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Abstract

This paper is the second of two papers entitled “Airline Planning Benchmark Problems”, aimed at developing benchmark data that
can be used to stimulate innovation in airline planning, in particular, in flight schedule design and fleet assignment. The former
has, to date, been under-represented in the optimization literature, due in part to the difficulty of obtaining data that adequately
reflects passenger choice, and hence schedule revenue. Revenue models in airline planning optimization only roughly approximate
the passenger decision process. However there is a growing body of literature giving empirical insights into airline passenger
choice. Here we propose a new paradigm for passenger modelling, that enriches our representation of passenger revenue, in a form
designed to be useful for optimization. We divide the market demand into market segments, or passenger groups, according to
characteristics that differentiate behaviour in terms of airline product selection. Each passenger group has an origin, destination,
size (number of passengers), departure time window, and departure time utility curve, indicating willingness to pay for departure in
time sub-windows. Taking as input market demand for each origin-destination pair, we describe a process by which we construct
realistic passenger group data, based on analysis of empirical airline data collected by our industry partner. We give the results of
that analysis, and describe 33 benchmark instances produced.
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1. Introduction In these two papers, we focus on the development of airline
demand data, which is the starting point for generating bench-
marks for every aspect of an airlines operation from schedule
design, through all the stages of airline planning and schedul-
ing, to the day of operation.

In this second paper, we take a set of origin-destination de-
mands across a network, and show how to break down the de-
mand between an origin and destination into passenger groups
across the day, with different tradeoffs between cost and time.
The relatively simple groupings proposed here provide a real-
istic basis for generating schedules which match passenger de-
mand and generate a high revenue in comparison with opera-
tional cost. Our aim is to provide “raw” realistic demand data
that has not yet been manipulated by schedule choices or rev-
enue management strategies, so that the effects of such strate-
gies can be tested and compared.

The groupings and their basis are presented and justified in
this paper. Nevertheless for any particular airline and origin-
destination (OD) pair, if detailed passenger demand preference
data is available then the parameters underlying the groups can
be easily adjusted to match the data.

In what follows, we describe in detail the methodology we
used to construct passenger group data for our benchmark prob-

This paper is the second of two papers entitled “Airline
Planning Benchmark Problems”. Our primary goal in these pa-
pers is to stimulate and facilitate further research in airline plan-
ning, by developing airline planning benchmarks and, more im-
portantly, a process for constructing benchmarks that reflect the
requirements of different kinds of airlines and airline networks.

Such a network-specific benchmark makes it possible, for
the first time, for an airline to set up a fair and objective compar-
ison between different algorithms and approaches, without the
need to hide commercially sensitive aspects of the data. More-
over by making it possible to generate such benchmarks quickly
and cost-effectively, using relatively few parameters, we hope to
encourage every airline, large or small, to use such benchmarks
to choose the best algorithm for the job at hand for the good
of the airline and its passengers. Finally the availability of such
benchmarks will enable academic researchers to compare novel
approaches and algorithms against the state-of-the-art and en-
courage the flow of ideas not only between academics but also
across to industry.
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tunali, Boland, Evans, Wallace, and Waterer (2011), in which
an optimization model was developed to solve the inverse prob-
lem of deriving OD-demand from observed passenger loads on
flight network arcs, the methodology here does not require so-
phisticated mathematics. However it does require some anal-
ysis and modelling of airline data, and careful explanation, so
that the resulting benchmarks can be properly understood.

In the following section, Section 2, we survey passenger
demand models, the availability of data that supports them, and
their exploitation in schedule design algorithms. Section 3 mo-
tivates and explains the abstraction of passengers into passenger
groups whose members share similar choice behaviour. Next,
in Section 4, we discuss our key assumptions, and define nec-
essary terminology and notation. We also give our template
for travel time utility curves. In Section 5, we explain how we
determine the number of passenger groups to create for each
OD-pair, and how we define values for the time of day, fare
and utility curve for each group. Section 6 describes how we
partition the given OD-pair demand between passenger groups,
and, finally, Section 7 describes a set of benchmark instances
generated by our method.

2. Passenger demand models and data

2.1. Passenger demand models

Modelling of passenger demand for scheduled transport ser-
vices is required when it is desired to optimise schedules or
optimise revenue for a given schedule using revenue manage-
ment. Here we will use the term demand to mean the number
of passengers who desire to travel from a given origin to a desti-
nation, with each passenger potentially having a different utility
for each offered service or combination of services that can pro-
vide this travel.

Passenger utility can vary in several dimensions:

e Fare classes on a given service

Ability to book close to the time of departure, or make
late changes to bookings

Time or date of departure

Time taken to travel from origin to destination (and the
related travel route)

Quality of service provided by a given transport operator
e Mode of transport

The first four of the above can affect choices between services
offered by the same transport operator, while all of these can
also affect choices between competing transport operators. Apart
from the booking time frame, all of these dimensions are shared
for the problems of schedule optimisation and revenue manage-
ment.

A large proportion of passenger demand and utility mod-
elling for airlines has been in the context of revenue manage-
ment, which traditionally has relied on the independent demand
model which assumes independent demand for each product,
but the limitations of these product-based models are becom-
ing more apparent (Van Ryzin, 2005). More recently there have

been efforts made to move from product-based models to more
realistic models describing customer behaviour — for example
models that consider demand for overlapping sets of products
(Bront, Mendez-Diaz, and Vulcano, 2009).

Passenger demand and utility modelling is also very impor-
tant in the airline schedule design process, and again the tradi-
tional assumption of independent demand (referred to as flight
leg independence in this literature) has been shown to miss an
important aspect of the fleet assignment problem, with more
realistic models being developed to take into consideration in-
terrelationships between itineraries using techniques such as a
spill and demand recapture model (Lohatepanont and Barn-
hart, 2004) and a passenger flow time-space network (Yan and
Tseng, 2002; Yan, Tang, and Lee, 2007).

