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UNIVERSITY OF STRATHCLYDE
ECONOMETRICS LECTURE NOTES

STOCHASTIC REGRESSORS, INSTRUMENTAL VARIABLES AND WEAK EXOGENEITY
1. INTRODUCTION
In certain circumstances, the OLS estimator is optimal; it is the best estimator to use in those circumstances. But the OLS estimator is not always optimal. The main purpose of these notes is to explain when another estimator - the instrumental variables (IV) estimator should be used in preference to OLS. We also show how it can be used. 

It is necessary to begin by establishing some notation, and to present some key results that will underpin our analysis. This comes in the following section (2). 

Required reading: Thomas, Chapter 8, Stochastic explanatory variables.

You may find the following references useful as additional reading:

Stewart, Jon: Econometrics, Ch 4 (large sample theory) and Ch 5 (Instrumental Variables)

Maddala, G S: Introduction to Econometrics (2nd ed), pp 23-26, 366-373, 461-464, 506-509.

Charemza and Deadman (1992): New Directions in Econometric Practice , Ch 7.

2.  SOME RESULTS CONCERNING UNBIASEDNESS AND CONSISTENCY

The material in this section is a much condensed version of what is contained in Ref1.doc, and consists mainly of results explained at more length there. Suppose we are interested in obtaining "good" estimates of the parameters in the following multiple linear regression model:





1
which in matrix notation is written as




2   (1)

The OLS estimator of the parameter vector  is given by




3    (2)

Substituting for Y in (2) from (1) we obtain
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Let us now go through the properties of the OLS estimator under a number of alternative scenarios. 

CASE 1: NON-STOCHASTIC REGRESSORS and all assumptions of THE normal classical linear regression model satisfied
Here, the OLS estimator is unbiased and fully efficient. 

CASE 2: STOCHASTIC REGRESSORS AND X independent of u

Just as in Case (1), the OLS estimator of ( is unbiased. It is also true that the OLS estimator is efficient and consistent.

CASE 3: STOCHASTIC REGRESSORS AND X and  u are “asymptotically uncorrelated”
In some modelling contexts, the most that can be assumed is that the equation error and the regressors are uncorrelated in the limit as the sample size goes to infinity, even  though they may be correlated in finite size samples. That is, X and u are “asymptotically uncorrelated”. This may be denoted in the following way:




or in matrix terms




If this condition is satisfied, and provided the other assumptions of the LRM are satisfied, the OLS estimator will have some desirable asymptotic properties,. In particular, it will be consistent.  Furthermore, given that estimators of the error variance (and so of coefficient standard errors) will also have this property, then the basis for valid statistical inference using classical procedures exists. However, the OLS estimator will, in general, be biased in finite samples. 

CASE 4: STOCHASTIC REGRESSORS  AND X and u are correlated even asymptotically
In this case,  

 and so as shown in Ref1.doc, 
it follows that  that 

, and so OLS is inconsistent in general.
3  THE INSTRUMENTAL VARIABLES (IV) ESTIMATOR
3.1 PREVIEW OF MAIN ARGUMENTS

The IV estimator is an attractive estimator to use in situations where Case 4 above applies; that is, where one or more of the regressors is STOCHASTIC and one or more variables in the regressor matrix X is correlated even asymptotically with the equation disturbance term, u. The IV estimator is consistent in this case, whereas the OLS estimator is not.

We begin by previewing some of the main results that will be explained later in the rest of this set of notes.

(1) Suppose that one or more of the stochastic regressors in X is not independent of the equation error term. More specifically, suppose that even in the limit as the sample size goes to infinity, X is correlated with u, the equation disturbance. That is




The OLS estimator is then inconsistent, and so is not an appropriate estimator to use.

 (2) There are many circumstances in which the regressors and disturbance will be correlated even asymptotically. Four cases are of particular importance:

· when one (or more) regressor is an "endogenous" variable in some system of equations [in which the equation of interest to us is one component].

