

Let αi ji′ denote the fraction of passengers travelling on arc
(i, j) ∈ A and transiting at airport j that transit to arc ( j, i′) ∈ A.
Transiting passengers are likely to connect to arcs ( j, i′) when
airport i′ is in some sense geographically “opposite” airport i.
Let Aout

i j = {( j, i′) ∈ A : Γii′ ≥ γ} denote the set of arcs cor-
responding to such outgoing connections where the threshold
parameter γ is the ratio of the direct distance between any two
airports and the expected maximum distance a passenger would
choose to travel between these airports. Let n̄ ji′ denote the rel-
ative outgoing passenger load, that is,

n̄ ji′ =
n ji′∑

( j,i′′)∈Aout
i j

n ji′′
, (i, j) ∈ A, ( j, i′) ∈ Aout

i j .

Intuitively, if either n̄ ji′ or Γii′ is very low, then it is likely αi ji′

will be low as geographical considerations may be mitigated by
the apparent desirability of the outgoing connection. However,
if n̄ ji′ and Γii′ are both high, then it is likely that αi ji′ will also
be high.

An analysis of the US Department of Transportation Origin
and Destination Survey DB1BCoupon data set for Q1 2008 (US
DOT, 2008) was performed. Seven large hubs from three dif-
ferent airlines where chosen as listed in Table 2 to ensure that
the number of different choices available for connecting pas-
sengers in the analysed data was large. The paths column in
this table gives the number of different 2-leg path sections con-
necting through the given hub on flights operated by the given
carrier that were included in at least one passenger itinerary.
There is no information in this data to indicate whether travel
was on week days or weekends.

The use of a threshold parameter γ to restrict the set Aout
i j

of arcs corresponding to the possible outgoing connections of
arc (i, j) ∈ A thereby eliminating rare connections with low dis-
tance measures is justified. It was found that approximately
90% of transiting passengers utilise between 30–60% of the

Figure 3: An example hub-and-spoke network

connections existing in the data and that these connections all
have distance measures in excess of 0.8. The directness of pas-
senger travel CDF seen in Figure 4 from the ATL airport in-
stance discussed in Section 3.3 shows the fraction of OD-pairs
that have at most the given measure of directness, as well as
the fraction of combined OD-pair demand, summed over both
directions, that experience at most this level of directness.

Various statistical models in which αi ji′ was related to n̄ ji′

and Γii′ , both independently and as the relative value of some
combination of the two, were fitted and tested against the data
(Evans and Waterer, 2011). To ensure that incoming arcs with
small numbers of connecting passengers did not unduly influ-
ence results, only those incoming arcs with at least 200 con-
necting passengers were included. It was found that the best
models had very similar Pearson correlation coefficients, but
the best prediction was achieved by the following equation with
an average correlation of 0.815.

αi ji′ =
n̄0.69

ji′ Γ3.50
ii′∑

( j,i′′)∈Aout
i j

n̄0.69
ji′′ Γ3.50

ii′′
, (i, j) ∈ A, ( j, i′) ∈ Aout

i j (1)

The single-leg passenger fractions and the transit passenger
fractions resulting from the above analyses are critical to the
deduction of OD-pair demand from observed passenger loads
on arcs, a process that is discussed in detail in the next section.
To conclude this section an example hub-and-spoke network
is introduced. The calculation of transit fractions is illustrated
below and the OD-pair demand inferred by our methodology is
presented in Section 5.

Example. Consider the hub-and-spoke network given in Fig-
ure 3. Table 3 gives the great-circle distance between any pair
of airports regardless of whether there exists an arc in the net-
work. Table 4 gives the passenger load on each arc in the net-
work.

The airport SYD is a single hub. Each of the airports ADL,
CBR, MEL, and OOL, have a direct connection to only one
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Ports ADL BNE CBR CNS MEL OOL SYD

ADL - 1621 971 2132 642 1604 1165
BNE 1621 - 956 1392 1381 95 752
CBR 971 956 - 2076 469 892 237
CNS 2132 1392 2076 - 2313 1485 1971
MEL 642 1381 469 2313 - 1329 706
OOL 1604 95 892 1485 1329 - 679
SYD 1165 752 237 1971 706 679 -

Table 3: Great-circle distances in kilometres between any pair of airports in the
example network

Ports ADL BNE CBR CNS MEL OOL SYD

ADL - 0 0 0 0 0 975
BNE 0 - 0 480 0 0 1477
CBR 0 0 - 0 0 0 486
CNS 0 519 0 - 0 0 0
MEL 0 0 0 0 - 0 776
OOL 0 0 0 0 0 - 222
SYD 1120 1466 538 0 798 214 -

Table 4: Passenger loads for the example network

other airport, namely the hub SYD. Each of these airports and
the hub form a simple spoke. The airport CNS and the hub
form a spoke with an intermediate stop, namely BNE, which
lies approximately on the same flight path.

