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UNIVERSITY OF STRATHCLYDE

APPLIED ECONOMETRICS LECTURE NOTES

MODEL MIS-SPECIFICATION AND MIS-SPECIFICATION TESTING
Aims
The estimates derived from linear regression techniques, and inferences based on those estimates, are only valid under certain conditions - conditions that amount to the regression model being "well-specified". In this set of notes, we investigate how one might test whether an econometric model is well-specified.

We have four main objectives.

(1)
To examine what is meant by the misspecification of an econometric model.

(2)
To identify the consequences of estimating a misspecified econometric model.

(3)
To present a testing framework that can be used to detect the presence of model misspecification.

(4) To discuss appropriate responses a researcher could make when confronted by evidence of model misspecification.

(1) Introduction
Assume that a researcher wishes to do an empirical analysis of a relationship suggested by some economic or finance theory. He or she may be interested in estimating (unknown) parameter values, or may be interested in testing some hypothesis implied by a particular theory. An appropriate procedure might consist of the following steps:

Step 1: Specify a statistical model that is consistent with the relevant prior theory, in the sense that it embodies the theoretical relationship that the researcher believes exists between a set of variables. Notice that this first step requires that at least two choices be made:

(i)
The choice of the set of variables to include in the model.

(ii)
The choice of functional form of the relationship (is it linear in the variables, linear in the logarithms of the variables, etc.?)

Step 2: Select an estimator which is known in advance to possess certain desired properties provided the regression model in question satisfies a particular set of conditions. In many circumstances, the estimator selected will be the OLS estimator. The OLS estimator is known to be BLUE (best, linear, unbiased estimator) under the validity of a particular set of assumptions. Even under less restrictive assumptions, the OLS estimator may still be the most appropriate one to use. However, there may be circumstances where we shall wish to use some other estimator. We shall denote the regression model as statistically well-specified for a given estimator if each one of the set of assumptions which makes that estimator optimal is satisfied.  The regression model will be called statistically misspecified for that particular estimator (or just misspecified) if one or more of the assumptions is not satisfied. 

Step 3: Estimate the regression model using the chosen estimator.

Step 4: Test whether the assumptions made are valid (in which case the regression model is statistically well-specified) and the estimator will have the desired properties.

Step 5a:

If these tests show no evidence of misspecification in any relevant form, go on to conduct statistical inference about the parameters.

Step 5b:

If these tests show evidence of misspecification in one or more relevant forms, then two possible courses of action seem to be implied:

· If you are able to establish the precise form in which the model is misspecified, then it may be possible to find an alternative estimator which will is optimal or will have other desirable qualities when the regression model is statistically misspecified in a particular way. 

· Regard statistical misspecification as a symptom of a flawed model. In this case, one should search for an alternative, well-specified regression model, and so return to Step 1.

For example, if all of the conditions of the normal classical linear regression model (NCLRM) are satisfied, then  the ordinary least squares estimator is BLUE, and is the optimal estimator.  Furthermore, given that estimators of the error variance (and so of coefficient standard errors) will also have desirable properties, then the basis for valid statistical inference exists.

The CLASSICAL linear regression model assumes, among other things, that each of the regressor variables is NON-STOCHASTIC. This is very unlikely to be satisfied when we analyse economic time series. We shall proceed by making a much weaker assumption. 

The regressors may be either stochastic or non-stochastic; but if they are stochastic, they are asymptotically uncorrelated with the regression model disturbances. So, even though one or more of the regressors may be correlated with the equation disturbance in any finite sample, as the sample size becomes indefinitely large this correlation collapses to zero. 

One other point warrants mention. In these notes, I am assuming that each of the regressor variables is “covariance stationary”. At this point I will not explain what this means. That will be covered in detail later in the course.

It will be useful to list the assumptions of the linear regression model (LRM) with stochastic variables. These are listed in Table 4.1.

TABLE 4.1 

THE ASSUMPTIONS OF THE LINEAR REGRESSION MODEL WITH STOCHASTIC REGRESSORS

  The k variable regression model is

 



(1)


The assumptions of the CLRM are:

(1)
The dependent variable is a linear function of the set of possibly stochastic, covariance stationary regressor variables and a random disturbance term as specified in Equation (1). No variables which influence Y are omitted from the regressor set X (where X is taken here to mean the set of variables Xj, j=1,...,k), nor are any variables which do not influence Y included in the regressor set. In other words, the model specification is correct.

(2)
The set of regressors is not perfectly collinear. This means that no regressor variable can be obtained as an exact linear combination of any subset of the other regressor variables.

(3)
The error process has zero mean. That is, E(ut) = 0 for all t.

(4)
The errors terms, ut, t=1,..,T, are serially uncorrelated. That is, Cov(ut,us) = 0 for all s not equal to t.

(5)
The errors have a constant variance. That is, Var(ut) = 2 for all t.

(6)
Each regressor is asymptotically correlated with the equation disturbance, ut.

We sometimes wish to make the following assumption:

 (7)
The equation disturbances are normally distributed, for all t.

Sometimes it is more convenient to use matrix notation. The regression model can be written in matrix notation for all T observations as 




   (A)
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Here, Y is a (T(1) vector of observations on the dependent variable, X is a (T(k) matrix of T observations on k possibly stochastic but stationary explanatory variables, one of which will usually be an intercept. ( is a (k(1) vector of parameters, and u is a (T(1) vector of disturbance terms.

Using the notation x( t to denote the t th row of the matrix X (and so is a  (k(1) containing one observation on each of the k explanatory variables), we can also write the model in matrix notation for a single (t th) observation as
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For the simple k=2 variable case, this can be written as




If  X1 is an intercept term, then we can more compactly write this as
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In matrix terminology, the assumptions in Table 4.1 would  be re-expressed as in Table 4.2.

TABLE 4.2

(1)
The dependent variable is a linear function of the set of possibly stochastic but stationary regressor variables and a random disturbance term as specified in (A). No variables which influence Y are omitted from the regressor set X , nor are any variables which do not influence Y included in the regressor set. In other words, the model specification is correct.

(2)  Lack of perfect collinearity (the T*k matrix X has rank k)

(3)  The error process has zero mean (  E(u) = 0)

(4)  The errors terms, ut, are serially uncorrelated  ( E(ut ,us) = 0 for all s not equal to t).

(5)  The errors have a constant variance ( E(ut2) = 2  ) for all t.

 In matrix terms, (4) and (5) are written as Var(u) = 2IT 

(6)  plim(1/T{X/u}) = 0

and if we wish to use it:

(7)  The errors are normally distributed.

THE LINEAR REGRESSION MODEL WITH STOCHASTIC REGRESSORS
A variable is stochastic if it is a random variable and so has a probability distribution; it is non-stochastic if it not a random variable. Some variables are non-stochastic; for example intercept, quarterly dummy, dummies for special events and time trends are all non-random. In any period, they take one value known with certainty. 