· when we have certain forms of "errors-in-variables"

· when our equation includes a lagged dependent variable as a regressor and the disturbance term is serially correlated.

· when the disturbance term in the equation we are interested in estimating is correlated with the disturbance term in the equation which determines one of the regressors in our model.

Each of these cases can (but will not necessarily) lead to failure of the zero correlation assumption. Appendix A demonstrates how each of these four cases can lead to a correlation between the regressors and disturbance term. The fourth case will also be investigated further in the section on “Weak Exogeneity”.

(3) An alternative estimator (the Instrumental Variables [IV] estimator) exists which is consistent even where the assumption of zero asymptotic correlation of regressors and disturbances is not satisfied. 

(4) IV is consistent whether or not the regressors and disturbance are correlated. If they are not correlated, OLS will also be consistent. If they are correlated, OLS is not consistent. However, in the case where there is no correlation (and so both IV and OLS are consistent)  OLS has a lower variance (that is, it is efficient) relative to the IV estimator.

(5) We cannot check directly the validity of an assumption that the regressors and disturbance are uncorrelated. However, a decision to use the IV estimator might be made on the basis of:

· Prior information: theory might tell us that the “orthogonality” assumption (meaning here no correlation between a regressor and the equation disturbance) about a particular variable is not likely to be satisfied.

· Empirical testing of the assumption of no correlation indirectly, though the use of a Wu-Hausman test. (See below for more explanation)

We shall now go through each of these six points in more detail. But first we define and explain the IV estimator.

3.2 THE METHOD OF INSTRUMENTAL VARIABLES: THE (SIMPLE) INSTRUMENTAL VARIABLES ESTIMATOR

We have seen that the OLS estimator is inconsistent if one or more of the regressors is correlated with the equation disturbance term. However, the IV estimator is consistent even under these conditions. Let us now define the IV estimator and demonstrate that it will be consistent in these circumstances.

As before, let us assume that the true model is given by equation (1). That is








(1)
Suppose that for each of the k variables in  the regressor set X we have a corresponding "instrumental variable”. Let Z denote the matrix of instrumental variables formed in this way. So if X is a T(k matrix (of T observations on each of k variables) then Z is also a T(k matrix. Let each variable in  Z be chosen in such a way that the following conditions are satisfied 



4
(6)



, a non-singular matrix of finite constants.
5
 Now define the IV estimator of  as



6
(7)

It is easy to show that the IV estimator is consistent. To do this, we begin by substituting for Y in equation (7) using equation (1):




Then by rearrangement we obtain




Now taking the probability limit of this expression:



7


But as



8


then 

, and so the OLS estimator is consistent. Once again, it is important to note that our proof has assumed that 

  exists and is a non-singular matrix. This requires that the instrumental variables  Z be stationary.

4. THE GENERALISED INSTRUMENTAL VARIABLES ESTIMATOR (GIVE)
Although IV is consistent in the circumstances we are describing, it is not efficient. An efficiency gain can be obtained by using a modified version of the IV estimator, known as the Generalised IV estimator (GIVE).

Suppose we have a set of instrumental variables,  W, that contains more “elements” [ by elements I mean here variables] than are contained in X. Let there be p elements in W (which is therefore a T(p matrix) and k elements in X (which is, as before, a T( k matrix). By construction, p>k.

The GIVE estimator of  is defined by



9
(8)

For a “well-chosen” set of instruments, the GIVE estimator will have a smaller variance than the simple IV estimator, and so should be used in preference. Unfortunately, it is not easy to establish what should be the well-chosen set of instruments in any particular case. How are instruments selected in practice? It is to this question that we turn next. 

KEY RESULTS: OLS, IV, and GIVE
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5. CHOICE OF INSTRUMENTS

Before we answer this question, it is necessary to think a little more about the matrix of regressors in the original model. Let us partition this matrix X into two components, X1 and X2.