In the case of a hub-and-spoke network, passengers wish-
ing to travel from one spoke airport to another must transit
through the hub. Thus, the percentage of passengers transit-
ing through the hub SYD and connecting to another arc will be
high. No passengers arriving at the spoke airports ADL, CBR,
CNS, MEL, and OOL, will connect to another arc. There are
likely to be a high number of transit passengers at the interme-
diate stop BNE.

If the distance between spoke airports is much shorter than
the total distance to be travelled when connecting via the hub,
for example, BNE and OOL, then travellers will not connect
between these airports via the hub, instead preferring to use
some alternate method of transport.

Consider the arc (OOL,SYD) and suppose γ = 0.5. The set
Aout

OOL,SYD = {(SYD,ADL), (SYD,CBR), (SYD,MEL)}.

ADL CBR MEL

n̄SYD,XXX 0.4560 0.2191 0.3249
ΓOOL,XXX 0.8698 0.9738 0.9596

n̄0.69
SYD,XXXΓ3.50

OOL,XXX 0.3571 0.3196 0.3985

The transit fraction αOOL,SYD,ADL can be calculated from the rel-
ative passenger load and directness values in the above table.

αOOL,SYD,ADL =
0.3571

0.3571 + 0.3196 + 0.3985
≈ 0.3321

3. Characterising airline demand using limited data

Accurate passenger demand data is vitally important to the
design of a good airline schedule and to the subsequent fleet as-
signment and through assignment problems. There are several
dimensions to this demand, starting with the origin and destina-
tion of the passengers, moving to their preferred time of flying,
and ending with the utility of the various products offered by
the different airlines or competing modes of transport.

The existence of demand between an OD pair implies that
there is a market that has chosen to fly versus using other modes
of transport. Major influences on this decision are the travel
time from origin to destination, door-to-door, not just that aris-
ing from the airlines’ levels of service, and the value a passen-
ger places on their time. Also relevant is the trip’s purpose, who
is paying, and the length of time the passenger will spend away
from home. Leisure passengers in particular are more likely to
fly as the cost of the airfare decreases relative to the total cost
of the trip (Garrow et al., 2007).

Major influences on OD-pair demand can be categorised as
either endogenous factors, such as price and levels of competi-
tion between airlines; or exogenous factors, such as population
and per capita income levels at either the origin, destination, or
both, as well as the distance between the origin and destination,
and the level of service offered by the airline (see e.g. Dresner
and Windle, 1995; Coldren et al., 2003).

Typically airlines only have data about passenger numbers
on flights from historical booking records, and this is used to
infer each of the associated dimensions for existing routes. For
new routes, the airlines must rely on demand forecasts.

OD-pair demand is not precisely captured even by historical
booking records, as there are several cases where passengers’
actual origins and destinations are not known to the airline. Ex-
amples include where infrequent services or bad connections
force passengers to break their trip at an intermediate airport,
and when passengers book legs separately, or use another car-
rier for some legs.

Information about the preferred time of flying is also poorly
captured in historical booking records. This demand is cen-
sored, or constrained, by revenue management initiatives, a lack
of capacity at peak times, and portions of the network with a
low number of services per day (McGill and Van Ryzin, 1999;
Lohatepanont and Barnhart, 2004). Techniques for uncensor-
ing, or unconstraining, passenger demand have been developed
(Bront, Mendez-Diaz, and Vulcano, 2009; Ratliff, Rao, Narayan,
and Yellepeddi, 2008), and data aggregation has been used to
overcome sparse data due to the existence of a large number of
rare itineraries (McGill and Van Ryzin, 1999). These are dis-
cussed further in Part II of this paper (Akartunalı et al., 2011).

Whilst a great deal is known about inferring features of OD
demand from observed arc demand in road networks (see, for
example, Florian (1976)), nothing of this type has yet been at-
tempted for airlines.

3.1. Calculating arc passenger load data

Airlines often have data on historical or forecast passenger
numbers for directly connected airport pairs. However, if arc
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passenger data is not known, it can often be obtained from data
that is available, and averaging data taken from multiple days
can reduce the effects of the frequency of services.