However, many economic variables are stochastic. Consider the case of a lagged dependent variable. In the following regression model, the regressor Yt-1 is a lagged dependent variable (LDV): 
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Clearly, Yt = f(ut), and so is a random variable. But, by the same logic, Yt-1= f(ut-1), and so Yt-1 is a random or stochastic variable. Any LDV must be a stochastic or random variable. If our regression model includes one, the assumptions of the classical linear regression model are not satisfied.

This is not the only circumstance where regressors are stochastic. Another case arises where a variable is measured by a process in which random error measurement occurs. This is likely to be the case where official data is constructed from sample surveys, which is common for many published series. In general, whenever a variable is determined by some process that includes a chance or random component, that variable will be stochastic. 

Consequences of stochastic regressors
It is necessary to relax the assumption of non-stochastic regressors if we are to do empirical work with economic variables. What  consequences follow where one or more explanatory variables are stochastic (random) variables? Note first that stochastic regressors, by virtue of being random variables, may be correlated with or not independent of the random disturbance term of the regression model.

First, the OLS estimator is no longer linear, and so it is no longer valid to argue that it is best linear unbiased estimator (BLUE). However, this is not of any great importance because OLS might still be unbiased and efficient. 

Where the stochastic regressors are independent of the equation disturbance, the OLS estimator is still unbiased. This unbiasedness applies to OLS estimators of the ( parameters and of (2, and to the OLS standard errors. Moreover, the OLS estimator is consistent, a property we discuss later.

Suppose now that the regressors are not independent of the equation disturbance, but nevertheless are asymptotically uncorrelated with the disturbance. (We shall explain this concept more carefully when discussing the Instrumental Variables Estimator). In this case, the OLS estimator is biased. However, it does have some desirable ‘large sample’ or asymptotic properties, being consistent and asymptotically efficient. Furthermore, in these circumstances, OLS estimators of the error variance and so of coefficient standard errors will also have desirable large sample properties.  The basis for valid statistical inference using classical procedures remains, but our inferences will have to be based upon asymptotic or large sample properties of estimators.

Finally, in the case where the regressors are not asymptotically uncorrelated with the equation disturbance, the OLS estimator is biased and inconsistent.

In our practical work, we shall discuss how one may test whether the regressors are asymptotically uncorrelated with the disturbance. If that assumption can be validated, then OLS will be an appropriate estimator to use.

TESTING THE ASSUMPTIONS OF THE LINEAR REGRESSION MODEL
It turns out that the only assumption that we are able to verify directly and with certainty is the assumption that the regressors are not perfectly collinear. This follows from the fact that the assumption is one about the observed data. Thus, our data can be checked to ascertain whether the assumption is true or false. The absence of perfect multicollinearity assumption is automatically satisfied as long as no regressor is an exact linear combination of one or more other regressors. If this is not satisfied, the OLS estimator will collapse, as stated above.  

Note, however, that we do not assume that the X variables have low correlation with one another; only that they are not perfectly correlated.

What about the other assumptions? Whilst they are not directly verifiable, they are indirectly testable. In certain circumstances, we can obtain observable proxies for unobservable variables. An obvious example is that the regression residual 

 may be a useful proxy for the unobservable disturbance ut. In such cases, statistical inference may be possible using test statistics which are functions of the observed proxies. We can do this by invoking the following principles of statistical testing.

Consider a particular assumption the validity of which is in doubt. We formulate a null hypothesis which is known to be correct if the assumption is valid, and an alternative hypothesis which is correct if the assumption is not valid. Next, a test statistic is constructed; this statistic will be some function of the proxy variable in question. We then use statistical theory to derive the probability distribution of the test statistic under the assumption that the null hypothesis is true. 

Given this probability distribution, together with a level of significance at which we choose to conduct inference, we can then define a range of values for the test statistic that will lead to a rejection of the null, and a range of values for the test statistic that will not lead to a rejection. Note that because these tests are probabilistic in nature, Type 1 and Type 2 errors can be made. Statistical tests do not allow us to make inferences with certainty. 

Several of the tests we describe below can also be regarded as general tests of misspecification. Both theoretical considerations and experimental evidence suggest that the values taken by such test statistics (when testing particular null hypotheses) will tend to be statistically significant when the model is misspecified in one of several possible ways. For example, tests for the presence of serial correlation are sensitive to the omission of relevant variables. A significant test statistic may be indicative of serial correlation in the model disturbance terms, but it might also reflect some other form of model misspecification, such as wrongly omitted variables. 

The process of carrying out indirect tests of model assumptions is known as  misspecification (or diagnostic) testing. The various misspecification tests we shall use can be arranged into several groups, each group relating to a particular category of assumptions. The groups are as follows:

A: ASSUMPTIONS ABOUT THE SPECIFICATION OF THE REGRESSION MODEL

B: ASSUMPTIONS ABOUT THE EQUATION DISTURBANCE TERM

C: ASSUMPTIONS ABOUT THE PARAMETERS OF THE MODEL

D: ASSUMPTIONS ABOUT THE ASYMPTOTIC CORRELATION (OR LACK OF IT) BETWEEN REGRESSORS AND DISTURBANCE TERMS. 

E: THE ASSUMPTION OF STATIONARITY OF THE REGRESSORS.

In the following section, we take each of the first three categories of assumptions of the LRM in turn, state the consequences of estimating the model by OLS when the assumption in question is not valid, and provide a brief explanation of the form of appropriate test statistics. We deal with categories C and D in later notes. 

A: ASSUMPTIONS ABOUT THE SPECIFICATION OF THE REGRESSION MODEL:

A:1 THE CHOICE OF VARIABLES TO BE INCLUDED: 

In terms of the choice of variables to be included as explanatory variables in a regression model, two forms of error could be made. Firstly, one or more variables could be wrongly excluded. Incorrectly omitting a variable is equivalent to imposing a zero value on the coefficient associated with that variable when the true value of that coefficient is non-zero. The consequence of such a misspecification is that the OLS estimator will, in general, be biased for the remaining model parameters. The caveat ‘in general’ arises because in the special (but most unlikely) case in which  the wrongly excluded variables are independent of those included, the OLS estimates will not be biased.

 It is also the case that when variables are wrongly excluded, the OLS estimator of the variance of the equation disturbance term is biased - it is actually biased upwards. This means that the standard errors of the estimators will be biased as well, and so t and F testing will not strictly be valid (as these statistics depend upon the standard errors which are wrong in this case). The consequences of wrongly excluding variables - biased coefficient estimates and invalid hypothesis testing - are clearly very serious!

The second error arises when irrelevant variables are wrongly included in the model. This error amounts to a failure to impose the (true) restrictions that the parameters associated with these variables are jointly zero.  The consequence of such a misspecification is that the OLS estimator will remain unbiased but will be inefficient. More specifically, the OLS estimators of the ‘incorrect’ model will have larger variances than the OLS estimators of the model that would be estimated if the correct restrictions were imposed. Put another way, precision is lost if zero restrictions are not imposed when they are in fact correct. 

