Appendix 3.2 Social welfare maximisation

For two persons and a fixed amount of the consumption good, the problem is to choose X^{A} and X^{B} so as to maximise
$\mathrm{W}=\mathrm{W}\left\{\mathrm{U}^{\mathrm{A}}\left(\mathrm{X}^{\mathrm{A}}\right), \mathrm{U}^{\mathrm{B}}\left(\mathrm{X}^{\mathrm{B}}\right)\right\}$
subject to the constraint
$\mathrm{X}^{\mathrm{A}}+\mathrm{X}^{\mathrm{B}}=\overline{\mathrm{X}}$
The Lagrangian for this problem is
$\mathrm{L}=\mathrm{W}\left\{\mathrm{U}^{\mathrm{A}}\left(\mathrm{X}^{\mathrm{A}}\right), \mathrm{U}^{\mathrm{B}}\left(\mathrm{X}^{\mathrm{B}}\right)\right\}+\lambda\left[\overline{\mathrm{X}}-\mathrm{X}^{\mathrm{A}}-\mathrm{X}^{\mathrm{B}}\right]$
and the necessary conditions include
$\frac{\partial \mathrm{L}}{\partial \mathrm{X}^{\mathrm{A}}}=\mathrm{W}_{\mathrm{A}} \mathrm{U}_{\mathrm{X}}^{\mathrm{A}}-\lambda=0$
$\frac{\partial \mathrm{L}}{\partial \mathrm{X}^{\mathrm{B}}}=\mathrm{W}_{\mathrm{B}} \mathrm{U}_{\mathrm{X}}^{\mathrm{B}}-\lambda=0$
where we are using the notation for derivatives introduced in the chapter W_{A} for $\partial \mathrm{W} / \partial \mathrm{U}^{\mathrm{A}}$ and $\mathrm{U}_{\mathrm{X}}^{\mathrm{A}}$ for $\partial \mathrm{U}^{\mathrm{A}} / \partial \mathrm{X}^{\mathrm{A}}$ etc - and making the same assumptions $\mathrm{W}_{\mathrm{A}}>0, \mathrm{U}_{\mathrm{x}}^{\mathrm{A}}>0, \mathrm{U}_{\mathrm{xx}}^{\mathrm{A}}<0$ etc. From equations 3.39 here we get the condition stated as equation 3.3 in the chapter:
$W_{A} U_{X}^{A}=W_{B} U_{x}^{B}$
For $\mathrm{W}=\mathrm{W}\left\{\mathrm{U}^{\mathrm{A}}, \mathrm{U}^{\mathrm{B}}\right\}=\mathrm{W}_{\mathrm{A}} \mathrm{U}^{\mathrm{A}}+\mathrm{w}_{\mathrm{B}} \mathrm{U}^{\mathrm{B}}, \mathrm{W}_{\mathrm{A}}=\mathrm{w}_{\mathrm{A}}$ and $\mathrm{W}_{\mathrm{B}}=\mathrm{W}_{\mathrm{B}}$ so that the necessary condition (3.40) here becomes
$w_{A} U_{x}^{A}=w_{B} U_{x}^{B}$
and for $\mathrm{w}_{\mathrm{A}}=\mathrm{w}_{\mathrm{B}}$ this is
$\mathrm{U}_{\mathrm{x}}^{\mathrm{A}}=\mathrm{U}_{\mathrm{x}}^{\mathrm{B}}$
which is equation 3.6 in the chapter text.