For example, if complete daily flight schedules with passen-
ger numbers for each flight are available, then passenger load
can be calculated by averaging the number of passengers over
all days and all flights between the two airports in the direc-
tion of the arc. If the number of passengers for a flight is not
known, then this can be estimated using the capacity of the air-
craft assigned to the flight along with an estimate of the average
percentage of occupied seats, or load factor.

3.2. Calculating OD-pair demand data
Calculating OD-pair demand that is compatible with the ob-

served passenger loads on each arc requires the solution of a
type of inverse problem. This problem is modelled as a path-
based multi-commodity flow problem and requires the identifi-
cation of all possible paths passengers may take between each
OD-pair. Four objectives are considered. The first is the level
of asymmetry in the OD-pair passenger demand. The second
and third objectives relate to the mean and standard deviation
of the distribution of the expected number of single-leg passen-
gers. The fourth objective is the deviation from the expected
number of transiting passengers. As it is not clear what the
trade-off is between these objectives, a multi-objective model is
considered.

Characterising reasonable OD-paths. There may be many po-
tential paths between an OD-pair (o, d) ∈ K̄ in the flight net-
work. However, not all of them will be considered reasonable
with respect to the distance travelled from o to d, the time taken,
the number of connections required, or the path’s subpaths.

The distance travelled on a path between the OD-pair (o, d)
is the sum of the great-circle distances of the arcs on the path.
A path p is reasonable with respect to the distance travelled if∑

a∈Ap

∆a ≤ γ∆od

whereAp denotes the set of arcs on path p.
The time taken on a path is estimated to be the average wait-

ing time plus the block time. The average waiting time wi j for
an arc (i, j) ∈ A is estimated to be half the expected time be-
tween flights. If cmax denotes the largest aircraft capacity, then
a lower bound on the number of aircraft operating on the arc
(i, j) ∈ A is Ni j = ni j/cmax. Thus, the expected waiting time
between flights is T /Ni j, and wi j = 0.5T /Ni j. Let ti j denote
the block time.

The time taken between the OD-pair (o, d) is measured with
respect to the time wpmin + tpmin taken to travel the great-circle
shortest-distance path pmin. A path p is reasonable with respect
to the time taken if∑

(i, j)∈Ap

(wi j + ti j) ≤ wpmin + tpmin

For the short- and medium-haul networks considered in this
paper it is assumed that the maximum number of connections

on a reasonable path is two. That is, the number of arcs on a
reasonable path is at most three. Note that limiting the number
of connections is a practical consideration. The methodology
described in this paper works for an arbitrary number of con-
nections on a path.

A path p is reasonable with respect to its subpaths if all
subpaths are reasonable.

Example. Suppose that the arc (MEL,BNE) with 466 passen-
gers per day also exists in the example network. Since (MEL,BNE)
is an arc, it is the shortest-distance path for this OD-pair. Con-
sider the path MEL− SYD−BNE and suppose that the biggest
aircraft has a capacity for 160 passengers. The expected num-
ber of aircraft on each leg is NMEL,SYD = 776/160 = 4.85,
NSYD,BNE = 752/160 = 4.7, NMEL,BNE = 466/160 = 2.9125.
The average waiting time in minutes for each arc is wMEL,SYD =

0.5 × 1440/4.85 = 148, wSYD,BNE = 0.5 × 1440/4.7 = 153,
wMEL,BNE = 0.5× 1440/2.9125 = 247. The block times in min-
utes for each arc is tMEL,SYD = 65, tSYD,BNE = 68, tMEL,BNE =

112. Since 148+65+153+68 > 247+112, MEL−SYD−BNE
is not a reasonable path.

A path-based multi-objective multi-commodity flow model. Let
Pk = {p1, p2, . . . , p|Pk |} denote all reasonable paths between
each OD-pair k ∈ K̄. Let the variable xp denote the number
of passengers on path p ∈ Pk between OD-pair k ∈ K̄.

As previously mentioned four objective criteria are consid-
ered. The first is the level of asymmetry in OD-pair passenger
demand. Let the variable ψod denote the absolute difference in
demand between OD-pair (o, d) ∈ K̄ and that of (d, o).