A summary of these results is found in Table Z, and the notes to Table Z.

Table Z:
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NOTES TO TABLE Z:

Consequences of estimations:

Case A: (TRUE MODEL ESTIMATED)

( and (2  estimated without bias and efficiently



 is correct standard error, and so use of t and F tests is valid

Case D: (TRUE MODEL ESTIMATED)

(, ( and (2  estimated without bias and efficiently

Standard errors are correct, so use of t and F tests valid

Case B: (WRONG MODEL ESTIMATED DUE TO VARIABLE OMISSION )

Model misspecification due to variable omission. The false restriction that ( = 0 is being imposed.
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ˆ

 is biased. [In the special case where X and Z are uncorrelated in the sample, 
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 is unbiased].

 

is biased, as is the OLS estimator of (2

Use of t and F tests not valid.

Case C: (WRONG MODEL ESTIMATED DUE TO INCORRECT INCLUSION OF AVARIABLE)

Model misspecification due to incorrectly included variable. The true restriction that ( = 0 is not being imposed.
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 is unbiased but inefficient (relative to the OLS estimator that arises when the true restriction is imposed (as in case A). 

is biased, as is the OLS estimator of (2

Use of t and F tests not valid.

Note that cases A and D correspond to estimating the correct model; cases B and C are cases of model misspecification.

These two sets of errors, and the consequences we have just outlined, are of great importance. It is sometimes argued that bias is a more undesirable consequence than inefficiency.  If this is correct, then if one is in doubt about which variables to include in ones regression model, it is better to err on the side of inclusion where doubt exists. This is one reason behind the advocacy of the “general-to-specific” methodology. This preference is reinforced by the fact that standard errors are incorrect in the case of wrongly excluded variables, but not where irrelevant variables have been added. Thus hypothesis testing using t and F tests will be misleading or invalid in the former case.

No specific test is available to test whether the chosen regressor set is the correct one. However, if we have in mind a particular set of variables, then an F test could be conducted to test the restrictions that a set of parameters are jointly zero, and so to make inferences about whether that set of variables should be included in the model in addition to the other variables which are already included. 

The F test statistic for q independent linear restrictions can be written as:
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where RSSU = unrestricted residual sum of squares, RSSR=  restricted  residual sum of squares

and q= the number of restrictions being tested under the null hypothesis, T= number of observations, k = number of regressors (including intercept) in the unrestricted model.

If the null hypothesis is true, this statistic may be taken as being distributed as F(q, N-k), although this distribution will only be approximate where one or more regressors are stochastic. Note that the F test involves two regressions being run over the same sample. It is important, therefore, to maintain the same sample period throughout the specification search procedure. If the variables under consideration (those in the unrestricted regression) still fail to include some relevant variables, these F tests will be invalid. Why? {The reason was given a few paragraphs above}.

It is also the case that the incorrect omission of a set of variables may result in the estimated regression model failing one or more of the tests which we discuss below.

A DIGRESSION: MULTICOLLINEARITY
Multicollinearity (MC) exists whenever there is a non-zero correlation between two regressors (or linear combinations of regressors) in the model being estimated. Given that the likelihood of all variables in X being perfectly uncorrelated with one another is close to zero, MC nearly always exists when doing applied research.

In an extreme case, perfect multicollinearity is said to exist when two regressors (or linear combinations of regressors) exhibit perfect correlation in the sample data set. In this case, the estimator will break down, as a required matrix inverse cannot be obtained. Intuitively, parameter estimates are unobtainable as OLS is unable, in this extreme case, to identify the contributions that any individual variable makes to explaining the dependent variable.

The more common case of less-than-perfect multicollinearity is sometimes described as a “problem” when the degree of correlation is high. But such a description is very misleading. Provided the assumptions of the LRM are satisfied, multicollinearity does not affect the properties of the OLS estimator. Even where it exists, OLS will be unbiased and efficient, standard errors are correct, and t and F tests remain valid (subject, as always, to the caveat that the assumptions of the LRM are satisfied). 

However, the high correlation will tend to lead to the standard errors of the estimators being large (relative to what they would be if regressors had a low degree of correlation). As a result, confidence intervals will tend to be large, and the probability of making Type 2 errors (incorrectly accepting a false null) will tend to be high. In other words, hypothesis tests will have low power. In summary, it adversely affects the precision of our estimation and testing.

This is of course “undesirable” but it is not a problem per se. It does not invalidate the use of OLS or any of the tests we might wish to perform. Can anything be done to avoid multicollinearity? In general the answer is no. Multicollinearity is a property of the data we use; unless we are willing to not use that data, it cannot be “avoided”. Increasing the sample size may reduce collinearity, but this begs the question of why the larger data set was not used in the first place. Alternatively, it may be possible to reparameterise the model in such a way that there is lower correlation between members of the re-parameterised data set than between the original variables. For example, regressions involving mixtures of differences and levels will tend to exhibit lower collinearity than regressions among levels of variables alone. (This is one reason -albeit not the main one - why an ECM parameterisation may be preferable than a levels only parameterisation). 

A:2: THE CHOICE OF FUNCTIONAL FORM:
Assume we have chosen to estimate the model
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when the true model is 
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then clearly the functional form of the model is not correctly specified. The consequence of this is that we shall be estimating the wrong model; predictions and model simulations based on this wrong model will at best be misleading, and at worst will be meaningless.

Suppose we know that Y=f(X) but we do not know what the correct functional form is. There are many possibilities. Some of the more common ones are:



               LINEAR


           LOGARITHMIC (LOG-LINEAR)


             LIN-LOG  (SEMI-LOG)


           LOG-LIN  (SEMI-LOG)


            RECIPROCAL/RATIO FORM





RECIPROCAL/RATIO FORM

OR








POLYNOMIAL

where for simplicity we have omitted the equation disturbance terms and time period subscripts.

It does matter which you choose. Each of these forms implies a different type of relationship between Y and X, as can be seen from obtaining dY/dX in each case. In principle, only one (or none) of them can be correct in representing a particular relationship. So for example, if the log-linear model did in fact correctly describe the Y, X relationship, then there is a constant elasticity of Y with respect to X, given by (2. In  contrast, the linear form implies that there is NOT a constant elasticity of Y with respect to X.  

One way of investigating the appropriateness of our choice of functional form is by using Ramsey's RESET test. Let the model we estimate be of the form given by equation (1) in Table 4.1. This asserts that the expected value of Y, conditional upon the X variables, is a linear function of the regressors. That is










  




(28b)
The RESET test is for the null that the expected value of Y, conditional upon X, is a linear function of X (as in (28)), against the alternative that the expected value of Y, conditional upon X, is not a linear function of X.  

A number of RESET test statistics could be derived, depending upon the particular form of non-linearity chosen as an alternative. One way of implementing a form of RESET test is to use a two-step technique. 

· In the first step, the linear regression model (28b) is estimated by OLS, and the regression residuals and the fitted values of Y are saved. 

