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Appendix 3.1 The Lagrange multiplier method of solving constrained 

optimisation problems 

 
Suppose we have the following problem in which a function of three variables is to be 

maximised subject to two constraints: 
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To obtain a solution to this problem, we begin by writing the Lagrangian (L) for the 

problem. The Lagrangian consists of two components. The first of these is the function to 

be maximised. The second contains the constraint functions (but without being set equal to 

zero), with each constraint being preceded by a separate Lagrange multiplier variable. The 

Lagrangian is the sum of all these terms. 

 

So in this case the Lagrangian, L, is 

 

)x,x,h(xλ)x,x,g(xλ)x,x,f(x)λ,λ,x,x,L(x 3212321132121321    (3.28) 

 

in which 1 and 2 are two Lagrange multipliers (one for each constraint) and the term 

L(x1, x2, x3, 1, 2)  signifies that we are now to regard the Lagrangian as a function of the 

original choice variables of the problem and of the two Lagrange multiplier variables.  
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We now proceed by using the standard method of unconstrained optimisation to find a 

maximum of the Lagrangian with respect to x1, x2, x3, 1 and 2. The necessary first-order 

conditions for a maximum are 
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These are solved simultaneously to obtain solution values for the choice variables.  

 

The second-order conditions for a maximum require that the following determinant be 

positive: 
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For a constrained maximum, a sufficient second-order condition can be stated in terms of the signs of the 

bordered principal minors of the Hessian matrix. Details of this condition are beyond the scope of this 

appendix, but can be found on page 386 of Chiang (1984).  

 

The Lagrange multiplier method is widely used in economic analysis generally, and in resource and 

environmental economics particularly. This is because the Lagrange multipliers have a very useful 

interpretation in analysis. They are 'shadow prices' on the constraints. In the case of a constrained maximisation 

problem as considered above, this means that the value of a Lagrange multiplier tells us what the effect on the 

maximised value of the objective function would be for a small - strictly an infinitesimal (or vanishingly small) 

- relaxation of the corresponding constraint would be. The same interpretation arises in constrained 

minimisation problems. Clearly, this is very useful information. We now illustrate this interpretation using a 

simple example from an environmental economics context. We consider the problem of the least-cost allocation 

across sources of a reduction in total emissions, which problem will be discussed at length in Chapter 6. 

  

Suppose that there are two firms, 1 and 2, where production gives rise to emissions M1 and M2. In the absence 

of any regulation of their activities, the firms' profit maximising emissions levels are 1000 and 7500 tonnes 

respectively. The firms can cut back, or abate, emissions, but so doing reduces profits and is costly. Further, 

abatement costs as a function of the level of abatement vary as between the two firms. The abatement cost 

functions are 
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where A1 and A2 are the levels of abatement, the amount by which emissions in some regulated situation are 

less than they would be in the absence of regulation. 

 

The regulatory authority's problem is to determine how a reduction in total emissions from 8500 = (1000 + 

7500) to 750 tonnes should be allocated as between the two firms. Its criterion is the minimisation of the total 

cost of abatement. The problem is, that is, to find the levels of A1 and A2, or equivalently of M1 and M2, which 

minimise C1 plus C2 given that M1 plus M2 is to equal 750. Formally, using M1 and M2 as the control or choice 

variables, the problem is  

 

min C1 + C2 

 

subject to 

 

M1 + M2 = 750 

 

Substituting for C1 and C2 from equations 3.29.a and 3.29.b, and writing the Lagrangian, we have 
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where the necessary conditions are 
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Eliminating   from equations 3.31.a and 3.31.b gives 

 

-30 + 0.02M1 = -20 + 0.002M2       (3.32) 

 

and solving equation 3.31.c for M1 gives 

 

M1 = 750 - M2          (3.33) 

 

so that substituting equation 3.33 into equation 3.32 and solving leads to M2 equal to 227.2727, and then using 

equation 3.33 leads to M1 equal to 522.7272. The corresponding abatement levels are A1 equal to 477.2728 and 

A2 equal to 7272.7273. Note that firm 2, where abatement cost are much lower than in firm 1, does 

proportionately more abatement. 