X = {X1 ( X2}

Let X1 be those variables in X which are not correlated with u, whilst those in  X2  are (or may be) those which are correlated with u. Variables in X1 will include deterministic (non-random) variables such as seasonal dummies, time trends and the like. As these are non-random, they cannot be correlated with u. The variable set X2 contains those variables that we have reason to believe may be correlated with u. 

There is no problem selecting instruments as far as X1 is concerned - these variables can serve as instruments for themselves, because they satisfy the two requirements of valid instruments: 

· they are asymptotically uncorrelated with u

· they are asymptotically correlated (in this case perfectly) with the appropriate elements of X. 

Matters are more complicated as far as choosing instruments for X2  is concerned. Four possible ways of selecting instruments are:

· Regard the equation you are estimating as one equation in a simultaneous system of equations. For example,  the consumption function is one part of an IS/LM simultaneous system. Think about which variables in the full system of equations are “exogenous” in the sense of being determined outside that system. Such variables will appear on the right-hand-side of the model when it is expressed in its “reduced form”. These are likely to be uncorrelated with u, but correlated with X2, and so will be suitable instruments.

· Use variables which enter the “marginal distributions” of the variable set X2 as instruments (the meaning of this will be clear after you read the section on weak exogeneity).

· Prior information may be available suggesting variables which will be good instruments (the first case in this list is one example of this).

· Choose lagged values of  X2  as instruments for X2. The logic here is simple; even if X2t is contemporaneously correlated with the disturbance term ut, it is often the case that X2 and u will not be correlated across different time periods.

Remember that in making a choice of instruments, at least one (but preferably more than one) instrument should be chosen for each variable in X2. Let us now illustrate the issue of instrument choice by means of a simple example.

TESTING VALIDITY OF INSTRUMENTS

A statistic often used to test for validity of the chosen set of instruments is Sargan’s (1964) test. Call this statistic ST. The method of calculating this statistic is explained in the Microfit manual. However, it is outputted automatically when using IV or GIVE in Microfit (and several other packages as well).

In effect, the ST statistic allows one to test the null hypothesis that the instruments are uncorrelated with the disturbance term in the regression model being estimated.  If the null is true, ST has a chi-square distribution with p-k degrees of freedom, where p is the number of instruments selected and K is the number of regressors in the model being estimated.  

EXAMPLE OF INSTRUMENT CHOICE 

Suppose we wish to estimate the parameters of the model




where C and Y are consumers’ expenditure and disposable income respectively, and the model contains three quarterly dummy variables. Disposable income may be correlated with the disturbance term, and so is potentially “endogenous”. 

So in terms of our earlier notation, we have

X = { X1 ( X2} with X1 = {intercept, Q1,t , Q2,t , Q3,t} and  X2 = Yt
In an IS/LM model, the money supply (M) and government expenditure  (G) are often regarded as “exogenous” variables, and so are candidates as instruments for Y. Therefore, our tentative choice of instruments is

W = { intercept, Q1,t , Q2,t , Q3,t, Mt, Gt }.

We use the term tentative here, as one should use Sargan’s 1964 test to test for the validity of our choice of instrument. Estimation with this set of instruments using GIVE should only proceed if we cannot reject the null of valid instruments using Sargan’s instrument validity test.

6  SOME MATTERS CONCERNING THE USE OF INSTRUMENTAL VARIABLES ESTIMATION IN PRACTICE
6.1  THE HAUSMAN TEST PRINCIPLE
In practice, given that disturbances are unobservable and that we are working with finite-sized samples, we cannot know whether a variable is in fact correlated asymptotically with the disturbance term. This means that the choice between OLS and IV (or GIVE) will be uncertain. 

A common way of proceeding is to estimate our model by both OLS and GIVE and to test whether the differences in parameter estimates are statistically significant. This underlies the Hausman test procedure that we now explain.