· The second step involves an auxiliary regression. This can be done in several ways.  In one of these, the residuals from the first step regression are regressed on squares, cross-products (and perhaps higher order products) of the regressors of the original model. The alternative hypothesis, then, is that the conditional mean of Y is a function of (some) of these additional regressors. An F test could be used to examine the joint significance of the regressors in the auxiliary regression. 

· An alternative way of carrying out the second stage is carried out by MICROFIT, which calculates a particular version of the RESET test statistic (and is a restricted version of the procedure described above).  From the original first step regression, the fitted values, 

  , and the regression residuals, 

 are saved. The squares of the fitted values are used in the auxiliary regression:
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The RESET test can then be conducted by using a t or F test for the null hypothesis that =0. The hypothesis testing menu in Microfit allows one to carry out a pth order version of this test (See manual, p67).  Note that the RESET test is an example where significance of the test statistic does not directly suggest any alternative specification of the model. In particular, it would make little sense, if the null hypothesis is rejected, to include the constructed variables Y2 or 

as additional regressors in a re-specified regression model.

Testing for Log vs Linear vs Semi-log vs Ratio Functional Forms using non-nested tests

Microfit (see manual, pages 97-99, 156-158 and 229-234) offers the facility of carrying out non-nested tests of linear, log-linear and ratio form models against one another. In particular, the procedure allows the researcher to evaluate the relative merits of the three alternative models




where Q is some variable you select. Note that “X” could be several things; for example, X=Z, X= ln(Z), X=1/Z, ...., so that a variety of functional forms are generated by the three models. 

A number of non-nested test statistics are computed for comparing the models by simulation. The principles underlying non-nested testing and the associated statistics are explained in a later set of notes.

Testing linear against log-linear models can also be implemented using the Box‑Cox transformation. We do not examine this test here. However, details may be found in “Testing Linear and Log-Linear Regressions for Functional Form” by Godfrey and Wickens (Review of Economic Studies, 1981, pages 487-496).

B: ASSUMPTIONS ABOUT THE EQUATION DISTURBANCE TERM:

In this section, we continue to assume that the correct specification of the regression model is





(64)
First note that the LRM assumes that the equation disturbance has an expected value of zero for all t. We can guarantee that the zero mean assumption is satisfied if an intercept variable is included in the regression. If you do not include an intercept, some information can be obtained by plotting the regression residuals. Although no formal test is available by doing this, the plot might at least be suggestive of whether  the assumption seems to be consistent with the data. 

B:1: ABSENCE OF DISTURBANCE TERM SERIAL CORRELATION:
The consequences of estimating the regression model by OLS when the assumption of no serial correlation between equation disturbances is not valid depend upon the properties of the regressors. Consider first the case where all the LRM assumptions and the regressors are non-stochastic). Serial correlation results in the OLS estimator no longer being BLUE. In these circumstances, the OLS estimator is inefficient although still unbiased. Stating that an estimator is inefficient means that the estimator has a higher variance than some other unbiased estimator. If the error term did in fact exhibit serial correlation, the OLS estimator would be making no use of this information. It is the failure of the estimator to use that information that explains the inefficiency. 

Another (and probably more serious) consequence of disturbance serial correlation is that the standard errors of the OLS estimators are in general biased. This means that the use of t and F statistics to test hypotheses is misleading or invalid.

If the researcher knew the true structure of the serial correlation, then an alternative estimator - the Generalised Least Squares (GLS) estimator - could be used instead of OLS, and would yield unbiased and efficient parameter estimates. Note that in practice the researcher will not be able to use GLS as such because the researcher will not know the true structure of the serial correlation,; he or she will have to assume a structure, estimate its parameters, and then use "feasible least squares".

Where the regressors are stochastic, serial correlation will also result in efficiency losses, and may also lead to OLS being inconsistent.

The error term could be serially correlated (or autocorrelated) in many different ways. One structure that might be taken is given by the following specification of the equation disturbance term: 





(65)
where t is assumed to be a "white noise" error term (that is, it has a zero mean, is serially uncorrelated and has a constant variance). This equation states that the disturbance term ut is generated by a first order serially correlated (autoregressive) process. We denote the process described by (32) as an AR(1) process, where AR is used to mean autoregressive. The assumptions of the NCLRM or LRM imply that =0, so that ut = t. 

INSPECTION OF RESIDUALS

Visual inspection of a graph of the regression residuals may be a useful starting point in indicating whether there is a potential problem of serial correlation. However, any inference from such inspection should be backed up by the use of a formal test statistic.

THE DURBIN-WATSON (DW) TEST
The Durbin-Watson test can be used to test the null hypothesis that the error term is serially uncorrelated, against the alternative that each disturbance term is correlated with the disturbance term in the previous period. In this alternative case, the disturbance is said to be serially correlated of order one. The required null and alternative hypotheses for this test are: 
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in the context of the regression model (31) and the first order autoregressive error process (32). The DW statistic is defined  as
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Under the validity of the null hypothesis, the DW statistic has a distribution known as the DW distribution, and for which tabulations are easily found. 

Note that DW is only a test for first order autoregression; moreover, the tabulated distribution of the DW statistic is only valid in a model in which  no lagged values of the dependent variable are included as regressors. A clear account of this can be found in almost any elementary econometric text.

DURBIN'S h STATISTIC
For testing for an AR(1) error process in a model including lagged dependent variables, the Durbin h test might be employed. The statistic is defined as




 

where 

 is the estimated variance of the OLS estimator of the coefficient on the lagged dependent variable. The Durbin h statistic is distributed asymptotically as a standard normal random variable if the null of no serial correlation is correct. This statistic is given as part of the standard regression output of many econometric software packages. A clear account of the use of this statistic can be found in most econometric texts.

GODFREY'S LAGRANGE MULTIPLIER (LM) TESTS
Next consider the regression model (31) in which we permit one or more of the regressor variables to take the form of lags of the dependent variable. The tests we derive here are valid under this circumstance. Now assume a more general form of process for the equation disturbance term, in which the disturbance term is a pth order autoregressive process (AR(p)). That is 
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By allowing the disturbance term to be generated in this way, we are able to devise a test for the absence of serial correlation against a more general alternative than was permitted in the case of the DW and Durbin h tests, where p was restricted to be one. We can use this procedure to test for the presence of any order of serial correlation. 

The test statistic given by the version of this test proposed by Godfrey (1978) can be calculated by a two step procedure. First the regression model (31) is estimated by OLS, and the regression residuals are saved. In the second stage, an auxiliary regression of the estimated residuals on the variables in the original model and p lags of the estimated residuals from equation (31) is run. The R2 statistic is then calculated. Godfrey's test statistic is the quantity  TR2, where T denotes the sample size used in the auxiliary regression. This is asymptotically distributed as chi‑square with p degrees of freedom under the null of all p autoregressive coefficients being equal to zero.

