Appendix 18.1 Mathematical derivations

(1) The present-value-maximising first-order condition derived from equation
18.7

$$
\begin{align*}
& \Pi=\frac{\left(p S_{T} \mathrm{e}^{-i T}-k\right.}{1-\mathrm{e}^{-i T}} \tag{18.7}\\
& \Pi=\frac{\left(p S_{T}-k \mathrm{e}^{i T}\right.}{\mathrm{e}^{-i T}-1} \\
& \Pi=\frac{\left(p S_{T}-k\right.}{\mathrm{e}^{-i T}-1}-k \tag{18.7b}
\end{align*}
$$

Differentiating 18.7 b with respect to T and setting the result equal to zero gives

$$
\begin{aligned}
& \frac{\mathrm{d} \Pi}{\mathrm{~d} T}=-1\left(p S_{T}-k\right)\left(e^{i T}-1\right)^{2} i \mathrm{e}^{i T}+\left(e^{i T}-1\right)^{-1} p \frac{d S_{T}}{d T}=0 \\
& \frac{\mathrm{~d} \Pi}{\mathrm{~d} T}=-\frac{\left(p S_{T}-k\right) i \mathrm{e}^{i T}}{\left(\mathrm{e}^{i T}-1\right)^{2}}+\frac{p \frac{\mathrm{~d} S_{T}}{\mathrm{~d} T}}{\left(e^{i T}-1\right)}=0 \\
& \frac{\left(p S_{T}-k\right) i \mathrm{e}^{i T}}{\left(\mathrm{e}^{i T}-1\right)^{2}}=\frac{p \frac{\mathrm{~d} S_{T}}{\mathrm{~d} T}}{\left(e^{i T}-1\right)} \\
& \frac{\left(p S_{T}-k\right) i \mathrm{e}^{i T}}{\left(\mathrm{e}^{i T}-1\right)}=p \frac{\mathrm{~d} S_{T}}{\mathrm{~d} T} \\
& \frac{p \frac{\mathrm{~d} S_{T}}{\mathrm{~d} T}}{\left(p S_{T}-k\right)}=\frac{i \mathrm{e}^{i T}}{\left(e^{i T}-1\right)}=\frac{i}{1-e^{-i T}}
\end{aligned}
$$

equation 18.8 a, as required
(2) Obtaining the alternative version of the first-order condition

$$
\begin{align*}
& \frac{p \frac{\mathrm{~d} S_{T}}{\mathrm{~d} T}}{\left(p S_{T}-k\right)}=\frac{i}{1-e^{-i T}} \tag{18.8a}\\
& p \frac{\mathrm{~d} S_{T}}{\mathrm{~d} T}=\frac{i\left(p S_{T}-k\right)}{1-e^{-i T}} \\
& p \frac{\mathrm{~d} S_{T}}{\mathrm{~d} T}=\frac{i p S_{T}-i k}{1-e^{-i T}} \\
& p \frac{\mathrm{~d} S_{T}}{\mathrm{~d} T}=\frac{\left.i p S_{T}-i p S_{T} \mathrm{e}^{-i T}+i p S_{T} \mathrm{e}^{-i T}-i k\right)}{1-e^{-i T}} \\
& p \frac{\mathrm{~d} S_{T}}{\mathrm{~d} T}=\frac{i p S_{T}\left(1-\mathrm{e}^{-i T}\right)+i p S_{T} \mathrm{e}^{-i T}-i k}{1-e^{-i T}} \\
& p \frac{\mathrm{~d} S_{T}}{\mathrm{~d} T}=i p S_{T}+i\left(\frac{p S_{T} \mathrm{e}^{-i T}-k}{1-e^{-i T}}\right) \\
& p \frac{\mathrm{~d} S_{T}}{\mathrm{~d} T}=i p S_{T}+i \Pi \tag{18.8b}
\end{align*}
$$

(3) The optimal rotation at $\mathbf{i}=0$

$$
\begin{equation*}
\frac{p \frac{\mathrm{~d} S_{T}}{\mathrm{~d} T}}{\left(p S_{T}-k\right)}=\frac{i}{1-e^{-i T}} \tag{18.8a}
\end{equation*}
$$

By l'Hopital's rule:

$$
\lim _{i \rightarrow 0} \frac{i}{1-e^{-i T}}=\frac{1}{T}
$$

L'Hopital's rule:
Suppose $f(a)=g(a)=0, f^{\prime}(a)$ and $g^{\prime}(a)$ exist, and $g^{\prime}(a) \neq 0$, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}
$$

Hence, as i goes to zero in the limit we have

$$
\begin{gathered}
\frac{p \frac{\mathrm{~d} S_{T}}{\mathrm{~d} T}}{\left(p S_{T}-k\right)}=\frac{1}{T} \text { or } \\
p \frac{d S_{T}}{d T}=\frac{\left(p S_{T}-k\right)}{T}
\end{gathered}
$$

This implies that cutting will be done at an age T which maximises the average economic yield, $\left(p S_{T}\right.$ $-k) / T$. This point is illustrated in Figure 18.7 (using a diagram that is an adaptation of one used in Clark, 1990, p. 273). At the tangency point vertically above $T=99$, the average economic yield (given by the slope of the ray from the origin) is at its maximum.

Figure 18.7 The optimising rotation at $i=0$: maximising average economic yield