ψod =
∑

p∈P(o,d)

xp −
∑

p∈P(d,o)

xp, (o, d) ∈ K̄ : o < d (2)

Let the parameter ηk denote a normalization factor for the de-
mand for OD-pair k ∈ K̄, so that OD-pair penalties in the op-
timisation model below are comparable across OD-pairs. The
value of ηk is set so as to be a guaranteed “tight” upper bound
on the OD-pair demand for k. It is “tight” in the sense that
there exists a feasible solution achieving the bound. Let Ψod =

max{ηod, ηdo}.
The second and third objectives relate to the average and

standard deviation of the distribution of the single-leg passen-
ger fractions. Specifically, the deviation from a target mean
single-leg passenger fraction mθ and the deviation from a target
standard deviation sθ. A linear L1-norm variation on the stan-
dard deviation, the average absolute difference of the single-leg
passenger fraction from the target average fraction, is used to
avoid nonlinear constraints in the model.

sθ =
1
|A|

∑
(i, j)∈A

|mθ − θi j|

Let the variable φm denote the deviation of the mean single-leg
passenger fraction from the target mean mθ, and φs denote the
deviation from the linearised standard deviation sθ.

φm = mθ −
1
|A|

∑
(i, j)∈A

1
ni j

∑
p∈P(i, j) :
Ap={(i, j)}

xp (3)
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φs = sθ −
1
|A|

∑
(i, j)∈A

θ̄i j (4)

θ̄i j ≥
∣∣∣mθ −

1
ni j

∑
p∈P(i, j) :
Ap={(i, j)}

xp

∣∣∣, (i, j) ∈ A (5)

The variable θ̄i j bounds the absolute difference of the single-
leg passenger fraction of arc (i, j) ∈ A from the target average
fraction.

Finally consider the deviation from the target transit frac-
tions. Let the variable ξi jk denote the absolute difference be-
tween the number of passengers travelling on legs (i, j) and
( j, k), Xi jk, and the target αi jkXi j, where Xi j denotes the num-
ber of passengers travelling on leg (i, j) that transit at j.

ξi jk = Xi jk − αi jkXi j, (i, j) ∈ A, ( j, k) ∈ Aout
i j : |Aout

i j | > 1

(6)

Xi jk =
∑

(o,d)∈K̄ :
d, j

∑
p∈P(o,d) :

{(i, j),( j,k)}⊆Ap

xp, (i, j) ∈ A, ( j, k) ∈ Aout
i j (7)

Xi j =
∑

k : ( j,k)∈Aout
i j

Xi jk, (i, j) ∈ A (8)

Let Ξi jk = max{αi jkni j, (1 − αi jk)ni j}.
The path-based multi-objective multi-commodity flow model

is formulated as follows.

minimize



∑
(o,d)∈K̄ :

o<d

(ψod/Ψod)2

φ2
m

φ2
s∑

(i, j)∈A

∑
( j,k)∈Aout

i j

(ξi jk/Ξi jk)2

(9)

subject to
∑
k∈K̄

∑
p∈Pk :
a∈Ap

xp = na, a ∈ A (10)

xp ≥ 0, p ∈ P(o,d), (o, d) ∈ K̄
(11)

The four objectives (9), asymmetry in passenger flow (2), devi-
ation from the target mean single-leg passenger fraction (3), de-
viation from the target linearised single-leg passenger fraction
standard deviation (4), and deviation from the target transit frac-
tions (6), are measured by minimising the sum of the squares of
the individual terms. Quadratic, rather the linear, penalties are
chosen in order to reduce the likelihood of outliers. Constraints
(10) ensure that the passenger load on each arc is met exactly.
Constraints (11) ensure nonnegativity of the xp variables.

The feasible set of solutions to this problem is nonempty.
For each feasible solution there is a corresponding set K ⊆ K̄
of OD-pairs with nonzero passenger demand. There are in-
finitely many efficient solutions in decision space and, corre-
spondingly, infinitely many nondominated points in objective

space. It is not clear what the trade-off is between the four ob-
jective functions. To keep the exposition of our methodology
as simple as possible, the objectives were normalised, assigned
equal weight, and the following single quadratic objective that
is simply the sum of these terms was then minimized.

minimize
∑

(o,d)∈K̄ :
o<d

(ψod/Ψod)2

|{(o, d) ∈ K̄ : o < d}|

+ φ2
m + φ2

s

+
∑

(i, j)∈A

∑
( j,k)∈Aout

i j

(ξi jk/Ξi jk)2

|{(i, j, k) : (i, j) ∈ A, ( j, k) ∈ Aout
i j }|

(12)
Each decision maker will place a different importance on each
of the objectives and so by choosing different weights they can
identify different efficient solutions as the best solution for their
needs.