One additional point should be mentioned. The Godfrey test allows the disturbance process to be either a pth order autoregressive process as indicated above, that is either
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or a pth order moving average process in the (white noise) error 
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The pth order test statistic can be used to test the null that all p autoregressive parameters () or all p moving average coefficients () are zero, against the alternative that at least one of these parameters is non‑zero.

In practice, to implement these tests it is necessary that you, the researcher, select a maximum value for p. It is then good practice to conduct the tests sequentially for orders of p from that chosen value down to p=1. Often the maximum value of p is set at 3 for annual data, and 6 for quarterly data (although these numbers are only guides). A significant statistic in any one of these tests should be taken as indicating the possible presence of serial correlation in the equation disturbances.

The LM version of this test, for serial correlation of up to order p, is based on TR2 , where the R2 derives from the auxiliary regression of the estimated residuals (from equation (31) on the variables in the X matrix and p lags of the estimated residuals from equation (31). Call the resulting statistic SC(p). This is asymptotically distributed as chi‑square with p degrees of freedom under the null of all p autoregressive coefficients equal to zero.

The F version is based on
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This F statistic is asymptotically distributed as F with p and T-k-p degrees of freedom under the null of all p autoregressive coefficients equal to zero. Notice that the value of R2  goes to zero under the null hypothesis, hence a value of the F or LM tests significantly different from zero implies that the residuals are serially correlated (or have pth order moving average terms). 

The serial correlation statistics are not alone in having two forms. Many misspecification test statistics are available in two forms, a Lagrange Multiplier (LM) version and an F statistic version. The former are asymptotically distributed as chi‑square under the respective null hypotheses. The F version ("modified LM statistic") has, in finite samples, an approximate F distribution under the null. Monte Carlo evidence (see Kiviet 1986) suggests the F version may be more reliable in small samples.

When you are employing an instrumental variables estimator (or 2SLS) do not use Godfrey’s serial correlation test statistic. Instead use Sargan's test for serial correlation.

POSSIBLE RESPONSES TO A “SIGNIFICANT” SERIAL CORRELATION TEST STATISTIC
Suppose a test statistic you have used allows you to reject the null of no serial correlation. There are several reasons why this might occur including:

· a Type 1 error has occurred (you have incorrectly rejected a true null) 

· your chosen regression model is misspecified in some way, perhaps because a variable has been incorrectly omitted, there are insufficient lags in the model, or the functional form is incorrect. 

· the disturbance term is actually serially correlated

Only in the third case would it be appropriate to respond to a significant serial correlation statistic by reasoning that the disturbance is serially correlated and then using a GLS type estimator in preference to OLS. The position we take in this course is that the most likely cause is model misspecification - the appropriate response is then to respecify the regression model. It is worth noting that a test of common factor restrictions may suffice to establish whether the disturbance term is actually serially correlated. We do not cover this in our course.

B:2: CONSTANCY OF DISTURBANCE TERM VARIANCE (HOMOSCEDASTICITY)
The LRM assumes that the variance of the equation disturbance term is constant over the whole sample period. That is
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If this assumption is false, the OLS estimator is no longer efficient . Estimating the regression model by OLS when the assumption of heteroscedasticity is not valid has the consequence that the OLS estimator is inefficient (although still unbiased where regressors are non-stochastic). This can be explained intuitively in a similar manner to the case of serial correlation, discussed above. If the error term did in fact exhibit heteroscedasticity, the OLS estimator would be making no use of this information. It is the failure of the estimator to use that information that explains the inefficiency. Another (and probably more serious) consequence of disturbance serial correlation is that the standard errors of the OLS estimators are in general biased (as was the case also with serially correlated disturbances). This means that the use of t and F statistics to test hypotheses is misleading or invalid.

Conversely, if the researcher knew the true structure of the heteroscedasticity, then an alternative estimator - the Generalised Least Squares (GLS) estimator - could be used instead of OLS, and would one again yield unbiased and efficient parameter estimates. 

If the assumption of homoscedasticity is false, then by definition the disturbance terms are heteroscedastic. There are an infinite quantity of ways in which the disturbance term could be heteroscedastic. Each of the following mechanisms involves the variance being related to the value taken by one variable, Z (which may or may not be included as a variable in your regression model): 




Another possibility is that  the variance of the equation disturbance term is linearly related to the values taken by a set of p variables, an intercept plus p-1 other variables denoted Z2 to Zp. Let us consider this case. Specifically, we assume the process determining the error variance to be
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Now note that if E(ut)=0, then we can rewrite this as
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So we could in principle estimate the parameters by running the regression
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(8)

This regression cannot be implemented as the dependent variable is unobservable. However, we  can use the squares of the estimated regression residuals, 

 as proxies for the unobservable variables ut2. With this substitution, we may now estimate the auxiliary regression (8) by OLS and obtain the OLS estimates of i, i=1,..,p. It is then straightforward to test 
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An F test can then be used to test the validity of the p-1 restrictions stated under the null hypothesis. Unfortunately, this test will only be an approximate one in finite samples as the auxiliary regression cannot satisfy the assumptions required of the LRM. In particular, the disturbance  cannot be normal if the disturbance of the original regression, u, is normal. The test can also be conducted using an alternative statistic. If R*2 denotes the R2 statistic from the second stage (auxiliary) regression, then it is approximately true in finite samples that
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if the null hypothesis is valid (where the symbol ~ is used here to mean “is distributed as”). It follows that the null of homoscedasticity would be rejected if the value of TR*2 exceeded the critical value of the chi-square distribution with p-1 degrees of freedom at the chosen significance level. 

This test might be an appropriate one to pursue if you know in advance that, if heteroscedasticity were to exist, it would be related to the levels of the p-1 variables Z. But how could you proceed if you had no prior idea about which variables could influence the variance? A possible way is as follows. Assume that the disturbance process can be represented by the form
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A test could be implemented by estimating the original regression by OLS, and saving the fitted values and the estimated residuals. Then in a second step, using the residuals as proxies for the unobserved disturbances and the squares of the fitted values as proxies for [E(Y)]2, we estimate the following auxiliary regression:
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For the hypotheses

H0: ( = 0

Ha: ( ( 0

the statistic TR2  (where R2  is from the auxilliary regression) has, under the null hypothesis (=0) a chi-square distribution with one degree of freedom. This is known as the LM (Lagrange multiplier) version of the test. An even simpler alternative would be to use an F test (or t test) statistic for the null hypothesis that =0. In this case, the F statistic would have an F distribution with 1 and T-k degrees of freedom if the null hypothesis is correct.

Other test statistics for the presence of heteroscedasticity 

The Breusch Pagan test and Goldfeld Quandt test can also be used. For details, see the text by Thomas. Plotting of regression residuals may also help to detect heteroscedasticity.

AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (ARCH)

Engle (1982) suggested that many time series exhibit a special form of heteroscedasticity which he called autoregressive conditional heteroscedasticity.  Consider the following simple first order ARCH model (ARCH(1)):





(B.1)

ut is white noise:




However, although ut is white noise, the square of ut follows a first order autoregressive process:





(B2)

where (t follows another white noise process.