2.2. Inaccessibility of passenger demand data

The development of optimisation algorithms that can make
use of more complex customer behaviour models leads to an-
other problem — how to obtain data about the actual demand
and utility of passengers for a given situation. The primary data
that airlines have to work from is historical booking records, but
it is well known that this demand is censored (or constrained)
by the presence of booking and capacity limits on past demands
(McGill and Van Ryzin, 1999; Lohatepanont and Barnhart, 2004).
Techniques for uncensoring (or unconstraining) this demand
have traditionally relied on the independent demand assumption
(often referred to as single-class demand unconstraining meth-
ods), but more recent work has included multi-class and multi-
flight spill methods (Ratliff, Rao, Narayan, and Yellepeddi, 2008).
Each possible itinerary in a market receives a rating, based on
an industry standard known as the Quantitative Share Index
(OSI)', for measuring the “attractiveness” of an itinerary, taking
into account time of day of departure, length of trip, and number
of connections. These methods require customer choice mod-
els that include the concept of passenger utility that takes into
account factors related to the QSI.

A second difficulty with estimating demand is the presence
of a large number of rare itineraries in large hub-and-spoke net-
works. The number of passengers travelling on many itineraries
is very low, but together these can form an important part of rev-
enue (McGill and Van Ryzin, 1999). A similar problem is the
lack of data on departure time preferences on sectors with low
demand, as there will be few flights per day. These difficulties
are typically resolved by some form of data aggregation, and
here it is important to select aggregation groups so that impor-
tant characteristics related to passenger utility are retained.

Lastly, there is the difficulty of taking competition into ac-
count when estimating demand. Current demand unconstrain-
ing approaches (see e.g. Ratliff et al., 2008) classify competition
for demand using three categories:

e Travel on the host airline
o Travel on a competing airline or
e No travel on this date (or do not fly demand).

! Also sometimes referred to as the Quality Service Index.



This is normally further simplified using the open competitor
assumption that competing airlines have available capacity, so
that it is assumed that the do not fly demand is negligible. This
approach uses the market share to estimate the amount of de-
mand on competing airlines as more detailed information is
hard to obtain, and ignores effects from competing utility except
between different products offered by the host airline. This ap-
proach suffers, however, when competition occurs from dissim-
ilar competitors such as a full-service airline competing with a
low-cost airline or with other low cost transport modes such as
buses. Low-cost competitors compete for a different type of de-
mand with a utility that is sensitive primarily by cost and less by
other quality of service indicators such as departure time, trip
duration and number of stops. In the leisure market, demand
may even spill from one OD pair to another based on price if
similar holiday experiences are offered at different destinations.

2.3. Passenger demand and schedule design

Yan and Tseng (2002) formulate schedule design as a kind
of network design problem in a time-space network, in which
the passengers are represented as explicit multicommodity flows
in the network designed by the aircraft variables. There is a
commodity for each OD pair, and the total commodity flow is
bounded above by the market demand. They use a standard
ticket price for each commodity on each flight leg, and apply
a “holding cost” to time passengers spend on the ground at in-
termediate stops, dependent only on OD pair and time spent.
The latter is the only way in which passenger utility with re-
spect to alternate itineraries is considered. Yan et al. (2007) ex-
tend this work to embed a more sophisticated passenger choice
model, in which the presence of competition in the market is
modelled by assuming passengers will be unavailable to the
airline if they have to wait too long to depart. The passenger
loss parameters require a complicated calculation taking into
account airline preferences, ticket prices, flight frequency and
travel time, which is nonlinear in the decision variables, and
seems to be decoupled from subsequent flights in a multi-flight
itinerary (only loss at the port of origin is considered). Lo-
hatepanont and Barnhart (2004) combine fleet assignment with
incremental flight schedule design, and take into account pas-
senger choice via a spill-and-recapture model based on earlier
work of Kniker (1998). The QSI (introduced in Section 2.2
above) is converted into a probability that passengers will be
recaptured by an itinerary if spilled from the preferred itinerary
for the market. The measure is independent of fare category,
and depends only on market. We note that itinerary-based mar-
ket share indicators are still a subject of current research, see
Coldren, Koppelman, Kasturirangan, and Mukherjee (2003),
for example. However like the QSI, Coldren et al. (2003), treat
the market (OD pair) as whole, e.g., only average fares for an
airline are considered.

3. Introducing passenger groups

3.1. Grouping passengers by their choice behaviour
A common feature of passenger choice models in sched-
ule design optimization is that passengers with the same OD

pair are treated identically. Furthermore the effects of passenger
choice on revenue are modelled in a relatively simple way: (i)
revenue penalty for long connections in multi-flight itineraries
(Yan and Tseng, 2002), (ii) lost passengers due to long waits for
departure (Yan et al., 2007) and (iii) lost passengers at itinerary-
based rates with recapture options (Lohatepanont and Barnhart,
2004). However both common sense and emerging research
indicate that the passenger market is segmented, with different
groups of passengers with the same OD pair showing differ-
ent passenger choice behaviours, and exhibiting different util-
ity functions with respect to a range of factors. For exam-
ple, Walker (2006) analyse empirical data to show that pas-
sengers with different time-of-day preferences show different
utility functions with respect to schedule delay. Walker (2006)
also indicates that whether the traveller is business or leisure, or
whether the traveller is more sensitive to their arrival time rather
than departure time, can affect their utility functions for sched-
ule delay. Koppelman, Coldren, and Parker (2008) also finds
differences in schedule delay utility for business versus leisure
travellers, and furthermore observes differences depending on
whether the trip is out-bound or in-bound. Walker (2006) finds
that the business and leisure segments put different dollar fig-
ures on factors such as total time for the trip, number of stops,
aircraft changes, and so on. This is confirmed by the work of
Garrow, Jones, and Parker (2007), who also showed that depar-
ture versus arrival sensitivity can affect preferred travel time,
with departure-sensitive travellers showing strong morning and
evening peaks, with arrival-sensitive passengers having a mid-
day peak.

We conclude that the airline passenger market is segmented,
and propose that schedule design optimization should be based
on revenue models that better reflect this market segmentation.

3.2. Identifying passenger groups

Designing an airline schedule around the airline product se-
lection behaviour of each individual potential customer is ob-
viously impractical, both because of the number of individu-
als and the unavailability of data at this level of detail. It is
necessary, therefore, to abstract airline demand into passen-
ger groups, according to characteristics that differentiate their
choice behaviour.

In short, we make several suggestions for simplication to
make passenger demand modelling practically tractable:

e passengers are grouped into those with similar utility func-
tions

e these groups can be reasonably inferred for each OD pair
from the OD demand and the distance and direction of
the destination from the origin

o utility translates directly into a price passengers are will-
ing to pay as a function of time

o the time-of-travel function take one of three forms:

— asymmetric preferring before a certain time (increas-
ing up to that time then dropping to zero)



— asymmetric preferring after a certain time (zero be-
fore the time and decreasing afterwards)

— symmetric about a certain preferred time

o the time-of-travel function is a step function with three
steps, associated with the three forms itemised previously.

