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Appendix 6.1 The least-cost theorem and pollution control 

instruments 

 

This appendix is structured as follows. In Part 1, we define the notation used and set the scene for 

what follows. Then in Part 2 we derive a necessary condition for pollution control to be cost-effective: 

that is, to attain any given target at least cost. An EPA has several instruments available for attaining a 

pollution (or pollution abatement) target. Here we consider three classes of instrument: quantitative 

regulations (a variant of command and control) in Part 3; an emissions tax (Parts 4 and 5); an 

emissions abatement subsidy (Part 6); and transferable emissions permits (Part 7). Collectively, Parts 

3 to 7 take the reader through what an EPA would need to know, and how it could operate each of 

those instruments, in order to achieve a target at least cost. Finally in Part 8, we generalise previous 

results to the case of a non-uniformly-mixing pollutant. 

Part 1 Introduction 

There are N polluting firms, indexed i = 1,..., N. Each firm faces a fixed output price and fixed input 

prices, and maximises profits by an appropriate choice of output level (Qi) and emission level (Mi). 

Emissions consist of a uniformly mixing pollutant, so that the source of the emission is irrelevant as 

far as the pollution damage is concerned. 

 

Let ^
iΠ  be the maximised profit of the ith firm in the absence of any control over its emission level 

and in the absence of any charge for its emissions. This is its unconstrained maximum profit level. At 

this unconstrained profit maximum the firm’s emission level is ˆ
iM . 
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Let *
iΠ   be the maximised profit of the ith firm when it is required to attain a level of emissions *

iM  

< ˆ
iM . This is its constrained maximum level of profits. To reduce emissions, some additional costs 

will have to be incurred or the firm’s output level must change (or both). The constrained profit level 

will, therefore, be less than the unconstrained profit level. That is, *
iΠ  < ^

iΠ . 

 

We next define the firm’s abatement costs, C, as unconstrained minus constrained profits: 

Ci = 
^

iΠ  – *
iΠ  

Abatement costs will be a function of the severity of the emissions limit the firm faces; the lower is 

this limit, the greater will be the firm’s abatement costs. Let us suppose that this abatement cost 

function is quadratic. That is 

Ci = αi  – βi
*
iM + δi

*
iM 2 (6.4) 

 

We illustrate this abatement cost function in Figure 6.14. Note that that the abatement cost function is 

defined only over part of the range of the quadratic function. Abatement costs are zero when the 

emission limit is set at ˆ
iM  , the level the firm would have itself chosen to emit in the absence of 

control. Abatement costs are maximised when *
iM   = 0, and so the firm is prohibited from producing 

any emissions. 
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Figure 6.14 The firm’s abatement cost function.
 

 

Two things should be said about equation 6.4. First, as each parameter is indexed by i, abatement 

costs are allowed to vary over firms. Second, the arguments that follow do not depend on the 

abatement cost function being quadratic. We have chosen that functional form for expositional 

simplicity only. 

Part 2 The least-cost theorem 

 

We now consider the problem of an environmental protection agency (EPA) meeting some standard 

for total emissions (from all N firms) at the least cost. Let *M  denote the predetermined total 

emission target. In the expressions that follow, the *
iM variables are to be interpreted as endogenous, 

the values for which are not predetermined but emerge from the optimising exercise being undertaken. 

The problem can be stated as 

 ∑∑
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The Lagrangian for this problem is 
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The necessary conditions for a least-cost solution are 

* *
* β 2 0, 1,2,...,i i i
i

L M i N
M

δ µ∂
= − + + = =

∂
 (6.7) 

and 

* *

]
0

N

i
i

L M M
µ =

∂
= − + =

∂ ∑  (6.8) 

 

Equations 6.7 and 6.8 give N + 1 equations in N + 1 unknowns. Solving these simultaneously gives 

each firm’s emission limit, *
iM  (which now should be regarded as the optimised emissions limit for 

the firm), and the optimised shadow price of the pollution constraint (the Lagrange multiplier) µ*. 