The arguments we have used so far suggest that if




then both OLS and IV (or GIVE) will be consistent, but IV will be inefficient relative to OLS. We might therefore envisage the following hypotheses 

H0: 


Ha: 


to be a statement of the problem. Under the null hypothesis, one would not expect there to be a “large” difference between 

and 

. If we do find a large difference, we may regard this as evidence that does not support the null hypothesis. The Hausman test operates by finding the distribution of the quantity (

- 

) under the null hypothesis, and using the variance of this difference to determine whether or not a given-sized difference is significant. If the difference is significant at some chosen level of test size, we reject the null hypothesis.
If there is a significant difference between the two sets of estimates, one can regard this as evidence supporting the hypothesis that there is correlation between regressors and the disturbance. In such a case, OLS is inconsistent, and GIVE should be used.

6.2 THE WU-HAUSMAN TEST

The Hausman test can not be implemented in all econometrics packages. A similar procedure which can be done in almost any package makes use of the Wu-Hausman test. This is sometimes described as an “exogeneity” test, but is more properly thought of as a test of regressor “orthogonality”; that is, a test of the assumption that there is zero asymptotic correlation between the regressors and the disturbance term. The null and alternative hypotheses are again

H0: 


Ha: 


The test is implemented in a series of steps. For simplicity, in the presentation which follows we suppose that only one of the regressors might be asymptotically correlated  with the disturbance. Suppose that this is the variable X4t in the regression model:




We also assume that the researcher has available two instruments, W1 and W2, for the potentially correlated regressor X4.

STEP 1:

Estimate by OLS the “instrumenting regression”, and save the residuals. This is the regression of the potentially correlated regressor on all instruments. Note carefully that by “instruments”, we mean here all explanatory variables in the original regression model that are not being treated as potentially correlated, together with all additional variables being used as instruments for the potentially correlated variable. So in our example, the “instrumenting regression” to be estimated by OLS is




Denote the saved residuals as 

, for t=1,...,T.

STEP 2:

Estimate by OLS the original regression model:




STEP 3:

Use a variable addition test to test for the significance of the residuals when added as a regressor to the original regression model. That is we wish to test

H0: ( = 0    against

HA: ( ( 0

in the OLS regression




If we reject H0, we regard this as evidence in favour of the alternative hypothesis that X4t is correlated (asymptotically) with the disturbance term, and so should use GIVE rather than OLS to obtain our parameter estimates. If we cannot reject the null, the OLS estimator is preferred.

The intuition behind this procedure is harder to discover than in the Hausman test procedure. Essentially, it amounts to testing whether adding the marginal model for the potentially endogenous variable to the model being estimated contributes statistically significant additional information.  If it does, the orthogonality assumption cannot be valid. The concept of a marginal model should be clear later in these notes when you reach the section in which we discuss weak exogeneity.

One other point deserves mention; we could use the fitted values from the instrumenting regression (instead of the fitted residuals) to implement this test. The numerical result of the variable addition test would be identical. 

A necessary condition for the Wu-Hausman test statistic to be interpretable as a test of the assumption that the regressors are (asymptotically) uncorrelated with the equation disturbances, is that our choice of instruments should have been valid. That is, we should check that the "instruments" we use are valid. This is done using Sargan’s test for instrument validity.

HOW IS THIS PROCEDURE VARIED IF WE SUSPECT THAT MORE THAN ONE REGRESSOR IS CORRELATED WITH THE DISTURBANCE TERM?

In this case, Step 1 involves running more than one instrumenting regression, and so saving more than one set of residuals. A separate instrumenting regression should be run for each potentially correlated variable on all the instruments (defined as above). Step 2 remains unchanged. In Step 3, the variable addition test will involve jointly adding each of the residuals from the separate instrumenting regressions to the original model, and then testing their joint significance (using, for example, an F test).