We argue that this can be naturally modelled in an optimiza-
tion setting. For example, in multi-commodity flow models,
such as those of Yan and Tseng (2002) and Yan et al. (2007),
a commodity for each passenger group could be defined in-
stead of for each OD-pair. In itinerary-based models such as
those of Lohatepanont and Barnhart (2004), an extra subscript
would be required for passenger-itinerary variables. This is
likely to increase model size. However we propose that de-
parture time window should be a defining characteristic of a
passenger group, so the subnetwork for each group will be nec-
essarily limited. This will to some extent mitigate increases
in model size. Furthermore, dealing with larger models is a
challenge that drives the optimization research community for-
ward, so we hope this proposal, with its associated benefits for
improved revenue modelling, will stimulate such research. In-
deed, we have made a small start on such work: our companion
paper Akartunali, Boland, Evans, Wallace, Waterer, and Smith
(2010) studies an integrated airline schedule design and fleet
assignment problem, for which passenger groups provide the
necessary detailed information.

We have taken a pragmatic approach, applying a mix of
common sense and the insights from the empirical literature,
together with the insights of our industry partner and their anal-
ysis of airline passenger data (Evans, 2010). We view this as a
first step, that can be used to test the concept. Thus we focus
on what we believe are the key features. Of course a passenger
group must have an OD-pair, and represent a specified number
of passengers. The business versus leisure divide features in
most recent analysis; here we do not explicitly define those as
characteristics, but instead associate a fare with each passen-
ger group, representing what they are willing to pay to travel at
their preferred time. Since preferred time of day has been iden-
tified as having an important impact on schedule delay utility,
(see e.g. Walker, 2006), we also characterize passenger groups
by their departure time window, and a travel time utility curve,
which subtracts schedule delay disutility from the fare the pas-
senger is willing to pay to travel at their preferred time.

Clearly, substantial new market research would be required
to confirm that our method yields the “best” way of representing
passenger groups.

3.3. Basis of our approach to grouping passengers

In order to investigate the performance and scaling of trans-
port optimisation algorithms, it is desirable to be able to use
realistic passenger demand and fare profiles. However, passen-
ger demand and fare profile data, even when it exists, is usu-
ally confidential as it has significant commercial implications.
Data derived from passenger surveys would be ideal for our
purposes, but the literature in this area is quite sparse, (see e.g.
Walker, 2006; Garrow et al., 2007).

The passenger groups introduced in this paper are based on
the UK Department of Transport National Travel Survey 2006
(UK Department of Transport, 2006, Table 6.6b). This table
shows the morning and afternoon peaks, and a single broad
spread centred on the middle of the day. Time constraints are
tighter for the first two types, and such passengers are willing
to pay a higher fare to travel at their preferred time compared to
the third type.

Garrow et al. (2007) supports the above findings, notes that
most passengers are departure-time-sensitive, and also finds that
the minority arrival-time-sensitive passengers are generally mid-
day travellers, speculating that hotel check-in times are the cause.

Fare data is accessible for forthcoming flights, and passen-
ger load data is also publically available in some cases after the
flight. However, both types of data can only represent prefer-
ences for the offered itineraries.

For economic reasons, airlines must keep their high capital-
cost assets working continuously, and so must fly during the
middle of day, when passenger survey data suggests demand
is low. The airlines handle this via revenue management, seek-
ing to attract budget-conscious time-insensitive passengers onto
flights in the middle of the day, and by attempting to locate
middle-of-the-day capacity on flights between port pairs for
which there is low frequency of service, so passengers have lit-
tle choice. We note that this makes it more difficult to infer
passenger preferences from the above offered itineraries.

Cognizant of this limitation, one of the authors analysed
publically available airline schedules and fares, to infer pas-
senger demand (Evans, 2010). This paper analysed schedules
operating at the end of 2007 for 44 carriers flying to 994 differ-
ent airports worldwide. The data used only included scheduled
services, and did not include actual passenger data, so only the
available capacity of each leg was used in the analysis. This
analysis, described in more detail in Section 6.2 below, reveals
the start of the morning peak to be based on a departure time
of around 06:00. Interestingly, the evening peak is split so that
any legs due to arrive after about midnight will instead be de-
ferred so that they arrive at about 05:00 the following day. The
paper also reports an analysis of fare data on two typical busy
mid-week days on a single short-haul route with a high number
of flights.

Evans (2010) concludes that the data satisfies the following
hypotheses:

e Three types of time-sensitive passenger groups exist, with
preferred flying times consisting of a morning peak, an
evening peak and a broad spread around the middle of
the day.

o The preferred travel times for these passengers are based
mainly on local departure time, but there is an effect re-
lated to arrival time for long west-to-east legs for evening
departures.

Based on independent studies, (see e.g. Commision of the
European Communities, 2007; Civil Aviation Authority, 2008),
we assume morning and evening passenger groups consist of
about 25% business travellers and 75% leisure travellers, and



that the proportion of business travellers in any midday group
is negligible.

4. Introducing utility curve templates

This analysis is restricted to short-haul air travel where most
flying occurs during the day and evening, and there is similar
flying from one day to the next. In this context, we have noted
that most time-sensitive passengers fall into one of three types:

e Those wishing to travel early in the morning, some of
whom are business travellers who are to work at the des-
tination for a day and return in the evening;

e Those wishing to travel early in the evening, some of
whom are business travellers returning from a day trip or
business travellers travelling the night before to be ready
for an early morning meeting; and

e Those preferring to travel at a time that does not involve
early rising or late dining, and thus with a preference to
travel around the middle of the day.

We conjecture a fourth type of budget-conscious passen-
ger: those who are unconcerned with the time of flying (time-
insensitive), as long as the fare is low. The presence of this type
of passenger is inferred from the revenue management strate-
gies mentioned in Section 3.3 above that are in place at most
airlines around the world.

We refer to these four types of passenger as morning, evening,
midday and time-insensitive, respectively.

