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Appendix 9.1 Some algebra of international treaties 

 

Let signatories be indexed by s and non-signatories by n. 

Non-signatories 

 

Non-signatories choose zn to solve 
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dC zdB Z dZ

dZ dz dz
  

 

Noting that dZ/dzn = 1, and that – given our assumption of symmetry – all countries’ efficient 

abatement will be identical, the solution can be written as 

( )( ) ndC zdB Z

dZ dz
  (9.4) 

where Z = Zn + Zs, Zn = (N – k)zn and Zs = kzs. 
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Signatories 

Choose abatement levels that maximise aggregate payoffs of all signatories: 
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The solution requires 
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for all j = 1,. . ., k (9.5) 
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for all j = 1,. . ., k 

 

What determines ∂Zn/∂Zs? It is chosen so that signatories would not wish to revise their choices 

after the choices of non-signatories. Those non-signatory choices are determined by 9.4 above. 

 

Totally differentiating 9.4 and noting that dZ = dZs + dZn and dzn = dZn/(N – k) we obtain 
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 (9.6) 

 

Then substitute equation (9.6) into (9.5), and add (9.4). This gives two equations which we shall not 

reproduce here, but will just label as equations (9.7) and (9.8).  
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A self-enforcing agreement also requires that 

 no signatory can gain by unilaterally withdrawing from the agreement; 

 no non-signatory can gain by unilaterally acceding to the agreement; 

 

which together imply that 

 

n s
( *) ( * 1) and ( *) ( * 1)

s s
k k k k        (9.9) 

 

Equations 9.7, 9.8 and 9.9 give us three equations in 3 unknowns from which we can solve for zn*, 

zs* and k*. 