3.3. Validating the OD-pair demand model
To validate that the OD-pair demand model described above

can infer realistic OD-pair demands, real network passenger
data was needed. A “pure” short-haul hub-and-spoke instance
was extracted from the US Department of Transportation Ori-
gin and Destination Survey DB1BCoupon data set for 2008 Q1
(US DOT, 2008) by including only those portions of passenger
itineraries that included travel solely within the lower 48 states,
and involved travel to or from the given hub, namely the airport
ATL in Atlanta. All carriers and fare classes in the coupon data
were included. An itinerary was considered to have a break at
the end of a given leg if either a break was marked in the coupon
data, or the following leg returned to the origin of the given leg,
or the following leg did not travel to or from the hub, or the
given leg was the last leg in the itinerary.

The data associated with this instance was analysed to iden-
tify suitable choices for the methodology’s controlling param-
eters. Figure 4 shows CDFs of arc passenger load and OD-
pair demand as a fraction of the total number of passengers in
the network, directness of passenger travel, relative asymmetry
of OD-pair demand, single-leg passenger fractions, and transit
passenger fractions.

The arc passenger load CDF shows the fraction of network
arcs that have at most the given passenger load as a fraction of
the total number of passengers in the network. Similarly, the
OD-pair demand CDF shows the fraction of OD-pairs that have
at most the given demand as a fraction of the total number of
passengers in the network.

The directness of passenger travel CDF shows the fraction
of OD-pairs that have at most the given measure of directness,
as well as the fraction of combined OD-pair demand, summed
over both directions, that experience at most this level of direct-
ness. The methodology requires a minimum measure of direct-
ness γ to be specified. This parameter is the minimum ratio of
the direct distance between airports to the expected maximum
distance a passenger would choose to travel between these air-
ports and restricts the possible connections a multi-leg passen-
ger can make. The parameter γ was set to be 0.5 which elim-
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Figure 4: CDFs of arc passenger load, OD-pair demand, directness of passenger travel, relative asymmetry of OD-pair demand, single-leg passenger fractions, and
transit passenger fractions, for the extracted hub-and-spoke ATL instance
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inates approximately 8% of the possible OD-pair paths while
only affecting approximately 1% of passengers.

The CDF of the relative asymmetry of OD-pair demands
confirms that symmetric OD-pair passenger demand is a rea-
sonable ideal. Approximately 75% of passengers travel on 35%
of the OD-pair paths and experience a relative asymmetry of
at most 5%, while approximately 90% of passengers travel on
50% of the OD-pair paths and experience a relative asymmetry
of at most 10%.

The single-leg passenger fraction CDF shows the fraction
of network arcs that have at most the given fraction of single-
leg passengers, as well as the fraction of the passengers that
experience at most this ratio of single-leg passengers to multi-
leg passengers on an arc. The mean and linearised standard
deviation of the distribution of single-leg passenger fractions
was found to be (mθ, sθ) = (0.274, 0.143).

Finally, the CDF of the transit passenger fractions shows
the fraction of multi-leg connections that have at most the given
transit fraction, as well as the fraction of incoming connecting
passengers that experience at most this transit fraction.

The distributions of OD-pair demands, single-leg passenger
loads, and transiting passenger loads inferred by the OD-pair
demand model were found to have very similar characteristics
to those of the real data. The averages of the distributions for the
real and model inferred data for the three characteristics were
found to coincide, while the relative error between the standard
deviations of the distributions of the real and inferred data were
10.4%, 7.6%, and 6.7%, respectively. This level of variation
is acceptable given that similar levels of variation are likely to
be seen between the distributions of real network data extracted
from the US Department of Transportation Origin and Destina-
tion Survey DB1BCoupon data sets for different quarters.

4. Benchmark instances

The benchmark instances consist of thirty single-hub and
three two-hub networks. Tables 5 and 6 provide the parameters
used to generate the networks. In these tables the hub name
is preceded by either an “s”, “m”, or “l”, indicating whether
the instance is considered to be a short-, medium-, or long-haul
network, respectively.