It would be interesting to try and map these passenger groups
onto real booking classes. However, the number of booking
classes for a flight is quite large, and the level of granularity
of the groups is quite coarse so that passengers in the same
group would have to be mapped to multiple (possibly up to a
dozen) booking classes. On the other hand a broad-brush map-
ping (to business/economy/budget) is more or less equivalent
to published estimates such as those of Commision of the Euro-
pean Communities (2007) and Civil Aviation Authority (2008).

In the first three cases, for the sake of simplicity, we as-
sume passengers are departure-time sensitive. In the context of
short-haul operations and midday travel, when time zone im-
pacts are relatively minor, we believe preferred arrival time can
reasonably be “mapped back” to preferred departure time, and
so restricting our attention to departure-time sensitive groups is
a reasonable approximation (see also Evans, 2010).

For each of the four passenger types, we propose a different
shape of travel time utility curve. The shapes for the first three
are shown in Figure 1. Moving from left to right across the
time axis, labelled t, we see the morning, midday and evening
curves respectively. In all cases, we use a piecewise constant
function with three pieces, defined over a time window. For
morning passengers, since we assume these are travelling for
some scheduled activity at their destination, we assume their
preference is to travel at the right time to make the activity,
but could be willing to travel earlier if the price was right. For

1
I
1 e, — 1
I I :
i oo o
— X :
! P! 1! |
: L ' !
I I
U

it

o~
o
o~
NS
o~
—=a
o~
wen
o
N3

Figure 1: Travel time utility curves for morning, afternoon and evening passen-
ger groups

evening passengers, we assume they need to complete some ac-
tivity at their origin prior to travel (e.g. completing the activity
they travelled for before returning home, or completing a day
at their home office before travelling for an early start the fol-
lowing day), and so reverse the shape of the curve for morning
passengers. Midday passengers simply have a preferred time
of travel, and are willing to travel either earlier or later, for the
right price. The curve used for time-insensitive passengers is
simply a flat line, indicating that they will only fly if the price is
right, and then would be willing to fly at any time for that price.

Before discussing our assumptions about these curves fur-
ther, we first define some notation and terminology. Since we
use a daily setting, we let 7~ denote the length of a day in time
units, e.g. minutes. So time parameters for passenger groups
are chosen from the interval [0, 7 ]. G denotes the index set of
all passenger groups, each g € G having an origin o, and desti-
nation d,. There are 17, passengers in group g € G. Each group
g € G also has an earliest departure time, tg, and latest departure
time, 7y, defining the start and end of the time window [z, 7g] in
which the passengers from this group are willing to travel. Each
group g € G has a preferred interval for travel, [t_g, t_Z,] - [t;, tg],
and a fare they are willing to pay to travel in that interval, p,.
We call these the peak interval and peak fare respectively; these
correspond to the peaks in the utility curves shown in Figure 1.

Given the time window, peak interval and peak fare for a
passenger group, the rest of the utility curve is specified by a
fixed formula, for each passenger type. We take the value of
time to be v8 = $68.97 and v* = $19.64 per hour for business
and leisure travellers respectively, based on the study of Garrow
etal. (2007), and thus the value of time for morning and evening
groups to be on average v = 0.25v% +0.75v, and v for midday
groups. We assume each utility curve has identical width u, =
fo — 1, for its three pieces, and so can compute the formulae

Py e
Py hst<f
Py(t) =1 pg—vug, I,—ug<t1<1,
Y y
Pg—2vug, o —2ug <t <1y —ug



for morning groups g, a similar formulae for evening groups,
while for midday groups g the formula is simply

=y e
n<tsE

Pg—Viuy, L€ [fg - ug,t_g] U [fe,t_[f, + ug].

&m={%’L

Of course time-insensitive passengers simply have utility func-
tion Py(t) = pg forall t € [0,77].

Other key assumptions we make in generating passenger
group data for our benchmark instances are itemized below. If
the user has additional data to hand, it would not be hard to re-
lax these assumptions and still apply the methodology. Indeed
our methodology is completely flexible, and allows passenger
groups to be defined with any peak interval, non-zero utility
width, shape and height. On a particular airline network for
which accurate and detailed passenger choice behaviour was
available, the precise peak interval, utility width, shape and
height could be supplied by the user.

e We assume that each OD-pair has a single time-insensitive
passenger group and that the proportion of time-insensitive
passengers may be dependent on the OD pair, i.e. there
is a constant for each OD pair (o, d), which we refer to
as ¢4 € [0, 1], so that the proportion of passengers in an
OD market allocated to the time-insensitive group is ¢, 4.
In the benchmarks generated to date, we have used the
same value of ¢ for all OD pairs, except those with low
demand.

e We assume that for any given OD pair, there is no over-
lap between peak intervals for the passenger groups with
that OD pair (other than with the time-insensitive group,
which has a single “peak” interval covering the whole
time period). For passenger groups of the same type, two
overlapping groups have the same impact on schedule de-
sign as a single larger group so this assumption is valid
for practical purposes. An overlap between two groups of
a different type would imply that two different sets of pas-
sengers with the same preferred departure time have dif-
ferent utility values, with different revenue implications
for schedule design. This impact is approximated in our
approach by setting the utility of that time point to a value
that reflects the proportion of passengers of each type. As
a consequence of the no-overlap assumption, the peak in-
terval (preferred time of travel) for morning, midday and
evening groups uniquely defines the group. Ideally, we
would have a more complex utility curve to represent the
case where passenger groups of different types overlap.
However at present there is insufficient data to support
this level of detail.

e For each OD pair (o0, d), there is a basic length of time,
which we call the unit width for that pair, denoted by u, 4,
so that for all passenger groups g € G with 0o, = o0 and
d, = d, ug = p,q for g a morning or evening group,
and u, = 2u,4 for g a midday group. The difference
for midday travellers is due to our assumption that their
preferred travel time arises from a desire to avoid early or

late travel, rather than from a need to travel before or after
a particular activity, and our assumption that they are pre-
dominantly leisure travellers. Both factors imply greater
flexibility for midday groups. The use of a unit width
for each OD pair reflects the idea that passengers’ will-
ingness to be flexible in the time they travel is a function
of the frequency of service on the OD-pair; clearly pas-
sengers in remote locations expect to wait longer for ser-
vice, whereas passengers travelling between major cities
will expect a flight close to their preferred travel time. In
other words, the more itineraries available to passengers
from an OD pair, the narrower their utility curve will be.

We discuss the latter point further in the next section.