The unconditional variance of ut is a constant, 

 , given by:




However, the variance of ut conditional on ut-1 {Var(ut| ut-1)} is, from equation (B2), given by:




So the conditional variance is not constant, depending on the value of ut-1. The process (2) is described as a first order autoregressive conditional heteroscedasticity process, and is denoted by:

ut~ARCH(1)

More generally we may have




in which case ut~ARCH(m), and the conditional variance of ut will depend on m lagged values of ut. Other more complicated forms of ARCH process also exist that we will not describe here. 

In the case where the disturbance term is determined by some ARCH process, failure to take account of this structure results in the estimator being inefficient [relative to an estimator which does take this into account]. 

The presence of ARCH disturbances can be tested for. In the case of the ARCH(1) process described above one could proceed in the following way.

Estimate (B.1) by OLS and save the residuals.

Estimate the auxilliary regression:




Test the null:

H0: (1=0

against the alternative

Ha: (1(0

More generally, one may estimate the auxilliary regression  (EDIT)




which allows for up to p lags of ut to enter the ARCH process.

B:3: NORMALITY OF DISTURBANCE TERM: 
THE JARQUE-BERA (1981) TEST.
If the equation disturbance terms are not normally distributed, then it is not possible to derive exact distributions for the estimators and other related statistics for finite size samples. In such circumstances, the best one can do is to derive the theoretical distributions of statistics in samples of infinite size, and then to argue that the statistics we use have approximately similar distributions. In the case of stochastic regressors, all test statistics will only have approximate distributions for finite sized samples, so not much is lost if normality does not apply.

The assumption that the equation disturbances are normally distributed can be tested using a procedure suggested by Jarque and Bera (1981). Any probability distribution can be characterised by values taken by its moments. The first moment is its mean or expected value, the second moment its variance. The third moment and fourth moment are sometimes described as the degree of skewness and kurtosis of the distribution. A normally distributed random variable will possess particular values for the third and fourth moments. 

The JB test statistic uses the residuals as proxies for the unobserved disturbances, and examines whether the values taken by the third and fourth moments are compatible with those expected under the null hypothesis of normality.
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This statistic is distributed as chi square with two degrees of freedom under the null of disturbance normality. The term m3, the third moment, reflects skewness, and m4, the fourth moment reflects kurtosis. The JB statistic is only valid for a regression which includes an intercept term, although a modified statistic (not discussed here) can be used where an intercept is not included. 

C: ASSUMPTIONS ABOUT THE PARAMETERS OF THE MODEL
PARAMETER CONSTANCY OVER THE WHOLE SAMPLE PERIOD
The linear regression model imposes the restriction (or restrictions)  that the model parameters are constant numbers over the whole sample period. If this assumption were false, the model is misrepresenting the economic relationships under investigation (by imposing constancy of parameters when they are not constant). A stronger stance to take, but also perhaps a valid one, is that the equation estimates are meaningless: we obtain estimates in the form of a set of constant numbers for parameters which are not constant numbers!

It is also important to note that in estimating, for example, the linear regression model 

Y = X( + u

we are not only assuming constancy of the parameter set ( but we are also assuming that the variance of the disturbance term, (2, is a constant number over the whole sample. In any testing we do for parameter constancy, we should strictly speaking test both of these. 

We will never “know” of course whether the true parameters are constant or not, but we can check to see whether the estimated parameters are stable or unstable. Informally, if the estimated parameters are not stable, we take that as evidence in favour of true parameter instability.

Why might estimated parameters be unstable? There are many reasons including

· the true parameters are in fact not stable

· the true parameters are stable but model we estimate is mis-specified in some (unknown) way, so that the estimated parameters are not estimating what we think they are. For example, parameter instability might reflect the effects of an omitted variable; if this variable changes its behaviour during the sample period, that could induce apparent instability into our model.

In either case, the model we have is inadequate. The response to the “problem” depends upon which of these explanations you think is correct. If the true model does in fact contain correct time-varying parameters, then we should reformulate our model as a time-varying parameter model, and the estimate it in an appropriate way. This does, though, rather beg the question about how one could identify the manner in which the parameters do in fact vary. If the second explanation were correct, we must look for an alternative specification (possibly trying to find out which is the “culprit” missing variable).

TESTS FOR PARAMETER CONSTANCY

CHOW (TYPE 1) TEST
One way in which we may test the maintained assumption of parameter stability is by using Chow's parameter constancy test, sometimes known as Chow's first test. It is implemented by  dividing the sample into two sub-samples, estimating each sample separately by OLS, and then testing whether the two sets of parameter estimates are significantly different from one another. This can be tested using a conventional F test procedure. 

Let the total sample of size T observations be divided into two subsamples, indicated below by the subscript i. Then i=1 denotes the first sub-sample, and i=2 denotes the second sub-sample. These are not necessarily of equal size, but each sub-sample should contain more than k observations, so that the k variable linear regression model is estimable for each sub-sample. We may now write the unrestricted regression model as
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Note carefully that the disturbance term for each of the two sub-sample periods (ui , i=1,2) is a vector. We may interpret Xi as a matrix (of dimension Ti (k) consisting of all the observations in the ith sub-sample on a set of k variables. Then i is a (k(1) vector of parameters for the sample period i. We shall use the following notation for residual sums of squares (RSS) from estimation over different periods:

RSS1: The RSS from estimation over sub-sample i=1

RSS2: The RSS from estimation over sub-sample i=2

RSS0: The RSS from estimation over the whole sample, with the restrictions of parameter constancy imposed.

The null and alternative hypotheses are as follows.


H0: 1 = 2,  12 = 22

H1: 1  2,  12 = 22
Note two points. First, under both the null and alternative hypotheses, it is assumed that the disturbance variance is constant and equal over the two subsamples. Secondly, the unrestricted model for the whole sample corresponds to running two separate regressions, restricting parameters to be constant in each subsample but permitting them to vary between sample periods. The restricted model corresponds to running a single regression over the full sample, restricting parameters to be constant in each subsample and between sample periods. 

The Chow Type 1 test is a commonly used parameter stability test. It can also be used to test for parameter equality between subsets of cross-section data, and can be generalised to test for parameter stability against an alternative of more than one “regime change”. The principle of the test can also be applied to a subset of the regression coefficients. 

Recall that the general form of the F test statistic is
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Now given that in this case, the restricted residual sum of squares (RSSR) is RSS0, the unrestricted residual sum of squares (RSSU) is RSS1 + RSS2, the number of restrictions under the null hypothesis (q) is k, and the degrees of freedom in the unrestricted model is T-2k (the full sample, less the two sets of k parameters being estimated), the F test statistic can be written as
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Dummy variable based test: Equivalent to CHOW 1 test
The Chow Type 1 test can be implemented in a different way, using a dummy variable. Suppose our restricted regression model (that is, incorporating the parameter constancy restrictions) is
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Again, the null and alternative hypotheses are


H0: 1 = 2   and     1 = 2, 
 given that 12 = 22

H1: 1  2 and/or   1  2, 
 given that 12 = 22
We estimate the unrestricted model
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The Chow statistic is obtained as the F test statistic for the null hypothesis

H0: (2 =  (2 = 0. This will be numerically identical to the Chow 1 statistic derived in the previous way. Note that if X is a vector of more than one variable, then (2 will also be a vector, each element of which is constant over time under the null.