To generate a single-hub network having a given number of
spokes, the network characteristics identified in Section 2.1 are
used. Recall that five possible arc distance CDFs and five pos-
sible arc capacity CDFs were identified. Which of these is used
for an instance is indicated in Table 5, by index. Details of the
CDF corresponding to each index can be found in Evans et al.
(2010). For each spoke, first the length of the spoke is sampled
from the given arc distance CDF, and then its capacity is sam-
pled from the given capacity CDF. Then the directions of all
spokes are determined, so as to match the lobe characteristics
described in Section 2.1, and quantified by the Rminor ma jor and
Rlesser greater values given in Table 5. Target and actual values
are given for these directional capacity parameters. For each
combination of arc distance CDF, arc capacity CDF, and tar-
get directional capacity parameters, three networks of different

Hub Distance Capacity Rminor ma jor Rlesser greater Spoke
name CDF CDF Target Actual Target Actual ports

sHAA
1 4

0.4 0.43 0.4 0.43 24
sHBA 0.4 0.44 0.4 0.43 72
sHCA 0.4 0.43 0.4 0.42 120

sHDA
1 4

0.8 0.77 0.4 0.41 24
sHEA 0.8 0.79 0.4 0.43 72
sHFA 0.8 0.81 0.4 0.44 120

sHGA
2 4

0.2 0.23 0.4 0.43 24
sHHA 0.2 0.22 0.4 0.42 72
sHIA 0.2 0.23 0.4 0.42 120

sHJA
2 4

0.4 0.43 0.8 0.81 24
sHKA 0.4 0.42 0.8 0.8 72
sHLA 0.4 0.42 0.8 0.8 120

mHMA
3 4

0.2 0.23 0.2 0.23 12
mHNA 0.2 0.23 0.2 0.23 24
mHOA 0.2 0.22 0.2 0.22 60

mHPA
3 4

0.2 0.23 0.8 0.81 12
mHQA 0.2 0.23 0.8 0.81 24
mHRA 0.2 0.21 0.8 0.79 60

lHSA
4 5

0.1 0.12 0.5 0.55 12
lHTA 0.1 0.13 0.5 0.53 24
lHUA 0.1 0.12 0.5 0.51 60

lHVA
4 5

0.5 0.53 0.8 0.78 12
lHWA 0.5 0.52 0.8 0.8 24
lHXA 0.5 0.5 0.8 0.78 60

lHYA
5 5

0.2 0.22 0.1 0.14 12
lHZA 0.2 0.22 0.1 0.12 24
lH1A 0.2 0.23 0.1 0.13 72

lH2A
5 5

0.1 0.11 0.7 0.67 12
lH3A 0.1 0.14 0.7 0.72 24
lH4A 0.1 0.13 0.7 0.72 72

Table 5: Parameters for generating single-hub benchmark instances
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Hub Distance Capacity Rminor ma jor Rlesser greater Spoke Spoke capacity Inter-hub capacity Multi-hub Inter-hub
name CDF CDF Target Actual Target Actual ports Target Actual Target Actual spoke ports distance

sHAB 2 4 0.2 0.19 0.75 0.75 18 0.4 0.39 0.013 0.013 14 1400sHBB 0.1 0.07 0.55 0.65 20 0.59 0.60

sHCB 2 4 0.2 0.25 0.75 0.73 54 0.40 0.42 0.013 0.012 42 1400sHDB 0.1 0.15 0.55 0.46 60 0.59 0.57

sHEB 2 4 0.2 0.15 0.75 0.76 90 0.40 0.38 0.013 0.012 70 1400sHFB 0.1 0.18 0.55 0.5 100 0.59 0.61

Table 6: Parameters for generating two-hub benchmark instances

sizes were generated in order to allow for the investigation of
scaling effects.

The two-hub instances were generated by “gluing” two single-
hub instances together in an acceptable way. Table 6 contains
the additional parameters needed in order to generate the two-
hub networks. The spoke capacity and inter-hub capacity columns
provide the fraction of the total number of passengers in the
network that are observed on each hub’s spoke arcs and the
inter-hub arc. The multi-hub spoke airports column provides
the number of spoke airports that the two hubs have in com-
mon. The inter-hub distance is the number of kilometres that
the second hub lies to east of the first.

In generating OD-pair demands, the nominal value used as
the target mean and linearised standard deviation of the distri-
bution of single-leg passenger fractions was (mθ, sθ) = (0.4, 0.2)
for short-haul networks and (mθ, sθ) = (0.6, 0.2) for both medium-
and long-haul. The minimum ratio of the direct distance be-
tween airports to the expected maximum distance a passenger
would choose to travel between these airports used for all in-
stances was γ = 0.5.