5. Creating passenger groups

In this section, we describe how passenger groups are cre-
ated, and how the time of day data, as well as the data defining
the travel time utility curves, are determined for each group.

5.1. Calculating unit width

In order to generate specific passenger groups and data val-
ues for those groups, we first calculate the unit width value , 4
for each OD pair (0, d). As mentioned above, we postulate that
passengers willingness to be flexible about when they travel,
(and hence the unit width), depends on the frequency of ser-
vice they expect to see on that OD pair. At first sight, one might
think this is a function of D, 4, the given market demand for OD
pair (o, d) (total number of passengers wishing to travel (daily)
from o to d, generated as described in Akartunali et al. (2011)).
However this figure could be misleading. To illustrate, con-
sider an OD pair (o, d) where the flight network includes direct
flights, but where there is also a reasonable one-stop service
via port i. Then the frequency of the one-stop service depends
on the expected frequency for OD pairs (o, i) and (i,d). This
could get quite difficult to estimate, since these in turn depend
on expected frequency on indirect paths, so for simplicity, we
assume that frequency of one-stop services (or other indirect
services), such as (o, i,d), can be well estimated from the OD
demands D, ; and D;,;. We assume whichever is the smaller of
these creates a bottleneck, and the frequency of service is pred-
icated on that value. We thus solve a maximum flow problem
for each OD-pair, to maximize the flow from o to d on all rea-
sonable paths from o to d in the flight network (our definition of
“reasonable” is given in Akartunali et al. (2011)), with arc ca-
pacities give by the values D; ; for each arc (i, j). We call the re-
sulting maximum flow value the surrogate demand, denoted by
D, 4 for each OD pair (o, d). This is converted to approximate
the number of services that might be available to the OD pair,
N;¢", by using the average aircraft capacity, while accounting
for average load factors. We also scale down by 1 — ¢, 4, since
airlines typically do not put on services to meet the low-budget
demand, instead using revenue management to manipulate that
demand to “fill gaps”.

To determine unit width u, 4 from expected service frequency
N;¢)", we assume that passengers are willing to be flexible enough



to wait for the interval of time between services, without reduc-
tion in their utility, and simply assume an even spread of service
over the available time. Since most airports do not operate 24
hours per day, we define the airport operating interval, which
we take to be 18 hours, (e.g. if the port operates from Sam to
11pm), denoted by 7., and assume services are spread across
this interval. Thus unit width can calculated simply as

serv
Mod = 7~0per/N0,d .

5.2. Creating passenger groups

Since unit width determines the width of the peak inter-
val, u,, for each passenger group g, and since we make the
assumption that no two passenger groups (other than the time-
insensitive group) can have overlapping peak intervals, we see
that creating the passenger groups for each OD pair is simply
a matter of stepping through time. (We also assume that each
time is in a peak interval for some passenger group. If the de-
mand profile doesn’t support this, then we would expect the
passenger group to be assigned zero passengers in Section 6,
so the group could be ignored.) Defining morning to end at
time 7, and evening to start at time 7,, we can simply cre-
ate a passenger group for each interval of length , s from the
start of the day until 7,,, then create a group for each interval
of length 2u, 4 until 7., and finish by creating a group for each
interval of length 1, 4 until the end of the day. (In addition, we
must create the single time-insensitive group: this is explained
in Section 4.) However depending on how nicely 7, T, and
T, — T,, divide by u, 4, this could lead to a somewhat skewed
collection of passenger groups. So instead we start at the cen-
tre of the day, and work outwards. Our algorithm is specified
as Algorithm 1. It is helpful to note that if the peak interval
[, fg] falls so that its mid-point is at time T, or earlier, it is
deemed a morning group, at time 7, or later an evening group,
and otherwise it is a midday group. The first while loop calcu-
lates the time characteristics for intervals before midday, taken
to be (T, + T,)/2, and the second while loop does it for after
midday intervals. We use A to denote the set of morning (“am”
groups, M to denote the set of midday groups, and P to denote
the evening (“pm”) groups created for an OD pair. Note that we
only explicitly describe calculation of the peak interval param-
eters 7, and 7, for each group g, since all other times, including
ug, can be calculated from these or from y, 4 using the formulae
given in Section 4 and the knowledge of which type of group it
is.

As Algorithm 1 is stated, it creates passenger groups across
the whole time interval [0, 7 ]. However, as mentioned earlier,
some airports may have constrained operating hours, and this
may affect passenger expectations for travel. In such cases, one
could just take zero to be first time at which passengers may be
willing to travel, and replace 7 in Algorithm 1 with the length
of the time interval over which passengers wish to travel.

We note that this algorithm and some of our assumptions
might need to be adjusted for longer flights, particularly in a
west-to-east direction, when changes in time zones would seem
likely to affect passenger preferences. We discuss this point
further in Section 6.

Data: Unit width y, 4 for each OD pair (o, d)
Result: The set of passenger groups G, together with
time characteristics of each group g € G
Initialize g := 0;
forall OD pairs (0,d) do
SetA:=0,M :=0Qand P := 0;
Setg:=g+1,0, :=0andd, :=d;
Create the time-insensitive group:
set t_g, :=0and t_f; =T,
if p,y < % then
Setg:=g+1,0, :=0and d, :=d;
Create a first midday group:
calculate ¢ := %
set fg =1 — U,q and t'Z, =1+ Uogs
add g to M,
Sett:=1— o
while r > 0 do
Setg:=g+1,0, :=0and d, :=d;
if t — u,q > T, then
Create another midday group:
set fy := 1 — 24,4 and 7y := 1
add g to M,
Sett:=1—2Uuq;
else
Create a morning group:
set t'g =1 — U,g and t'z, =1
add g to A;
Sett:=1— o

end

end

Sett:= Ttle 4y

while 7 < 7 do

Setg:=g+1,0, :=0and d, :=d;

if t + poq < T, then

Create another midday group:
set t'g :=tand t'g, =1+ 2oq;
add g to M,

Sett:=1+2Uuq;

else

Create an evening group:

set t_g, :=tand fg =1+ Uogs
add g to P;
Sett:=1+ o

end

end
end

end

SetG :={1,...,g}
Algorithm 1: Creating passenger groups and their time char-
acteristics



To complete our specification of the travel time utility curve
for each passenger group, we need to determine the peak fare
pg for each group g.