Chow's second test [Microfits “Predictive Failure Test”]
Another test framework that can be loosely interpreted in terms of parameter constancy is concerned with in-sample prediction. Suppose that we divide the full sample of T observations into two subsamples, T-m observations called the estimation period and m observations called the forecast period. It is not necessary that m>k, as this procedure does not require that we estimate the model over the forecast period alone. 

Defining RSS0 and RSS1 as before, and using the subscript 1 to denote the first subsample of T-m observations and the subscript 2 to denote the second subsample of m observations, the null and alternative hypotheses are
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Under the null, ( does not vary over time; under the alternative it is allowed to be different between the two sub-sample periods. Chow's second (forecasting) test statistic 
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where m is the number of observations (at the end of the data sample) reserved for in-sample prediction. 

Chow’s second test can also be implemented using a dummy variable method. This is known as Salkever's dummy variable method, and is exactly equivalent to the original version of the Chow 2 test. 

Set up and estimate the following unrestricted regression model:
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The test statistic is obtained as the F test statistic on the null that the coefficients of all m dummy variables are jointly zero. If the F statistic exceeds the relevant critical value, we reject the null of parameter constancy. The intuition behind this test is as follows. Suppose we estimated the model on the observations t=1 to t=T-M only, and then used the parameter estimated so obtained, together with the known values of X for the in-sample forecast period, to predict Y for t=T-M+1 to t=T. Then by comparing the actual values of Y with these forecast values, prediction errors can be calculated. If the model has constant parameters, it should predict well, and so the coefficients on all the dummy variables should be jointly zero. That is what is being tested. Note, also, that the coefficient estimate on each dummy variable can be interpreted as the prediction error for that period.

AN EXAMPLE OF USING THE SALKEVER VERSION OF THE CHOW II TEST

Consider the regression model 




Suppose we wish to use the last two observations (t=T-1 and t=T) for in-sample forecasting. We define two dummy variables, D1 and D2 as follows:

D1 = 1 for t=T-1 ,   D1 = 0 otherwise

D2 = 1 for t=T     ,   D2 = 0 otherwise

Now consider the augmented regression model




This is the model we need to estimate to implement the test. Notice that it is estimated over all T observations. As it stands this is the unrestricted model. For time periods t=1 until t=T-2 inclusive, the equation intercept is constant at the level given by (. However, the intercept becomes ( + (1 in period T-1 and it becomes ( + (2 in period T. 

To implement the test, we run the unrestricted regression and save the (unrestricted) residual sum of squares. We then test

H0: (2 = (3 = 0 

Ha: (2 ( 0 and/or (3 ( 0 

by running a restricted regression excluding the two dummy variables, again over the full sample period (giving the restricted residual sum of squares), and the carrying out a standard T test for the validity of the restrictions.

END OF EXAMPLE 

Note that both types of Chow test are conditional on the validity of equality of variances over the subsamples. In the case where the sample sizes for both subsample periods are larger than m, equality of variances could be tested using the Goldfeld Quandt test statistic for the hypotheses


H0:  12 = 22

HA:  12  22
Separate estimation of the regression model in each sub-sample periods yields two variance estimates:
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Assume for the moment that the estimated variance is larger for the second period than the first. If so, the required test statistic is
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where it is usually recommended that m should be set to be approximately T/2. 

As the alternative hypothesis is two-sided, a two-tailed test is appropriate here. This must be considered when choosing a critical value for the test statistic. For example, suppose that you wish to conduct the hypothesis test at size = 5% (ie a 5% probability of making a Type 1 error). The appropriate critical value is obtained from the tables of critical values, at 2.5% size, for the F distribution with degrees of freedom m-k, T-m-k. 

Note that if the estimated variance were in fact smaller for the second period than the first, then the F statistic should be calculated as 
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Other techniques used to examine parameter constancy include CUSUM and CUSUM-SQUARED tests, and the methods of ROLLING REGRESSION and RECURSIVE ESTIMATION. We shall examine these in lab work.

PARAMETER STABILITY TESTING IN PcGive USING RECURSIVE ESTIMATION

The recursive estimation facility in PcGive offers a useful approach to testing for the absence of parameter stability.  The principle behind recursive estimation itself is simple. The model is first estimated over an initial sample of M-1 observations. Then the model is reestimated over samples of M, M+1, 9M+2, …up to the full sample of T observations.  

Output from this procedure is available in several forms. The main form is graphical plots of coefficient estimates, and of the standard error of the regression (
[image: image5.wmf]s

ˆ

), over the sample. One way of examining parameter constancy is to view these plots and examine the extent to which the estimates depart from constant numbers over the sample. 

The example below shows this procedure applied to the tutorial data set within the GiveWin package (see page 35 of the PcGive manual for details of the data set and page 58 for details of the recursive estimation being undertaken). [These references are to the manual for version 9, the one in the computer labs. Note that the page references have changed slightly in the latest version of the manual for version 10.] 

The first picture shows the options that have been set to govern recursive output. Note that the significance level for the tests has been set at 1%, not the default of 5%. This is followed by some estimation output sent to the Results file.  I have highlighted in bold the extra information that is particularly useful when assessing stability/constancy. Finally, the graphical output is shown. 

[image: image7.wmf]
EQ( 1) Modelling CONS by RLS  (using data.in7)

The present sample is:  1953 (2) to 1992 (3) less 8 forecasts

The forecast period is: 1990 (4) to 1992 (3)

Variable     Coefficient    Std.Error  t-value        HCSE PartR^2 Instab

Constant          5.8408       11.675    0.500      11.699  0.0017   0.21  

CONS_1           0.98537     0.028088   35.082    0.030261  0.8940   0.21  

INC              0.50387     0.039744   12.678    0.033550  0.5240   0.21  

INC_1           -0.49613     0.042872  -11.572    0.039560  0.4784   0.21  

The parameter instability statistics (labelled Instab) are based on Hansen (1992), Testing for Parameter Instability in Linear Models, Journal of Policy Modelling. They are scaled in such a way that large values (denoted by a * or **) denote parameter instability, and so according to Hendry “denote a fragile model”. The indicated test significance outcomes (* or **) are only valid for non-stationary regressors. 

R^2 = 0.987924  F(3,146) = 3981.4 [0.0000]  \sigma = 1.48378  DW = 1.34

RSS = 321.4355018 for 4 variables and 150 observations

Instability tests, variance: 0.367202    joint: 1.01656  

The first of these concerns the stability of variance of the disturbance term in the model. The second relates to the joint significance of all the parameters in the model; this is a joint (F test) equivalent of the single instability tests reported above.  A starring system is also used to alert the reader to significance of either statistic. 

