Appendix 18.1 Mathematical derivations

(1) The present-value-maximising first-order condition derived from equation
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Differentiating 18.7b with respect to T and setting the result equal to zero gives
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equation 18.8a, as required



(2) Obtaining the alternative version of the first-order condition
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(3) The optimal rotation ati =0
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L’Hopital’s rule:
Suppose f(a) =g(a) =0,/ (a) and g~ (a) exist,and g~ (a) = 0, then
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Hence, as i goes to zero in the limit we have
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This implies that cutting will be done at an age T which maximises the average economic yield, (pST

—K)/T. This point is illustrated in Figure 18.7 (using a diagram that is an adaptation of one used in
Clark, 1990, p. 273). At the tangency point vertically above T = 99, the average economic yield (given

by the slope of the ray from the origin) is at its maximum.
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Figure 18.7 The optimising rotation at i = 0: maximising average economic yield