5.3. Calculating peak fares

For each passenger group, we need to determine the fare
passengers in the group are willing to pay to fly at their pre-
ferred time. To do this, we adopt a standardized fare profile,
which describes fare variation by time of day, irrespective of
OD pair. The fare profile is thus a function f(#) defined over
t € [0,77]. We discuss this function and how we arrive at it in
more detail below. For now, we note only that it is normalized,
and applied to a specific OD-pair by scaling with OD-specific
costs, for example, related to the shortest path in the flight net-
work between the origin and destination. This gives a fare pro-
file, f,4(t) = a@,4f(2), specific to OD pair (o, d), where @, 4 is
the scale factor. For each passenger group g € G, we then cal-
culate the average fare over its peak interval to arrive at the peak
fare, i.e. we set

fztffg ﬁ’g’dg (t)dt
TR

The scale factor «, 4 is computed so that the minimum fare
seen in f maps to an estimate of the lowest fare one would ex-
pect to see for travel from o to d. We take this to be b + tgj:l“r,
where b and r are assumed to be industry standard values indi-
cating the fixed cost and per unit flight time charge, per passen-
ger, per trip respectively, and tgjid“ indicates the least flight time
a passenger could reasonably expect to accumulate in travelling
from o to d in the given flight network. For these first two pa-
rameters, we use the current industry standards of b =$50.50
and r =$0.60 per minute flight time. Thus «,4 can be calcu-
lated by

Qoa = (b+1007)/ ter%iy_] f.

We note that for each time-insensitive group g, we simply
set p, to be the minimum fare that could be expected for its OD
pair, i.e. p, = b + t(r;;,‘;gr.

To determine peak fares for time-sensitive groups, we now
return to discuss our standardized fare profile, f(¢), in more de-
tail. To derive such a profile, our industry partner analysed fare
data on two typical busy mid-week days on a single 700km
short-haul route between two large cities with a high number
of flights. This could be classed as a “shuttle” route, i.e. a
relatively short route with a high frequency of service. The rea-
son for analysing such a route is the hope that it would reveal
willingness to pay, independent of offered capacity, and inde-
pendent of strategies used by airlines to smooth demand. Such
a route would also maximize the length of time over which data
points could be observed.

The airline chosen for analysis was one with the following
characteristics: (i) on the route selected, the interval between
flights ranged from 15 minutes to one hour according to the
expected passenger load, and (ii) its revenue management sys-
tem includes multiple fare categories, with higher fares at times
where there is more demand and where customers have proven
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Figure 2: Actual and fitted fare profiles

Type (v) T, oy Wy
Morning 7.0 1.0 75

Midday 11.0 3.5 30
Evening 1775 2.0 75

Table 1: Fare profile function parameters

willing to pay higher prices to travel at those times. These char-
acteristics enabled us to gather fare data from the airline’s web
booking system. Data comprising the lowest available fare and
the number of scheduled flights in each hour was averaged over
flights in both directions on the route to minimise the effects of
“waves” of flights (sometimes known as “banking”), and com-
pared between two days to give an indication of variability.

Both days showed morning and evening peaks at the same
time (around 7am and 6pm respectively, which appear to be
very close to the peaks in Figures 2 and 4 of Koppelman et al.
(2008)). Both also showed soft midday peaks. However there
was significant variation between the two days in terms of rela-
tive fare values: Tuesday’s morning peak was much higher than
its evening peak, whereas the two peaks for Wednesday (see
Figure 2), were of similar height (see Evans (2010) for further
details).

The data for these two days was fitted with a combination
of 3 normal distribution functions, one for each of the morning,
midday and evening peaks, i.e. we constructed

f(®) = h(@) + h" (1) + h* (1)
where each function took the form

(t- ‘z'y)2

P(@) = wy exp(—T
y

) + 80
for each y € {a,m, e}, where 7, and o, are the two normal dis-
tribution function parameters (representing mean and standard
deviation respectively), and w, is a weighting factor. ($80 was
the “baseline” fare for this route.) The parameters found to best
fit the two days of data are shown in Table 1, and resulting func-
tion f is shown in Figure 2.

Like the passenger group peak interval definitions, the fare
profile might need to be adjusted for longer flights, particularly



in a west-to-east direction. We discuss this further in the next
section.

6. Demand allocation

The final step of our approach is to partition market demand
D, , for each OD pair, (o, g), (calculated in our first paper Akar-
tunali et al. (2011)), amongst the passenger groups for that OD
pair. We call this step demand allocation.

For each time-insensitive group g the number of passengers
associated with this group, 7, is simply

Ng = Po,.d, Doy,

where ¢, 4, is the fixed proportion of time-insensitive passen-
gers. In rare cases the surrogate demand for the OD-pair is very
low, in which case yu, 4 exceeds 7 /2. If this occurs, all the pas-
sengers for this OD-pair are time-insensitive and we have

¢og,dg =L

As for the peak fare calculation, for time-sensitive groups
we use a standardized demand profile: a function d(¢) for each
t € [0, 77] that indicates the proportion of demand seen at time ¢.
We discuss below how we arrive at this function. The function
is normalized so that the area under the curve is 1, and then the
number of passengers 77, associated with passenger group g € G
is calculated as follows:

T
m=a—%%wwuf d(0)d).
-

We note that for both the fare and demand profiles, our main
motivation for using standardized profiles is the lack of ade-
quate data to support alternatives. The data collected to date
is not rich enough to allow us to differentiate demand profiles
by OD pair characteristic (with the possible exception of travel
direction, which we discuss further below). Since this seems
to be emerging as a growing field of research, we hope in the
future studies will be carried out that will permit greater differ-
entiation of OD pairs. In the meantime, we adopt standardized
profiles as a pragmatic approach that we believe yields realistic
data useful for optimization benchmarks.