The complete set of instances and supporting material is
available at the URL http://www.infotech.monash.edu.
au/~wallace/airline_benchmarks/ along with the refer-
ences Evans et al. (2010) and Evans and Waterer (2011).

5. Analysis of instances

Summary statistics are presented for all of the benchmark
instances. More detailed results are presented for three selected
single-hub instances, one two-hub instance, and a fictitious Aus-
tralian carrier called Emu Airlines that operates a point-to-point
network. For these instances, network and directional capacity
diagrams, and CDFs of various network and passenger charac-
teristics.

The arc passenger load CDFs show the fraction of network
arcs that have at most the given passenger load as a fraction
of the total number of passengers in the network. Similarly,
OD-pair demand CDFs show the fraction of OD-pairs that have
at most the given demand as a fraction of the total number of
passengers in the network.

The directness of passenger travel CDFs show the fraction
of OD-pairs that have at most the given measure of directness,
as well as the fraction of combined OD-pair demand, summed
over both directions, that experience at most this level of di-
rectness. Similarly, the relative asymmetry of OD-pair demand

Ports ADL BNE CBR CNS MEL OOL SYD

ADL - 158 51 36 0 64 666
BNE 197 - 185 183 237 0 529
CBR 52 173 - 33 0 59 170
CNS 50 189 50 - 46 0 185
MEL 0 238 0 40 - 77 421
OOL 68 0 62 0 77 - 15
SYD 753 600 191 188 438 15 -

Table 7: Passenger demand between OD-pairs in the example network

CDFs show the fraction of OD-pairs that have at most the given
level of asymmetry, as well as the fraction of combined OD-pair
demand that experience at most this level of asymmetry.

The single-leg passenger fractions CDFs show the fraction
of network arcs that have at most the given fraction of single-
leg passengers, as well as the fraction of the passengers that
experience at most this ratio of single-leg passengers to multi-
leg passengers on an arc. The transit passenger fraction CDFs
show the fraction of multi-leg connections that have at most the
given transit fraction, as well as the fraction of incoming con-
necting passengers that experience at most this transit fraction.

5.1. Example instance

The nominal value used as the target mean and linearised
standard deviation of the distribution of single-leg passenger
fractions was (mθ, sθ) = (0.4, 0.2). The minimum ratio of the
direct distance between airports to the expected maximum dis-
tance a passenger would choose to travel between these airports
used was γ = 0.5. Table 7 provides the passenger demand be-
tween OD-pairs in the example network. The small amount of
asymmetry seen in the OD-pair demands is not unrealistic. The
deviations from the target mean and linearised standard devia-
tion of the distribution of single-leg passenger fractions, as well
as the target transit passenger fractions, were negligible.

5.2. Benchmark instances

Summary statistics for the thirty single-hub and three two-
hub networks are presented in Table 8. These tables summarise
the number of spoke airports, network arcs, OD-pairs with nonzero
demand, and passengers in the network. Statistics on the distri-
bution of the observed number of passengers on an arc, the du-
ration of a leg on an arc, the great-circle distance of an arc, the
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number of unique passenger itineraries (paths) for an OD-pair,
the demand for an OD-pair, and the percentage of passengers
transiting at a airport, are also given. The instances are grouped
into threes. Each group of three networks were generated using
the same parameters except the number of spokes which was
varied to provide networks of different sizes.

Single-hub benchmark instances. Three single-hub instances
are presented. The instance HBA is a short-haul network with
72 spokes. Figure 5 show the network and directional capac-
ity diagrams for this instance. The hub is quite asymmetrical.
Seventy percent of the arc capacity is concentrated on the ma-
jor axis which has an east-west orientation. Although the lobes
of the major axis are diametrically opposed the east-orientated
greater lobe has more than twice the capacity of the lesser lobe.

The instance HRA is a medium-haul network with 60 spokes.
Figure 6 show the network and directional capacity diagrams
for this instance. The hub is relatively symmetric. More than
80% of the arc capacity is concentrated on the major axis which
has an east-west orientation. The lobes of the major axis are di-
ametrically opposed with the lesser lobe having nearly 80% of
the capacity of the greater lobe. The greater lobe is orientated
east.

The instance HXA is a long-haul network with 60 spokes.
Figure 7 show the network and directional capacity diagrams
for this instance. The hub is relatively symmetric. Two-thirds
of the arc capacity is concentrated on the major axis which has
an east-west orientation. The lobes of the major axis are dia-
metrically opposed with the lesser lobe having nearly 80% of
the capacity of the greater lobe. The greater lobe is orientated
east.

