Appendix 9.1 Some algebra of international treaties

Let signatories be indexed by s and non-signatories by n.

Non-signatories

Non-signatories choose zj, to solve
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Noting that dZ/dz,, = 1, and that — given our assumption of symmetry — all countries’ efficient

abatement will be identical, the solution can be written as
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where Z = Z, + Zg, Z, = (N - K)z,y and Zg = kzg.



Signatories

Choose abatement levels that maximise aggregate payoffs of all signatories:
k
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The solution requires
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What determines 0Z,,/0Zg? It is chosen so that signatories would not wish to revise their choices

after the choices of non-signatories. Those non-signatory choices are determined by 9.4 above.

Totally differentiating 9.4 and noting that dZ = dZg + dZ, and dzp, = dZ/(N — k) we obtain
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Then substitute equation (9.6) into (9.5), and add (9.4). This gives two equations which we shall not

reproduce here, but will just label as equations (9.7) and (9.8).



A self-enforcing agreement also requires that
= no signatory can gain by unilaterally withdrawing from the agreement;

= no non-signatory can gain by unilaterally acceding to the agreement;

which together imply that

[T.6c92TT (k*-2) and [T (k% 2] (k*+D) 9.9)

Equations 9.7, 9.8 and 9.9 give us three equations in 3 unknowns from which we can solve for z;*,

zg* and k*.