6.1. Finding the standardized demand profile

To determine the function d(f), our industry partner anal-
ysed the same shuttle route data as was used for deriving the
fare profile (see Evans (2010) for more detail). In this case,
the number of flights per hour was recorded across each of the
two days investigated. The data for one of those days is plot-
ted in Figure 3. Again, the data showed strong morning and
evening peaks, with a soft midday peak. Figures 4 and 5 of
Garrow et al. (2007) show similar results, with the morning and
evening peaks occurring for one type of travellers, and the cen-
tral peak for another. We thus again seek to fit a combination of
3 normal distributions to this data, i.e. we construct

d() = g + ") + (D)
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Figure 3: Actual and fitted demand profiles

Type () My gy Wy

Morning 7.0 1.0 5
Midday 11.0 35 2
Evening 17.75 2.0 5.5

Table 2: Demand profile function parameters

where each function took the form

(- Ty)2
202

B'(1) = wy exp(— )

for each y € {a, m, e}, where 7, and o, are the two normal dis-
tribution function parameters (representing mean and standard
deviation respectively), and w, is a weighting factor. (d(z) will
be set to d(7) multiplied by a normalizing factor.) The parame-
ters found to best fit the two days of data are shown in Table 2,
and the resulting function ﬁ(t) is shown in Figure 3.

We note that Walker (2006) also suggests approximating the
demand distribution by time of day with a combination of nor-
mal distributions.

6.2. Differentiating by direction of travel

As we have already mentioned, passengers’ preferred travel
time can be affected by the length of the trip, and its direction,
in particular if a change in time zone is involved. Research
presented by Walker (2006), Garrow et al. (2007) and Evans
(2010) suggests that travel time preferences are similar for all
directions of travel except for west-to-east, and the difference is
more noticeable for travel which includes at least one time zone
change, and takes more than 3 hours.

To illustrate, we give a sample of the results given in Evans
(2010), obtained by analysing schedules operating at the end
of 2007 for 44 carriers flying to 994 different airports in Eu-
rope, North America, Asia, Africa, South America and Aus-
tralia, including all airlines in the Star alliance, all airlines in
the oneworld alliance, Malaysia Airlines and Jetstar. The data
used only includes scheduled services, and does not include ac-
tual passenger data, so only the available capacity of each leg is
used in the analysis. Plots of total flight capacity by local hour



of departure are given for all non-west-to-east flights (with net
west-to-east travel less than 750km), broken down by length of
trip, in Figure 4. Similar plots for west-to-east travel are shown
in Figure 5 (the case of trips less than 1000km is omitted, be-
cause it is very similar to the non-west-to-east case).

Non-West-East Weekday Capacity vs Dep Hour
m

Non-West-East Weekday Capacity vs Dep Hour
Total Distance 0-1000 km

Total Distance 1000-2000

80000
150000 |

50000
0000 — g

Capggity

S0

50000
20000

o i T T T o t T T T

Departure hour (local ime) Departure hour (local time)

Non-West-East Weekday Capacity vs Dep Hour
Total Distance 2000-3000km

Non-West-East Weekday Capacity vs Dep Hour
Total Distance 3000-4000km

-
200 |
Bawo |
510000 —

5000

Departure hour (local time) Departure hour (local time)

Figure 4: Non W-E Capacity versus local hour of departure
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Figure 5: W-E Capacity versus local hour of departure

The differences are particularly apparent for trips of greater
than 2000km. In these cases, it appears that a significant por-
tion of the late afternoon/evening demand is shifted to arrive
after Sam instead of before midnight. This may be a natural
consequence of airport curfews, or may reflect actual passenger
preferences.

Thus we adjust our demand profile function on OD pairs
corresponding to long west-to-east trips, by shifting the portion
of demand that would arrive between midnight and 5am to the
next day. Mathematically, we construct an OD-specific demand
profile

d(t) + d(Ty + 1= T5"), T5" <t <T5" + T¢ - T}

O,
d(),

doa(r) = Ty<t<T§

otherwise,
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where [T, T;] is the interval of time during which trips depart-
ing o can be expected to arrive at d in the midnight to Sam in-
terval, and T°%" is obviously 5am in commensurate time units.

This is clearly something of an ad hoc adjustment, and in
future work, we plan to derive fare and demand profiles, and
adjust the timing for types of groups, differentiated by direction
and length of travel.

7. Benchmark problems

In this section we present summary statistics of the 33 bench-
mark instances created using the methodology described in this
paper, taking as input the flight network and OD-pair demand
data generated in our first paper Akartunali et al. (2011). The
complete set of instances and supporting material is available at

the URL www.infotech.monash.edu.au/~wallace/airline_

benchmarks/ along with the reference Evans (2010).

The 33 instances consist of 30 with a single hub, and 3 with
two hubs. The instances are grouped into threes. Each group
of three networks were generated using the same parameters
except the number of spokes which was varied to provide net-
works of different sizes. The instances show a variety of charac-
teristics, from small to large in terms of the total passenger mar-
ket, flying range, and size of the flight network. They also have
differing degrees of asymmetry in the geometry of the flight
network, as well as in the OD-pair demand, which also range
over the proportion of passengers with an available direct ser-
vice, versus those with at best a one-stop service. More details
can be found in Akartunali et al. (2011).

Here in Table 3 and 4 we show for each instance the flight
network size, total number of OD-pair demands, total number
of passengers and summary statistics of the passenger load on
arcs that was used to infer the OD-pair demand. We also give, in
the column “Pax groups”, the total number of passenger groups
generated by the methodology we have described here, which
ranges from just over 100 up to nearly 25,000 in the largest
case. In the four columns headed “OD-pair pax groups” we
give summary statistics of the number of passenger groups gen-
erated for each OD-pair. These range from 1, meaning that the
expected frequency of service on that OD-pair was so low that
only the time-insensitive group was generated, to a high of 29.
In the final four columns, headed “OD-pair max revenue” we
give summary statistics for the total revenue available in each
OD-pair market. This is calculated by multiplying the number
of passengers in each group by its peak fare, and is the revenue
that would be collected if every passenger could be carried at
their preferred time of travel. In these tables the hub name is
preceded by either an “s”, “m”, or “1”, indicating whether the
instance is considered to be a short-, medium-, or long-haul net-
work, respectively.

One caveat to these results is that our approach is tailored
to short-haul networks. Long-haul networks have much higher
ratios of single-leg passengers and involve rather more compli-
cated patterns of demand versus time of day that are based on
some combination of departure time, arrival time, and flying
time. Extending our approach to these cases is the subject of
future work.