Since µ* is constant over all firms, it can be seen from equation 6.7 that a least-cost pollution 

abatement programme requires that the marginal cost of abatement be equal over all firms. 

 

There is a tricky issue relating to signs in equation 6.7. Notice that an increase in *
iM corresponds to a 

relaxation of a pollution target (a decrease in required abatement) so the term ( 2i iβ δ− + *
iM ) is the 

marginal cost of a reduction in pollution abatement being required of firm i. It will therefore be a 

negative quantity. This can be verified by looking at the slope of the Ci function in Figure 6.14. 

By multiplying equation 6.7 through by minus one, we obtain 

    *
iii Mδβ 2−  =  µ*  (6.7´) 
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Here the term on the left-hand side ( *
iii Mδβ 2− ) is the firm’s marginal cost of an increase in 

pollution abatement, a positive quantity. It follows from 6.7´ that µ* is also a positive quantity. This is 

consistent with the text of this chapter and the previous one.  

Part 3 Least-cost pollution control using quantitative regulation 

 

If the EPA knew each firm’s abatement cost function (that is, it knew Ci for i = 1,..., N), then for any 

total emission standard it seeks, *M , the system of equations 6.7 and 6.8 could be solved for *
iM  for 

each firm. The EPA could then tell each firm how much it could emit. The total quantity of emissions 

would, from equation 6.8, be reached exactly, and the target would, as the above theorem shows, be 

attained at least cost. 

Part 4 Least-cost pollution control using an emissions tax 

 

As an alternative to setting quantitative emissions controls on each firm, an emission tax could be 

used. If the EPA knew each firm’s abatement cost function, then for any total emission standard it 

seeks, *M , the system of equations 6.7 and 6.8 could be solved for the value of the shadow price of 

the pollution constraint, µ*. Note that, unlike *
iM , this shadow price is constant for each firm. The 

EPA could then set a tax at a rate of t* per unit of emissions and charge each firm this tax on each unit 

of pollution it emitted. Profit-maximising behaviour would then lead each firm to produce *
iM  

emissions, the least-cost solution. 

 

To see why this should be so, note that in the absence of any quantity constraint on emissions, profit-

maximising behaviour in the face of an emissions tax implies that the firm will minimise the sum of 

its abatement costs and pollution tax costs. That is, the firm chooses Mi to minimise CTi, the total of 

its abatement and tax costs: 
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CTi = Ci + tMi = αi – βiMi + δiMi2 + t*Mi 

 

The necessary condition is 

* *2 0, 2,...,i
i i i

i

CT M t i N
M

β δ∂
= − + + = =

∂
 (6.9) 

 

Clearly, if t* in equation 6.9 is set equal to µ* in equation 6.7, the necessary conditions 6.7 and 6.9 are 

identical, and so the tax instrument achieves the total emissions target at least cost. 

Part 5 What role is there for a tax instrument where each firm’s abatement cost 

functions are not known? 

 

In general, the EPA will not know abatement costs. However, if an arbitrarily chosen tax rate, say t , 

is selected, and each firm is charged that rate on each unit of emission, then some total quantity of 

emissions, say M , will be realised at least cost. Of course, that amount M  will in general be 

different from M*. Only if t  = t* will M  be identical to M*. An iterative, trial-and-error process of 

tax rate change may enable the EPA to find the necessary tax rate to achieve a specific target. 

Part 6 Least-cost pollution control using an emissions-abatement subsidy 

 

Another method of obtaining a least-cost solution to an emissions target is by use of abatement 

subsidies. Suppose a subsidy of s* is paid to each firm on each unit of emissions reduction below its 

unconstrained profit-maximising level, ˆ
iM . Then profit-maximising behaviour implies that the firm 

will maximise total subsidy receipts less abatement costs. That is, the firm maximises 

CSi = s( ˆ
iM  – Mi) – Ci  =  s( ˆ

iM  – Mi)  – (α – βiMi + δiMi2) 
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The necessary condition is 

*CS 2 0, 1,2,...,i
i i i

i

M s i N
M

β δ∂
= − − = =

∂
 (6.10) 

which, after multiplying through by –1, is identical to equation 6.9 if s = t. So, once again, if s in 

equation 6.10 is set equal to µ* in equation 6.7, the necessary conditions 6.7 and 6.10 are identical, 

and so the subsidy instrument achieves the total emissions target at least cost. Moreover, this result 

demonstrates that in terms of their effects on emissions, a tax rate of t per unit of emissions is 

identical to a subsidy rate of s per unit of emissions abatement, provided s = t. 