Now consider a case where the social welfare function is
$\mathrm{W}=\mathrm{U}^{\mathrm{A}}+\mathrm{U}^{\mathrm{B}}$
and where the two individuals have identical utility functions. Specifically, suppose that
$U^{A}\left(X^{A}\right)=2\left(X^{A}\right)^{1 / 2}$ and $U^{B}\left(X^{B}\right)=2\left(X^{B}\right)^{1 / 2}$
so that
$\mathrm{U}_{\mathrm{X}}^{\mathrm{A}}=\left(\mathrm{X}^{\mathrm{A}}\right)^{-1 / 2}$ and $\mathrm{U}_{\mathrm{X}}^{\mathrm{B}}=\left(\mathrm{X}^{\mathrm{B}}\right)^{-1 / 2}$
and
$U_{X X}^{A}=-\frac{1}{2}\left(X^{A}\right)^{-3 / 2}$ and $U_{x X}^{B}=-\frac{1}{2}\left(X^{B}\right)^{-3 / 2}$
Then equation 3.42 becomes
$\left(X^{A}\right)^{-1 / 2}=\left(X^{B}\right)^{-1 / 2}$
so that
$\mathrm{X}^{\mathrm{A}}=\mathrm{X}^{\mathrm{B}}=0.5 \overline{\mathrm{X}}$
and each individual gets half of the available X .
Now consider a case where the social welfare function is again
$\mathrm{W}=\mathrm{U}^{\mathrm{A}}+\mathrm{U}^{\mathrm{B}}$
but the two individuals have different utility functions. Specifically, suppose that
$U^{A}\left(X^{A}\right)=2\left(X^{A}\right)^{1 / 2}$ and $U^{B}\left(X^{B}\right)=\left(X^{B}\right)^{1 / 2}$
so that
$U_{X}^{A}=\left(X^{A}\right)^{-1 / 2}$ and $U_{X}^{B}=0.5\left(X^{B}\right)^{-1 / 2}$
In this case, the condition which is equation 3.42 still applies, but now it gives
$X^{B}=\frac{X^{A}}{4}$
In section 3.4.1.2 we considered the iso-elastic utility function

$$
\begin{equation*}
\mathrm{U}=\frac{\mathrm{X}^{1-\eta}}{1-\eta} \tag{3.43}
\end{equation*}
$$

which was used when discussing utilitarian formulations of Rawlsian differentiation in favour of the worst-off. It was stated there that the relative weight accorded to increases in consumption for the worse-off individual increases as the degree of inequality between the individuals increases, and increases as the elasticity of marginal utility increases, ie as $\eta \rightarrow \infty$. To see this, we proceed as follows. For
$\mathrm{W}=\mathrm{U}^{\mathrm{A}}+\mathrm{U}^{\mathrm{B}}$
with the U's given by equation 3.43 we have
$W={\left.\frac{\left(X^{A}\right.}{}\right)^{1-\eta}}_{1-\eta}+\frac{\left(X^{B}\right)^{1-\eta}}{1-\eta}$
so that
$\mathrm{W}_{\mathrm{A}}=\frac{\partial \mathrm{W}}{\partial \mathbf{X}^{\mathrm{A}}}=\left(\mathrm{X}^{\mathrm{A}}\right)^{-\eta}$ and $\mathrm{W}_{\mathrm{B}}=\frac{\partial \mathrm{W}}{\partial \mathrm{X}^{\mathrm{B}}}=\left(\mathrm{X}^{\mathrm{B}}\right)^{-\eta}$
and
$\frac{W_{A}}{W_{B}}=\frac{\left(X^{A}\right)^{-\eta}}{\left(X^{B}\right)^{-\eta}}=\left(\frac{X^{A}}{X^{B}}\right)^{-\eta}=r^{-\eta}$
where r is the ratio of X_{A} to X_{B} and $r>1$ for B the worse-off person.

From equation 3.44
$\frac{\partial\left(\frac{\mathrm{W}_{\mathrm{A}}}{\mathrm{W}_{\mathrm{B}}}\right)}{\partial \mathrm{r}}=-\mathrm{r}^{-n-1}<0$
and
$\frac{\partial\left(\frac{\mathrm{W}_{\mathrm{A}}}{\mathrm{W}_{\mathrm{B}}}\right)}{\partial \eta}=\mathrm{r}^{-\eta-1} \mathrm{Inr}>0$
so that the relative weight assigned to A's utility decreases with r and decreases as η increases.

