Appendix 5.2 Spatially differentiated stock pollution: a numerical

example

This appendix provides a numerical example of a spatially differentiated ambient pollution problem. We obtain the efficient level of M for each source and A for each receptor. Some of the material below is copied from the output of a Maple file ambient.mw. The interested reader can find the Maple file itself in the Additional Materials for Chapter 5.

The problem is one in which in the relevant spatial area ('airshed') there are two emissions sources, and two pollution receptors. The \mathbf{D} matrix of transition coefficients is, therefore of the following form:

$$
D_{i j}=\left[\begin{array}{ll}
d_{11} & d_{12} \\
d_{21} & d_{22}
\end{array}\right]
$$

for which we use below the specific values
$\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right]$

Assumptions used:

1. The marginal damage of pollution function is $\operatorname{MD}(A)=A$ (a very simple special case), and is identical everywhere.
2. The marginal benefit of emissions function, $\mathrm{MB}(M)$, is identical for each firm, and is given by

$$
\operatorname{MB}\left(M_{i}\right)=a-b M_{i}
$$

where we assume $a=344$ and $b=7$.

As shown in the text, an efficient solution requires that for each $i, i=1,2$

$$
\operatorname{MB}\left(M_{i}\right)=\sum_{j=l}^{N}\left(\frac{\partial}{\partial A_{j}} D\left(A_{j}\right)\right) d_{j i}
$$

which under Assumption (1) is

$$
\operatorname{MB}\left(M_{i}\right)=\sum_{j=l}^{N} A_{j} d_{j i}
$$

This is here a two-equation linear system:

$$
\begin{aligned}
& a-b M_{1}=d_{11} A_{1}+d_{21} A_{2} \\
& a-b M_{2}=d_{12} A_{1}+d_{22} A_{2}
\end{aligned}
$$

which gives:

$$
\begin{aligned}
& a-b M_{1}=d_{11}\left(d_{11} M_{1}+d_{12} M_{2}\right)+d_{21}\left(d_{21} M_{1}+d_{22} M_{2}\right) \\
& a-b M_{2}=d_{12}\left(d_{11} M_{1}+d_{12} M_{2}\right)+d_{22}\left(d_{21} M_{1}+d_{22} M_{2}\right)
\end{aligned}
$$

We next define an expression (called sys1) that consists of these two equations:

$$
\begin{aligned}
\text { sysl }:= & \left\{a-b M_{2}=d_{12}\left(d_{11} M_{1}+d_{12} M_{2}\right)\right. \\
& +d_{22}\left(d_{21} M_{1}+d_{22} M_{2}\right) \\
a-b M_{1}= & d_{11}\left(d_{11} M_{1}+d_{12} M_{2}\right) \\
& \left.+d_{21}\left(d_{21} M_{1}+d_{22} M_{2}\right)\right\}
\end{aligned}
$$

This can be solved (using the 'solve' command in Maple) to obtain solutions for M_{1} and M_{2} in terms of the parameters, a, b and the components of the \mathbf{D} matrix. The solutions are given by

$$
M_{1}=\frac{\left(b-d_{11} d_{12}-d_{21} d_{22}+d_{12}^{2}+d_{22}^{2}\right) a}{\binom{b^{2}+b d_{12}^{2}+b d_{22}^{2}+d_{11}^{2} b+d_{11}^{2} d_{22}^{2}+}{d_{21}^{2} b+d_{21}^{2} d_{12}^{2}-2 d_{11} d_{12} d_{21} d_{22}}}
$$

$$
M_{2}=\frac{a\left(b-d_{11} d_{12}+d_{21}^{2}+d_{11}^{2}+d_{21} d_{22}\right)}{\binom{b^{2}+b d_{12}^{2}+b d_{22}^{2}+d_{11}^{2} b+d_{11}^{2} d_{22}^{2}+}{d_{21}^{2} b+d_{21}^{2} d_{12}^{2}-2 d_{11} d_{12} d_{21} d_{22}}}
$$

To obtain specific values for the solutions, we now substitute the particular values $a=344, b=7$, $d_{11}=2, d_{12}=4, d_{21}=3$ and $d_{22}=2$ for the parameters, giving the solution:

$$
\left\{M_{1}=13, M_{2}=6\right\}
$$

We next find the efficient ambient pollution levels in the two receptor areas. First define a new system of equations:

$$
\text { sys11 }:=\left\{A_{1}=d_{11} M_{1}+d_{12} M_{2}, A_{2}=d_{21} M_{1}+d_{22} M_{2}\right\}
$$

This can be solved (using the 'solve' command) to obtain solutions for A_{1} and A_{2} in terms of the components of the \mathbf{D} matrix and the emission levels, M_{1} and M_{2} :

$$
\text { sols } 22:=\left\{A_{1}=d_{11} M_{1}+d_{12} M_{2}, A_{2}=d_{21} M_{1}+d_{22} M_{2}\right\}
$$

To obtain specific values for the solutions, we now substitute our assumed particular values for the parameters, giving

$$
\left\{A_{1}=50, A_{2}=51\right\}
$$