 

Now, in order to get the allocation of abatement across the firms we eliminated  from equations 3.31.a and 

3.31.b. Now that we know M1 and M2 we can use one of these equations to calculate the value of   as -

19.5455. This is the shadow price of pollution, in the units of the objective function, which are here £s, when it 

is constrained to be a total emissions level of 750 tonnes. This shadow price gives what the impact on the 

minimised total cost of abatement would be for a small relaxation of the constraint that is the target regulated 

level of total emissions. To see this, we can compare the minimised total cost for 750 tonnes and 751 tonnes. 

To get the former, simply substitute M1 = 522.7272 and M2 =  227.2727 into   
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to get 96306.819. To get the latter, replace 750 by 751 in equation 3.31.c, and then solve equations 3.31.a, 

3.31.b and 3.31.c as before to get M1 = 522.8181 and M2 = 228.1818, which on substitution into equation 3.34 

for C gives the total cost of abatement to 751 tonnes as 96287.272. The difference between 96287.272 and 

96306.819 is - 19.547, to be compared with the value for  calculated above as -19.5455. The two results do 

not agree exactly because strictly the value for  is for an infinitesimally small relaxation of the constraint, 

whereas we actually relaxed it by one tonne. Note that the shadow price is £s per tonne, so that the Lagrangian 

is in the same units as the objective function, £s. 
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It is not always necessary to use the method of Lagrange multipliers to solve constrained optimisation 

problems. Sometimes the problem can be solved by substituting the constraint(s) into the objective function. 

This is the case in our example here. We want to find the values for M1 and M2 which minimise C as given by 

equation 3.34, given that M1 + M2 = 750. That means that M1 = 750 - M2, and if we use this to eliminate M1 

from equation 3.34, after collecting terms we get 
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22 0.011M5M96875C         (3.35) 

 

where the necessary condition for a minimum is 
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which solves for M2 = 227.2727, and from M1 = 750 - M2 we then get M1 as 522.7273. 

 

Even where solution by the substitution method is possible, using the method of Lagrange multipliers is 

generally preferable in that it provides extra information on shadow prices, with the interpretation set out 

above. In fact, these shadow prices often are useful in a further way, in that they have a natural interpretation as 

the prices that could be used to actually achieve a solution to the problem under consideration. Again, this can 

be illustrated with the emissions control example. If the regulatory authority had the information on the 

abatement cost functions for the two firms, it could do the calculations as above to find that for the least cost 

attainment of a reduction to 750 tonnes firm 1 should be emitting 522.7272  tonnes and firm 2 227.2727 tonnes. 

It could then simply instruct the two firms that these were their permissible levels of emissions.  

 

Given that it can also calculate the shadow price of pollution at its desired level, it can achieve the same 

outcome by imposing on each firm a tax per unit emission at a rate which is the shadow price. A cost 

minimising firm facing a tax on emissions will abate to the point where its marginal abatement cost is equal to 

the tax rate. With t for the tax rate, and M* for the emissions level in the absence of any regulation or taxation, 

total costs are 

 

C(A)  + tM = C(A) + t(M* - A) 

 

so that total cost minimisation implies 
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For firm 1, the abatement cost function written with A1 as argument is 
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so that marginal abatement costs are given by 
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Using the general condition which is equation 3.36 with equation 3.38, we get 

 

10 +0.02A1 = t 

 

and substituting for t equal to the shadow price of pollution, 19.5455,  and solving yields A1  equal to 477.275, 

which is, rounding errors apart, the result that we got when considering what level of emissions the authority 

should regulate for in firm 1. Proceeding in the same way for firm 2, it will be found that it will do as required 

for the least cost allocation of total abatement if it also faces a tax of £19.5455 pounds per tonne of emissions. 

 

When we return to the analysis of instruments for pollution control in Chapter 6 we shall see that the regulatory 

authority could reduce emissions to 750 by issuing tradable permits in that amount. Given the foregoing, it 

should be intuitive that the equilibrium price of those permits would be £19.5455. 

 