Hub Spoke OD Pax Arc pax count Pax OD-pair pax groups OD-pair max revenue

name ports  Arcs  pairs count avg stdev min  max groups avg stdev min max avg stdev min max
sHAA 24 48 474 71410 1487.71 1340.70 124 4860 1849 3.89 4.09 1 29 28866.20  90282.50  298.99  821120.00
sHBA 72 144 3823 106474  739.40  821.65 28 4860 7272 190 1.86 1 29 502090  23758.40 19595  536219.00
sHCA 120 240 10624 224898  937.08  911.61 68 4860 23436 221 191 1 29 3714.04 2367230  191.26  737973.00
sHDA 24 48 446 71410 1487.71 1340.70 124 4860 1788 4.00 437 1 29  30256.00  86200.90  252.15  809780.00
sHEA 72 144 3840 106474  739.40  821.65 28 4860 7484 195 1.90 1 29 4997.48 2379250  200.63  583023.00
sHFA 120 240 10877 224898  937.08  911.61 68 4860 24278 223 195 1 29 3630.56  22979.50  191.26  717117.00
sHGA 24 48 480 53230 1108.96 1189.57 83 4860 1452 3.02  3.51 1 29 22731.40  67088.00 24747  623008.00
sHHA 72 144 3795 104278  724.15 808.63 28 4860 6629 1.75 1.72 1 29 535416 2676540  219.37  666237.00
sHIA 120 240 9766 173132 72138  789.65 36 4860 17063 1.75 1.64 1 29 345596  19337.30 19595  566700.00
sHIA 24 48 492 53230 110896 1189.57 83 4860 1523 3.09 3.60 1 29 22262.50  63088.20 23342  545797.00
sHKA 72 144 3833 104278  724.15 808.63 28 4860 6963 1.82 1.79 1 29 5293779 2492550  219.37  611522.00
sHLA 120 240 10175 173132  721.38  789.65 36 4860 18053 1.77 1.65 1 29 333520  19553.70  200.63  604141.00
mHMA 12 24 116 17564  731.83  810.76 50 2640 189 1.62 1.88 1 12 45979.80 132320.00  317.73  901327.00
mHNA 36 72 1051 56430  783.75  706.39 55 2640 1588 1.51 1.50 1 12 1441220  51170.80  238.10  618896.00
mHOA 60 120 2352 51246  427.05 47920 15 2640 2532 1.08 0.63 1 12 6570.01  39141.20  205.31 1046240.00
mHPA 12 24 128 17564  731.83  810.76 50 2640 208 1.62 1.92 1 12 4167520 113428.00  256.84  790089.00
mHQA 36 72 1092 56430  783.75 70639 55 2640 1676 1.53 1.53 1 12 1391240  50064.00  214.68  673718.00
mHRA 60 120 2372 51246  427.05  479.20 15 2640 2588 1.09 0.64 1 12 6520.37  40317.60  205.31 1143550.00
IHSA 12 24 128 20062 83592  403.54 253 1472 176 137  1.00 1 4 66593.60 102355.00 264020  611666.00
IHTA 36 72 976 48332  671.28 33273 106 1472 1006 1.03  0.30 1 4 2490250 7193400 19595  678646.00
IHUA 60 120 2610 56192  468.27  256.74 155 1472 2616 1.00  0.09 1 4 10321.80 3774550  392.67  543435.00
IHVA 12 24 138 20062 83592  403.54 253 1472 197 142 1.05 1 4 6131250  99331.00 1759.61  561901.00
IHWA 36 72 1047 48332 67128 33273 106 1472 1077 1.03  0.29 1 4 23086.90 6715140 36457  633348.00
IHXA 60 120 2773 56192 46827  256.74 155 1472 2779 1.00  0.08 1 4 9691.16  35657.60  369.25  520756.00
IHYA 12 24 100 14160  590.00  327.26 212 1472 106 1.05 043 1 4 8883250 157798.00 907.91  970799.00
IHZA 36 72 715 19526  271.19  243.00 46 1472 721 1.01  0.16 1 4 16899.60  59693.20  434.83  851970.00
IHIA 60 120 1955 55908 46590 25845 155 1472 1961 1.00 0.10 1 4 1783840  66370.60 697.13  833341.00
IH2A 12 24 106 14160  590.00  327.26 212 1472 112 1.05 042 1 4 83840.40 135377.00 5055.56  905859.00
IH3A 36 72 744 19526  271.19  243.00 46 1472 750 1.01 0.16 1 4 16220.10  51214.00  865.75  786835.00
1H4A 60 120 2131 55908 46590 25845 155 1472 2137 1.00  0.09 1 4 16301.30  53455.60  720.55  695456.00

Table 3: Summary statistics for single hub benchmark instances

Hub  Spoke OD Pax Arc pax count Pax OD-pair pax groups OD-pair max revenue

name  ports Arcs  pairs count avg stdev min  max groups avg stdev min max avg stdev min max
sHAB 22 74 486 94290 1274.19 1030.61 167 4860 2258 4.61 379 1 29 37322.10 58811.00 238.10 580291.00
sHCB 70 226 3849 184406 81596  888.14 25 4860 10857 2.82 248 1 29 8684.41 22447.30 224.05 445257.00
sHEB 118 378 10159 287234  759.88 82592 35 4860 24261 239 2.16 1 29 5496.57 20888.10 214.68 667310.00

Table 4: Summary statistics for two hub benchmark instances
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As can be seen from the tables, the instances display a range
of features. They offer good opportunities for testing optimiza-

tion approaches, with the ability to investigate performance against

various characteristics, as well as to test scalability algorithms.

8. Conclusions and future work

In this paper, we have argued that market segmentation and
the use of passenger groups represent a natural “next step” in
passenger choice models for use in airline planning optimiza-
tion. We have described one approach to defining such groups,
which attempts to balance sometimes divergent empirical in-
sights against what can practically be instantiated using cur-
rently available data. We have presented a methodology by
which more realistic passenger group data can be generated
from a given flight network and OD-pair demands, and pro-
duced 33 benchmark instances exhibiting a range of character-
istics useful for testing optimization algorithms.

The data we have presented here can be used immediately
for testing alternative passenger choice models, provided an air-
line schedule is also available. We intend in future work to gen-
erate schedules to accompany this data, indeed Akartunali et al.
(2010) explores first steps in this direction. Clearly the gen-
eration of realistic schedules depends on the available airline
resources. While much data on aircraft types and configura-
tions, airline fleets, and operating costs is publicly available, in
future work, we plan to extend our benchmark data to include
aircraft, and so provide complete sets of input data for the flight
schedule design process. We hope that in doing so we can stim-
ulate further research in this hitherto less-studied area of airline
planning.
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