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Appendix 5.1 Matrix algebra 

A5.1.1 Introduction 

In this chapter, and in a few of the later ones (particularly Chapter 8 and the appendix to Chapter 

14), some use is made of matrix algebra notation and elementary matrix operations. This appendix 

provides, for the reader who is unfamiliar with matrix algebra, a brief explanation of the notation 

and an exposition of a few of its fundamental operations. We deal here only with those parts of 

matrix algebra that are necessary to understand the use made of it in this text. The reader who 

would like a more extensive account should go to any good first-year university-level mathematics 

text. For example, chapter 4 of Chiang (1984) provides a relatively full account of introductory-

level matrix algebra in an accessible form. 

A5.1.2 Matrices and vectors 

A matrix is a set of elements laid out in the form of an array occupying a number of rows and 

columns. Consider an example where the elements are numbers. Thus, the array of numbers 

0.7 0.1 

0.9 0.2 

0.3 0.2 

0.1 0.0 

can be called a matrix. In such an array, the relative positions of the elements do matter. Two 

matrices are identical if the elements are not only the same but also occupy the same positions in 

each matrix. If the positions of two or more elements were interchanged, then a different matrix 

would result (unless the interchanged elements were themselves identical). 
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It is conventional, for presentational purposes, to place such an array within square brackets, and to 

label the matrix by a single bold letter (usually upper-case).
20

 So in the following expression, A is 

the name we have given to this particular matrix of eight numbers. 

0.7 0.1

0.9 0.2
A

0.3 0.2

0.1 0.0

 
 
 
 
 
 

 

It is also conventional to define the dimension of a matrix by the notation m × n where m is the 

number of rows occupied by the elements of the matrix and n is the number of columns occupied 

by elements of the matrix. So, for our example, A is of dimension 4 × 2 as its elements span four 

rows and two columns. Notice that because elements of matrices span rows and columns, they can 

be handled very conveniently within spreadsheet programs. 

 

Sometimes we want to define a matrix in a more general way, such that its elements are numbers, 

but those numbers are as yet unspecified. To do this we could write A in the more general form 

11 12

21 22

31 32

41 42

A

a a

a a

a a

a a

 
 
 
 
 
 

 

Notice the way in which each of the elements of this matrix has been labelled. Any one of them is 

aij where i denotes the row in which it is found and j denotes its column. With this convention, the 

bottom right element of the matrix – here a42 – will necessarily have a subscript identical to the 

dimension of the matrix, here 4 ×2. 

 

                                                           
20

 The use of square brackets is not universal; some authors prefer round brackets or braces. 



 

3 
 

It is convenient to have another shorthand notation for the matrix array. This is given by 

1,...,

1,...,A [ ] i m

ij j na 

  

The bracketed term here lets the reader know that what is being referred to is a matrix with m × n 

elements aij. 

A5.1.2.1 A special form of matrix: the identity matrix 

A matrix is said to be square if its row and column dimensions are equal (it has the same number of 

rows and columns). Thus, the matrix 

3 2
B=

4 1

 
 
 

 

is a 2×2 square matrix. Furthermore, if the coefficients of a square matrix satisfy the restrictions 

that each element along the leading (top left to bottom right) diagonal is 1 and every other 

coefficient is zero, then that matrix is called an identity matrix. Thus the matrix 

1 0
I=

0 1

 
 
 

 

is a 2 × 2 identity matrix. An identity matrix is often denoted by the symbol I, or sometimes by In 

where the n serves to indicate the row (and column) dimension of the identity matrix in question. In 

our example, it would be I2. 

A5.1.2.2 Vectors 

A vector is a special case of a matrix in which all elements are located in a single row (in which 

case it is known as a row vector) or in a single column (known as a column vector). Looking at the 

various rows and columns in the 4×2 matrix A above, it is evident that we could make up six such 

vectors from that matrix. We could construct four row vectors from the elements in each of the four 



 

4 
 

rows of the matrix. And we could make up two column vectors from the elements in each of the 

two columns.
21

 The four row vectors constructed in this way are 

11 2 21 12 31 32

41 42

[ ] [ ] [ ] and

[ ]

a a a a a a

a a
 

each of which is of dimension 1 X 2, while the two column vectors, each of dimension 4 X 1, are 

given by 

11 12

21 22

31 32

41 42

 and 

a a

a a

a a

a a

   
   
   
   
   
   

 

A5.1.2.3 The transpose of a matrix or a vector 

Various ‘operations’ can be performed on matrices.
22

 One of the most important – and commonly 

used – is the operation of forming the ‘transpose’ of a matrix. The transpose of a matrix is obtained 

by interchanging its rows and columns, so that the first column of the original matrix becomes the 

first row of the transpose matrix, and so on. Doing this implies that if the original matrix A were of 

dimension m × n, its transpose will be of dimension n × m. The transpose of A is denoted as A, or 

sometimes as AT. 

