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Appendix 3.2 Social welfare maximisation 
 

For two persons and a fixed amount of the consumption good, the problem is to choose X
A
 

and X
B
 so as to maximise 
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subject to the constraint 

 

X
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The Lagrangian for this problem is 
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and the necessary conditions include 
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where we are using the notation for derivatives introduced in the chapter - 

etcXUforUandUWforW AAA

X

A

A   - and making the same assumptions -

etc0U0,U0,W A

XX

A

XA  . From equations 3.39 here we get the condition stated as 

equation 3.3 in the chapter: 
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BA wWandwW,UwUw}U,W{UW  so that the necessary 

condition (3.40) here becomes 
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and for BA ww   this is 
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which is equation 3.6 in the chapter text. 
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Now consider a case where the social welfare function is 

W = U
A
 + U

B
 

 

and where the two individuals have identical utility functions. Specifically, suppose that 
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Then equation 3.42 becomes 
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so that  
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and each individual gets half of the available X. 

 

Now consider a case where the social welfare function is again 

 

W = U
A
 + U

B
 

 

but the two individuals have different utility functions. Specifically, suppose that 
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In this case, the condition which is equation 3.42 still applies, but now it gives 
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In section 3.4.1.2 we considered the iso-elastic utility function  
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which was used when discussing utilitarian formulations of  Rawlsian differentiation in 

favour of the worst-off. It was stated there that the relative weight accorded to increases in 

consumption for the worse-off individual increases as the degree of inequality between the 

individuals increases, and increases as the elasticity of marginal utility increases, ie as 

η . To see this, we proceed as follows. For 
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A
 + U

B
 

 

with the U's given by equation 3.43 we have 
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so that 
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where r is the ratio of XA to XB and r > 1 for B the worse-off person. 
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From equation 3.44  
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so that the relative weight assigned to A's utility decreases with r and decreases as η 

increases. 