7 . WEAK EXOGENEITY AND VALID CONDITIONING
The requirement that the equation errors and the regressor variables are asymptotically uncorrelated if the OLS estimator is to be consistent is related to, but not identical with, the requirement that estimation of the parameters of a single equation by OLS is not efficient unless weak exogeneity is satisfied. In order to understand what is meant by weak exogeneity and why it is important, we need to discuss the idea of “valid conditioning”.

Suppose that two variables Y and X are jointly determined, and that the joint distribution can be represented by




It is always possible to “decompose” the joint distribution of a set of random variables into the product of a conditional distribution and a marginal distribution. In our example, we could express 

 as the product of the distribution of Y conditional on X and the marginal distribution of X. That is 




where f1 is the conditional distribution (of Y on X) and f2 is the marginal distribution of X. The decomposition is not unique, of course; we could also condition on Y rather than X by using



. 

The central matter of importance here concerns how we can efficiently estimate some parameters of interest. Let us rewrite the first of the two decompositions, but this time including in our notation the parameters which enter each function:





(9)

So ( are the parameters of the joint distribution and (1 and (2 are the parameters of the conditional and marginal distributions respectively. Suppose we were interested in estimating all the parameters of the joint distribution (or equivalently, estimating all the parameters of the conditional and marginal distributions). This could be done directly by using a system estimator  to estimate the parameters of the joint distribution or by jointly estimating the conditional and marginal distributions. These approaches really amount to doing the same thing.

But suppose our interest is only in the parameters of the conditional distribution, (1 (or possibly a subset of those parameters, or some function of them). Let us use the symbol ( to denote these as the “parameters of interest”. Under what circumstances can we obtain efficient estimates of the parameters of interest by estimating the conditional distribution alone? The answer is as follows: if the regressors of the conditional model are weakly exogenous for the parameters of interest , then we can efficiently estimate those parameters from the conditional distribution alone.

In terms of equation (9), X is said to be weakly exogenous for the parameters of interest if 

· the parameters of interest, ( , are functions only of (1 and not of  (2
· if the parameter sets (1 and (2 are variation free.

The term “variation free” means that the values taken by the parameter set (1 impose no constraints on the values that can be taken by the parameter set (2 (and vice versa).

Intuitively, if X is weakly exogenous for the parameters of interest (, then the marginal distribution contains no information which is relevant for the estimation of ( and so ( can be estimated efficiently from the conditional distribution alone. Put another way, if X is weakly exogenous for the parameters of interest (, we can regard the marginal distribution as being “determined outside the system” and so can ignore it for estimation purposes. 

AN EXAMPLE:

It will be useful to give these ideas some support by means of a simple example. Consider the two regressions:




We will allow for the possibility that the disturbance terms in (10) and (11) are correlated:





(12)

with Cov(vt , et) = 0

We may think of (10) as a structural equation, suggested by some economic theory, and (11) as an equation explaining how X is generated (in this case, by a first-order autoregressive process). Equation (11) can be thought of as the marginal distribution of X. 

Is (10) the conditional distribution of Y given X? As things stand, it is not. To derive the conditional distribution of Y given X, we need to obtain an expression for Y (in terms of X) such that the disturbance term of this distribution is not correlated with the disturbance term in the marginal distribution. Equation (12) shows that, if ( ( 0, u and v are correlated, and so (10) does not qualify as a conditional distribution.

To obtain the conditional distribution, proceed as follows:

(A)
 Substitute (12) into (10) giving





(B)
Rearrange (11) to give an expression for vt:





(C)
Substitute (14) into (13):






which can be reexpressed as





Note that:

· Equation (16) satisfies our requirement for a conditional distribution; the error term is given by et which, by assumption, is not correlated with vt. Also, the regressors Xt and Xt-1 are both uncorrelated with et, and so the “orthogonality of regressors and disturbance term” is satisfied. OLS will give consistent estimates of 

,  but not of (1 and (2.
· If we run a regression of Y on an intercept and X, our regression model will be misspecified. This can be seen by looking at equation (16) which is the equation that should be estimated if the OLS estimator were being used. By estimating




we are assuming that (t is a white noise random variable whereas in fact 

(t = 


A variable would be wrongly excluded (the term in square brackets above which includes the lagged value of X). Thus:

plim (



 EMBED Equation.2  

plim (



 EMBED Equation.2  

IMPLICATIONS

Q: Under what circumstance, if any, is equation (10) the conditional distribution for Y?