 

Consider two examples. First, let a be the 4 × 1 column vector 

11

21

31

41

a=

a

a

a

a

 
 
 
 
 
 

 

                                                           
21

 One could also, of course, make up other vectors as mixtures of elements from different rows or columns. 
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then its transpose, a is given by the row vector a = [a11 a21 a31 a41]. 

 

As a second example, consider the first array that we introduced in this appendix. That matrix and 

its transpose are given by 

0.7 0.1

0.9 0.2 0.7 0.9 0.3 0.1
A=  A =

0.3 0.2 0.1 0.2 0.2 0.0

0.1 0.0

 
 

        
 
 

 

A5.1.2.4 Bold notation for vectors and matrices 

As we mentioned earlier, it is conventional to use the bold font to denote vectors or matrices, and 

to use an ordinary (non-bold) font to denote a scalar (single number) term. Hence, in the following 

expression, we can deduce from the context and the notation employed that each of a1 and a2 is a 

column vector consisting respectively of the first column of scalars and the second column of 

scalars. We know that the element a21, for example, is a scalar because it is not written in bold 

font. 

 

11 12

21 22

1 2

31 32

41 42

A= a a

a a

a a

a a

a a

 
 
  
 
 
 

 

                                                                                                                                                                                 
22

 From this point on in this appendix, we shall use the term matrix to include both vectors and matrices, 
unless the context requires that we distinguish between the two. 
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A5.1.3 Other operations on matrices 

As with algebra more generally, several operations such as addition and multiplication can, under 

some conditions, be performed on matrices. 

A5.1.3.1 Addition and subtraction 

Two matrices can be added (or subtracted) if they have the same dimension. Essentially, these 

operations involve adding (or subtracting) comparably positioned elements in the two individual 

matrices. Suppose that we wish to add the two (m × n) matrices A = [aij] and B = [bij]. The sum, C 

= [cij] is defined by 

C = [cij] = [aij] + [bij] + where cij = aij + bij 

Example: 

7 1 3 0 7 3 1 0 10 1

9 2 9 1 9 9 2 1 18 3

3 2 0 4 3 0 2 4  3 6

1 0 2 3 1 2 0 3  3 3

        
       

 
         
        
       

        

 

Matrix subtraction is equivalent, but with the addition operation replaced by the subtraction 

operation in the previous expression. 

A5.1.3.2 Scalar multiplication 

Scalar multiplication involves the multiplication of a matrix by a single number (a scalar). To 

implement this, one merely multiplies every element of the matrix by that scalar. 

Example: 
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0.7 0.1 1.4 0.2

0.9 0.2 1.8 0.4
If A=  then 2A=

0.3 0.2 0.6 0.4

0.1 0.0 0.2 0.0

   
   
   
   
   
   

 

A5.1.3.3 Multiplication of matrices 

Suppose that we have two matrices, A and B. Can these be multiplied by one another? The first 

thing to note is that here (unlike with ordinary algebra) the order of multiplication matters. Call A 

the lead matrix and B the lag matrix. For the matrix multiplication to be possible (or even 

meaningful) the following condition on the dimensions of the two matrices must be satisfied: 

Number of columns in A = Number of rows in B 

If this condition is satisfied, then the matrices are said to be ‘conformable’ and a new matrix C can 

be obtained which is the matrix product AB. The matrix C will have the same number of rows as A 

and the same number of columns as B. 

