Appendix 9.1 Some algebra of international treaties

Let signatories be indexed by s and non-signatories by n .

Non-signatories

Non-signatories choose z_{n} to solve

$$
\frac{d B(Z)}{d Z} \frac{d Z}{d z_{n}}=\frac{d C\left(z_{n}\right)}{d z_{n}}
$$

Noting that $\mathrm{d} Z / \mathrm{d} z_{\mathrm{n}}=1$, and that - given our assumption of symmetry - all countries' efficient abatement will be identical, the solution can be written as

$$
\begin{equation*}
\frac{d B(Z)}{d Z}=\frac{d C\left(z_{n}\right)}{d z} \tag{9.4}
\end{equation*}
$$

where $Z=Z_{\mathrm{n}}+Z_{\mathrm{s}}, Z_{\mathrm{n}}=(N-k) z_{\mathrm{n}}$ and $Z_{\mathrm{S}}=k z_{\mathrm{s}}$.

Signatories

Choose abatement levels that maximise aggregate payoffs of all signatories:

$$
\operatorname{Max} \prod_{s}=k B(Z)-\sum_{i=1}^{k} C\left(z_{j}\right)
$$

The solution requires

$$
k \frac{\mathrm{~d} B(Z)}{\mathrm{d} Z}\left[\frac{\partial Z}{\partial Z_{s}} \cdot \frac{\partial Z_{s}}{\partial Z_{j}}+\frac{\partial Z}{\partial Z_{n}} \cdot \frac{\partial Z_{n}}{\partial Z_{s}} \cdot \frac{\partial Z_{s}}{\partial Z_{j}}\right]=\frac{\mathrm{d} C\left(z_{j}\right)}{\mathrm{d} z_{j}}
$$

for all $j=1, \ldots, k$

$$
\begin{equation*}
k \frac{\mathrm{~d} B(Z)}{\mathrm{d} Z}\left[1 \cdot \frac{\partial Z_{s}}{\partial Z_{j}}+1 \cdot \frac{\partial Z_{n}}{\partial Z_{s}} \cdot \frac{\partial Z_{s}}{\partial Z_{j}}\right]=\frac{\mathrm{d} C\left(z_{j}\right)}{\mathrm{d} z_{j}} \tag{9.5}
\end{equation*}
$$

for all $j=1, \ldots, k$

What determines $\partial Z_{\mathrm{n}} / \partial Z_{\mathrm{s}}$? It is chosen so that signatories would not wish to revise their choices after the choices of non-signatories. Those non-signatory choices are determined by 9.4 above.

Totally differentiating 9.4 and noting that $\mathrm{d} Z=\mathrm{d} Z_{\mathrm{S}}+\mathrm{d} Z_{\mathrm{n}}$ and $\mathrm{d} z_{\mathrm{n}}=\mathrm{d} Z_{\mathrm{n}} /(N-k)$ we obtain

$$
\begin{equation*}
\frac{\partial Z_{n}}{\partial Z_{s}}=\frac{\frac{\mathrm{d}^{2} B(Z)}{\mathrm{d} Z^{2}} \cdot(N-k)}{\frac{\mathrm{d}^{2} C(z)}{\mathrm{d} z^{2}}-\frac{\mathrm{d}^{2} B(Z)}{\mathrm{d} Z^{2}} \cdot(N-k)} \tag{9.6}
\end{equation*}
$$

Then substitute equation (9.6) into (9.5), and add (9.4). This gives two equations which we shall not reproduce here, but will just label as equations (9.7) and (9.8).

A self-enforcing agreement also requires that

- no signatory can gain by unilaterally withdrawing from the agreement;
- no non-signatory can gain by unilaterally acceding to the agreement;
which together imply that

$$
\begin{equation*}
\prod_{s}\left(k^{*}\right) \geq \prod_{n}\left(k^{*}-1\right) \text { and } \prod_{s}\left(k^{*}\right) \geq \prod_{s}\left(k^{*}+1\right) \tag{9.9}
\end{equation*}
$$

Equations 9.7, 9.8 and 9.9 give us three equations in 3 unknowns from which we can solve for $z_{\mathrm{n}}{ }^{*}$, z_{S}^{*} and k^{*}.

