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Appendix 14.2 The optimal solution to the simple exhaustible 

resource depletion problem 

 

In this appendix, we derive the optimal solution to the simple exhaustible resource depletion 

problem discussed in Part 1 of this chapter. In doing this, we will make extensive reference to the 

solution method outlined in Appendix 14.1. 

 

The objective function to be maximised is: 
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Comparing this with the form and notation used for an objective function in Tables 14.2 and 14.3 it 

is evident that: 

 we are here using W (rather than J) to label the objective function; 

 the initial time period (t0) is here written as t = 0; 

 the terminal time (tT) is infinity: therefore we describe the terminal point as free; 

 there is a discounting factor present in the objective function: Table 14.3 is therefore 

appropriate; 

 the integral function which in general takes the form L(x, u, t) (ignoring the discounting term) 

here has the form U(Ct). It is a function of one variable only, consumption, which is a control 

variable (u). Note that we have written this variable as Ct rather than C to make it explicit that 
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the value of the control variable changes over time. No state variable enters the objective 

function in this problem, nor does time, t, enter the integral function directly (it enters only 

through the discounting factor). 

 

Be careful not to confuse U and u. The term U in Appendix 14.2 denotes utility; it is what is being 

maximised in the objective function; u in Tables 14.2 and 14.3 is the notation used for control 

variables. 

 

There are two state variables (the x variables in Table 14.3) in this problem: St and Kt, the resource 

stock at time t and the capital stock at time t, respectively. Corresponding to these two state 

variables are two state equations of motion (the equations 
.

x  = f(x, u, )t  in Table 14.3). These are 

.

t tS R   

and 

.

t t tK Q C   

 

There are two control variables in this problem: Ct and Rt (the rate of resource extraction). These 

are the two variables whose values are chosen by the decision maker to form a time path that will 

maximise the objective function. Note that in neither of the state equations of motion does a state 

variable (x) or time (t) appear as an argument of the function. 
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The economic system consists of: 

 the two state equations; 

 initial values for the state variables: the initial resource stock (S0, see equation 14.9) and the 

initial capital stock (K0, see footnote 5 in the main text); 

 a production function, linking output Q (which is neither a state nor a control variable) to the 

capital stock and rate of resource extraction at each point in time: 

Qt = Q(Kt, Rt) 

 

One final thing remains to be specified: the terminal state conditions. We do not state these 

explicitly in the text. However, by implication, the problem is one in which both the capital stock 

and the resource stock become zero at the end of the (infinite) planning horizon, so we have Kt= = 

0 and St= = 0 (i.e. x(tT) = xT = 0, in the notation of Table 14.3). As a result of x(tT) = 0 and tT 

free (with an infinite horizon), it is the third column from the right in Table 14.3 which is relevant 

for obtaining the solution to this problem. 
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The current-value Hamiltonian for this problem is 

 

HCt
 = U(Ct) + Pt(–Rt) + t(Qt – Ct) 

 

in which Pt and t are the co-state variables (shadow prices) expressed in units of current-value 

utility associated with the resource stock and the capital stock at time t respectively. After 

substituting for Qt from the production function, the Hamiltonian is 

 

HCt
 = U(Ct) + Pt(–Rt) + t(Q{Kt, Rt} – Ct) 

 

The necessary conditions for a maximum include: 
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The pair of equations 14.25a and 14.25b correspond to the ‘Max H’ condition ∂HC/∂u = 0 in Table 

14.3, for the two control (u) variables R and C. The second pair, 14.25c and 14.25d, are the 
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equations of motion for the two co-state variables [
.
μ =  – ∂HC/∂x] that are associated with the 

two state variables S and K. Note that in 14.25c the term –∂HC/∂S = 0 as S does not enter the 

Hamiltonian function. The four equations 14.14a to 14.14d given in the main text of this chapter are 

identical to equations 14.25a to 14.25d above (except that the equations in the text, rather loosely, 

use H rather than HC). 

Obtaining an expression for the growth rate of consumption 

 

An expression for the growth rate of consumption along the optimal time path can be obtained by 

combining equations 14.25a and 14.25d as follows (dropping the time subscripts for simplicity). 

First, differentiate equation 14.25a with respect to time, yielding: 
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ω ( )U C C  (14.26) 

 

Next, combine equations 14.26 and 14.25d to obtain: 
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Hence 
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( ) ω(ρ )KCU C Q    
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But since from equation 14.25a we know that ( ) ωt tU C  the previous equation can be re-

expressed as 

.
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Now by definition the elasticity of marginal utility with respect to consumption, , is 
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Noting that MU = U   (C), then the expression for  can be rearranged to give 
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Then 14.27 can be rewritten as 
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which is the expression we gave for the growth rate of consumption in the text. 