Information Criteria:

SC = 0.895779  HQ = 0.848112  FPE=2.26032  AIC = 0.815495

Analysis of 1-step forecasts

   Date         Actual     Forecast       Y-Yhat  Forecast SE      t-value

1990  4        861.484      863.541     -2.05697      1.50411     -1.36756

1991  1        864.444      863.025      1.41862      1.49959     0.946007

1991  2        862.750      864.011     -1.26095      1.49358    -0.844245

1991  3        859.413      860.658     -1.24477      1.50347    -0.827935

1991  4        860.480      863.105     -2.62435      1.52180     -1.72450

1992  1        860.002      860.451    -0.448745      1.50473    -0.298223

1992  2        855.908      855.699     0.209250      1.53147     0.136633

1992  3        856.731      856.643    0.0877170      1.50178    0.0584086

Tests of parameter constancy over: 1990 (4) to 1992 (3)

Forecast Chi^2( 8)=      7.505 [0.4833]   

Chow    F( 8,146) =    0.90149 [0.5171]   

The two statistics given above are two forecast tests for the sample period we told PcGive to retain for prediction purposes. They are produced whether or not the recursive estimation option is activated.

In each case, the null hypothesis is “no structural change in any parameter between the sample and the forecast periods” 

The PcGive manual gives the following guidance for using these two statistics:

“ The Forecast Chi^2 test is a measure of numerical parameter constancy, and it should not be used as a model selection device.…. However, persistently large values in this statistic imply that the equation under study will not provide very accurate ex ante predictions, even one step ahead.”  

“ Rejection of the null hypothesis of constancy by the (Chow F test) implies a rejection of the model over the sample period – so this is a model selection test. It is the main test of parameter constancy.”
Below we show (one version of) the graphical output obtained after recursive estimation:
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The first four charts show recursive estimates of the coefficient on the constant term (and then estimates coefficients on three other variables), surrounded by an approximately 95% confidence interval formed by two lines +/- 2SE around the recursive estimates.  Hendry argues that the first graph (and the following three) suggests parameter non-constancy. He argues that:

    “…after 1978, (the estimated coefficient) lies outside of the previous confidence interval which an investigator pre-1974 would have calculated as the basis for forecasting. Other coefficients are also non-constant”. 

The graphical output next presents four charts showing the recursive t ratio coefficients for each coefficient. Look out here for substantial shifts in the magnitude and significance of t statistics over the recursion. These ones are clearly unstable. 

The next chart shows the “1-step recursive residuals”, that is the difference between actual and fitted values for each set of coefficient estimates calculated recursively along the sample. These are shown with a 95% confidence interval, given by +/- 2 SER (remembering that it is the recursive estimates of the SER being used here). Points outside the 95% confidence interval are either outliers or are associated with parameter changes (although this does not help very much as we really wish to know which of these is the case!). Hendry argues that in this example:   “Further, the 1-step residuals show major outliers around 1974” and that “the 1-step residuals show an increase in regression equation variance after 1974” (which is itself a form of parameter instability). He also comments on the fact that the 1-step Chow test amply reflects this change. 

The last set of graphs are all variants of the Chow (1960) type 2 F test statistics, and have been scaled in such a way that critical values at each point in the sample are equal to unity. Details of the formulae used to calculate the test statistics are given on page 233 of the PcGive manual. 
Of these Chow test charts, the graph labelled “1 up CHOW” is the  1 step Chow test. These are one step (one period ahead) forecast F tests. This appears to show an “outlier” around 1974.

The last two charts are also for particular forms of recursive CHOW test statistics, the terminology for which is potentially confusing. PcGive labels these as the Ndwn (that is N down), and Nup (that is N up) Chow tests.  We could also think of them in terms of forwards vs. backwards versions. 

Consider the N down (or forwards) graph first. Hendry calls this the Break point F tests, or N down- Step Chow tests. Here the chart shows a sequence of Chow forecast tests running down from N = T-M+1 to N=1 (that is, the forecast horizon is decreasing and hence the use of the term down). The sequence begins by using observations 1 to M-1 to predict the remaining observations from M to T (i.e. N = T-M+1 forecasts).  Then one observation is added to the estimation period, so that observations 1 to M are used to predict the remaining observations from M+1 to T. This continues until observations 1 to T-1 are used to forecast the Tth period. So at each point in time in the sample, the chart shows the value of the Chow forecast F test for that date against the final period.  The values shown have been scaled by the appropriate critical value (we have chosen 1% here). This implies that the horizontal line at unity becomes the critical value to use for making inference about stability. 

Next consider the N up (or backwards) graph. Hendry calls this the Forecast Chow tests, or N up- Step Chow tests. Here the chart shows a sequence of Chow forecast tests for a horizon increasing from M to T. This is implemented by first using observations T to T-M to predict periods 1 to M. Then periods are successively added until the sample for the last regression consists of observations T to 2 which are used to predict the first observation. Again, the values shown have been scaled by the appropriate critical value (we have chosen 1% here). This implies that the horizontal line at unity becomes the critical value to use for making inference about stability. Hendry suggests that the N up forecast test “shows that a ‘break’ occurred in 1974”. 

 INTERPRETING THE OUTCOMES OF TEST STATISTICS

A "failure" on any of these tests (in the sense that the test statistic is significant under the null hypothesis) can mean one of several things:

(a) the null hypothesis is false and that the model is misspecified in the way indicated by the alternative hypothesis. (e.g. a significant serial correlation statistic COULD indicate the presence of serial correlation).

(b) the null hypothesis is correct, but the model is misspecified in some other way (e.g. a significant serial correlation statistic might not result from a true serially correlated error, but could result from an omitted variable).

(c) the null hypothesis is false AND the model is misspecified in one or more other ways.

(d) a significant statistic may result from a type I error (that is the null is true but is rejected).

Because explanation (a) is not always correct, it is best to interpret each test as a general misspecification test, which may give some clues as to the type of misspecification encountered. Thus, a significant normality test implies the model is misspecified in some way. The type of misspecification MAY result from an error process which is not normal, but COULD result from virtually any type of misspecification. A “conservative” way of proceeding is, then, to regard the set of misspecification tests as a set of necessary hurdles to be overcome: unless the model you specify and estimate is not rejected in terms of any test of misspecification, do not proceed. Respecify the model until a satisfactory one is found. 

An important point to note is the distinction between the residuals and the errors. While a significant serial correlation test statistic implies (with a given degree of significance) that the residuals are serially correlated, this does not necessarily imply that the true errors are such. In a misspecified model, the residuals will include all determinants of the dependent variable that are not explicitly modelled in the deterministic component of the equation. A significant serial correlation statistic may therefore reflect the omission of a relevant regressor. Unfortunately, this makes matters rather difficult as the tests can not be used to conclude decisively on the nature of any misspecification discovered.
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