Part 7 Least-cost pollution control using transferable emissions permits 

 

Suppose that the EPA issues to each firm licences permitting L0i  units of emissions. Firms are 

allowed to trade with one another in permits. The ith firm will trade in permits so as to minimise the 

sum of abatement costs and trade-acquired permits: 

 

( )
( )02
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      (6.11) 

  

 

 

where P is the market price of one emission permit. Given that Li is the quantity of emissions the firm 

will produce after trade we can write this as 

0

2 0

CL     (   ) 

     ( )
i i i i

i i i i i i i

C P L L
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= + −

= − + + −
 (6.12) 

 

The necessary condition for minimisation is 
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*CL β 2 0, 1,2,...,i
i i i

i

L P i N
L

δ∂
=− + + = =

∂
 (6.13) 

 

which can be interpreted as the firm’s demand function for permits. 

 

If the EPA sets a total emissions target of M* then M* is the total supply of permits 

and ∑∑
==

=
∂
∂

==
N

i

i

N

i

i
* L

P
LLM

11

0       (6.14) 

Now compare equations 6.13 and 6.14 with equations 6.7 and 6.8. These are identical if P = µ* 

(remembering that Li = M*i ). Moreover, comparison of equation 6.13 with equations 6.9 and 6.10 

shows that P = t = s. So by an initial issue of permits (distributed in any way) equal to the emissions 

target, the EPA can realise the target at least cost. Moreover, it can do so without knowledge of 

individual firms’ abatement cost functions.  

Part 8 Least-cost abatement for a non-uniformly-mixing pollutant 

 

The target of the EPA is now in terms of ambient pollution levels rather than emission flows. 

Specifically the EPA requires that 

*

1
A A for  1,...

N

j ji i j
i

d M j j
=

= ≤ =∑  (6.15) 

 

The problem for the EPA is to attain this target at least cost. We deal with the case where the same 

ambient target is set for each receptor area. This problem can be stated as 

*

1 1
Min subject to 

for 1,...,

N N

i j ji
i i

C A d M A

j j
= =

= ≤

=

∑ ∑  (6.16) 

The Lagrangian for this problem is 
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where Ci = αi – βiMi + δiMi2 

 

The necessary conditions for a least-cost solution are 

*
1* β 2 (μ ) 0,

  1, 2,...,

j J
i i i j j ji

l

L M d
M

i N

δ =
=

∂
=− + + =

∂
=

∑
 (6.18) 

and 

*

1
0 for 1,...,

μ

N

ji i
ij

L A d M j J
=

∂
=− + = =

∂ ∑  (6.19) 

 

The system of equations 6.18 and 6.19 consists of N + J equations which can be solved for the N + J 

unknowns (M*i , i = 1,..., N and µj*, j = 1,..., J). 

 

Equation 6.18 can be written as 

*
1β 2 (μ ), 1, 2,...,j J

i i i j j jiM d i Nδ =
=− + =− =∑  (6.20) 

Then after multiplying through by –1, using MCi to denote the ith firm’s marginal cost of abatement, 

and expanding the sum on the right-hand side, we obtain 

* * *
1 1 2 2  MC   μ   μ ...μ ,i i i J Jid d d= + +  

  1,  2,...,i N=  (6.21) 

 

The pair of equations 6.20 and 6.21 can be compared with the solution for the uniformly mixing 

pollution case, equation 6.7 multiplied by –1. 

 