Figures 8–10 show the CDFs of the various network and
passenger characteristics. There is nothing evident in these
plots to suggest that the methodology is lacking. The level of
asymmetry in OD-pair demands, as well as the deviations from
the target mean and linearised standard deviation of the distri-
bution of single-leg passenger fractions, and the target transit
passenger fractions, were negligible in every instance.

Two-hub benchmark instances. The instance HCB-HDB is a
network with two hubs. Figure 11 shows the network and di-
agram for this instance. The network has significant asymme-
try. The hub HDB is located 1400km east of the hub HAB
and just over 1% of the network’s passengers are observed us-
ing this arc. Forty-two of the 70 spokes are shared by the two
hubs. Forty-two percent of the network’s passengers are ob-
served travelling to spokes from HCB, while 57% are observed
travelling from HDB. Eighty percent of the arc capacity of HCB
is concentrated on its major axis with the lesser lobe having al-
most three quarters of the capacity of the greater lobe. More
than 80% of the arc capacity of HDB is concentrated on its ma-
jor axis with the greater lobe having slighly more than twice the
capacity of the lesser lobe.

Figure 12 shows the CDFs of various network and passen-
ger characteristics. There is nothing evident in these plots to
suggest that the methodology is lacking. The deviations from
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Figure 11: Network diagram for the HCB-HDB instance

110 120 130 140 150 160 170

−
60

−
50

−
40

−
30

−
20

−
10

0
10

Emu Airline Network

Longitude

La
tit

ud
e

KGI

KTA

CGK

SIN

DRW GOV

CNS

TSV

OOL
BNE

AKL

ZQNHBA

MEL

PER

AYQ

ASP

ISA

ADL

SYD

CBR

BME

DPS

Figure 13: Point-to-point network for the Emu Airlines instance

the target mean and linearised standard deviation of the distri-
bution of single-leg passenger fractions were negligible. The
level of asymmetry in the OD-pair demands and the deviations
from the target transit passenger fractions are small.

5.3. Point-to-point Emu Airlines instance

Emu Airlines is a fictitious Australian carrier that operates
the point-to-point network shown in Figure 13. The observed
passenger numbers on each arc used in this instance are based
on proprietary data made available by an industrial partner.

The nominal value used as the target mean and linearised
standard deviation of the distribution of single-leg passenger
fractions was (mθ, sθ) = (0.75, 0.2). The minimum ratio of the
direct distance between airports to the expected maximum dis-
tance a passenger would choose to travel between these airports
was γ = 0.5.

Figure 14 shows the CDFs of various network and passen-
ger characteristics. There is nothing evident in these plots to
suggest that the methodology is lacking. The level of asym-
metry in the OD-pair demands is small. The deviations from
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Figure 5: Network and directional capacity diagrams for the short-haul HBA instance
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Figure 7: Network and directional capacity diagrams for the long-haul HXA instance

the target mean and linearised standard deviation of the distri-
bution of single-leg passenger fractions, as well as the target
transit passenger fractions, were negligible.

6. Conclusions and future work

This paper is the first of two papers entitled “Airline Plan-
ning Benchmark Problems” that present a four step framework
for generating realistic airline planning benchmark problem in-
stances. These instances are a result of analysing rich data sets
from a wide range of airlines worldwide, including all airlines
in the Star and oneworld alliances. The methodology behind the
first two steps in the framework, namely, characterising airline
networks and OD-pair demand using limited data, were pre-
sented in this paper. The methodology of the second two steps,
namely, characterising passenger groups and the allocating the
OD-pair demand, is presented in the second paper (Akartunalı
et al., 2011).

The thirty single-hub and three two-hub instances provide
standardised data that includes OD-pair passenger demand data
which is critical for the first step in the airline planning process,
namely, flight schedule design. It is hoped that the availability
of these instances, and a description of the methodology used to
generate them, will not only make research in airline planning
accessible to researchers from outside this area, but will also
stimulate existing research by providing data that facilitates the
accurate and repeatable comparison of the many different algo-
rithms and techniques for the airline planning process reported
in the literature.

Future work includes extending the characterisation of air-
line networks to include other topologies, such as linked hubs
and point-to-point networks, and to generate sets of benchmarks

for such networks, as well as incorporating airline resources,
such as aircraft and crew, into the benchmarks.
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