 

How are the elements of C obtained? The following rule is used. 

for  = 1 to and 1to
n

ij ik kj

k l

c a b i m j n


   

Example: 

2 1 (2 3)+(1 4) (2 2)+(1 1) 10 5
3 2

A= 0 3 B= AB= (0 3)+(3 4) (0 2)+(3 1) 12 3
4 1

1 2 (1 3)+(2 4) (1 2)+(2 1) 11 4

        
      

           
              

 

An intuitive way of thinking about this is as follows. Suppose we want to find element cij of the 

product matrix C (the element in the cell corresponding to row i and column j). To obtain this, we 

do the following: 
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 multiply the first element in row i by the first element in column j 

 multiply the second element in row i by the second element in column j 

. 

. 

and so on up to 

 multiply the final element in row i by the final element in column j 

The sum of all these multiplications gives us the number required for cij. (Note that this process 

requires the dimension condition that we stated earlier to be satisfied.) This process is then 

repeated for all combinations of i and j. 

 

Doing this kind of exercise by hand for even quite small matrices can be very time-consuming, and 

prone to error. It is better to use a spreadsheet for this purpose. To see how this is done – and to try 

it out for yourself with an Excel spreadsheet, Matrix.xls – read the file Matrix.doc in the Additional 

Materials for Chapter 5. 

 

However, we suggest you calculate the products AB and BA of the following two 2 × 2 matrices A 

and B to convince yourself that AB does not equal BA. 

3 2 3 2
A= B=

1 0 4 1

   
   
   

 

A5.1.3.4 Division 

Whereas obtaining the product of two matrices is a meaningful operation in matrix algebra, and can 

be done providing the two matrices are ‘conformable’, the same cannot be said of matrix division. 

Indeed, the division of one matrix by another is not a meaningful operation. 
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A5.1.3.5 The inverse matrix 

However, a related concept – matrix inversion – does exist and is fundamental to much that is done 

in matrix algebra. To motivate this concept, think of ordinary algebra. If a and b are two numbers 

then the division of a by b (i.e. a/b) can be done, provided that b is non-zero. But notice that a/b 

can also be written as ab–1, where b–1 is the inverse (or reciprocal of b). 

Where B is a matrix, we can under some conditions obtain its inverse matrix, B–1. And if we have 

a second matrix, say A, which has the same number of rows as B–1 has columns, then the product 

B–1A can be obtained. 

 

How is the inverse of B defined? The matrix inverse must satisfy the following equality: 

BB–1 = B–1B = I 

That is, the product of a matrix and its inverse matrix is the identity matrix. Inspecting the 

dimension conditions implied by this definition shows that a matrix can only have an inverse if it is 

a square matrix. 

 

Let us look at an example. The inverse of the matrix 

3 2
A=

1 0

 
 
 

 

is given by 

1
 0 1

A
0.5 1.5

  
  

 
 

as 

 0 1 3 2 3 2  0 1 1 0

0.5 1.5 1 0 1 0 0.5 1.5 0 1

         
          

          
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We will not give any methods here by which an inverse can be obtained. There are many such 

rules, all of which are tedious or difficult to implement once the matrix has more than 3 rows. 

Instead, we just report that a modern spreadsheet package can obtain inverse matrices by one 

simple operation, even for matrices of up to about 70 rows in size. There is clearly no need to 

bother about deriving an inverse by hand! And, of course, it is always possible to verify that the 

inverse is correct by checking that its product with the original matrix is I. 

 

Once again, to see how this is done, see Matrix.doc and Matrix.xls. 

A5.1.4 The uses of matrix algebra 

The two main uses we make of matrix algebra in this text are 

 to describe a system of linear equations in a compact way; 

 to solve systems of equations or to carry out related computations. 

Each of these is used in this chapter (in Section 5.8, where we discuss ambient pollution standards) 

and in Chapter 8. As an example of the first use, it is evident that the system of equations used in 

our ambient pollution example, 

A1 = d11M1 + d12M2 

A2 = d21M1 + d22M2 

A3 = d31M1 + d32M2 

A4 = d41M1 + d42M2 

can be more compactly written as A = DM 

where 
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11 12 1

21 22 21

31 32 32

41 42 4

D=  M=  A=

d d A

d d AM

d d AM

d d A

   
   

    
     

   
   

 

Check for yourself that, after the matrix multiplication DM, this reproduces the original system of 

four equations. 

The potential power of matrix algebra as a computational or solution device is illustrated in our 

analysis of input–output analysis in Chapter 8. We will leave you to follow the exposition there. As 

you will see, it is in this context that the inverse of a matrix is useful. 
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