A: If ( = 0

To see why, note that if ( = 0, the conditional model (16) collapses to (10).

Q: Is Xt weakly exogenous for the parameter of interest ( in equation (10)?

A: 
Only  if ( = 0

You have already seen that if ( = 0, equation (10) is the conditional model. Xt in (10) is weakly exogenous for (1 and  (2 because those parameters enters the conditional distribution alone, and because the parameters of the marginal and conditional distributions are variation free (particular values of the ( parameters do not place any restrictions on admissible values of the ( parameters). On the other hand, if ( ( 0, then the conditional model is (16) not (10), and it is evident that (16) contains parameters from the marginal distribution. 

Q: If one estimated equation (10) by OLS, would one obtain consistent estimates of  

?

A: Only if ( = 0. It should be clear from the previous argument that when  ( = 0 estimation of (10) involves estimation of the conditional model in which the necessary weak exogeneity assumption is satisfied. OLS will, therefore, yield consistent estimates of 

.
ONE POSSIBLE INTERPRETATION OF GIVE AS A TWO STAGE OLS ESTIMATOR
Suppose we have the model 




in which X is a (T*k) matrix. Let the instrument set be W, a (T*p) matrix, where p(k.

The IV estimator may be thought of as the following two step estimator:

Step 1:

REGRESS X ON W BY OLS TO OBTAIN THE FITTED VALUES OF X, 


ie Run the regression




which gives




and




Step 2:

regress Y on 








which, after substitution, is identical to the GIVE estimator.

Proof:










and since 







which is the GIVE estimator.
AN INTERPRETATION OF THE WU-HAUSMAN TESt

Consider the two equation example we looked at earlier, in which we are interested primarily in the parameters of (10):




The disturbance terms in (10) and (11) may be correlated:





(12)

with Cov(vt , et) = 0

The Wu-Hausman test procedure involves the following steps:

Step 1: ESTIMATE THE MARGINAL MODEL FOR THE POTENTIALLY ENDOGENOUS VARIABLE X BY OLS AND SAVE THE RESIDUALS




so the residuals are given by




STEP 2: ADD THE SAVED RESIDUALS TO THE REGRESSION MODEL (10):



(13)

AND ESTIMATE THIS MODEL BY OLS

Note that the parameter estimates of (1 and  (2 are identical to the GIVE estimates of these parameters.

The Wu-Hausman test for the orthogonality of X and u in (10) is implemented by a variable deletion test of the fitted residuals in (13). The null hypothesis is that (=0. If this null cannot be rejected, it is taken to mean that the disturbances are not correlated with X in (10), and so OLS is an appropriate estimator of (10).

Note that the W-H test can also be implemented by estimating (13) without the residuals included, and then performing a variable addition test on the residuals. The t or F statistic is identical to that obtained by the previous method. 

APPENDIX A

CORRELATION OF REGRESSORS AND DISTURBANCE TERM

Four possible causes of correlation

(1) Simultaneous equations bias: 

Suppose Y and X are generated jointly by




where Z and W are “exogenous” variables and u and v are independent white noise random variables. Equations (A) and (B) may be thought of as the structural equations of the model. Now solve these for the two reduced form equations (which express the jointly endogenous variables Y and X as functions only of exogenous variables and disturbances). These are




Clearly Xt is correlated with ut (from (D)) unless (1=0, and so Xt cannot be regarded as being asymptotically uncorrelated with ut in equation (A). A similar argument applies to Yt in (B). This is an example of so-called simultaneity bias; unless estimation takes account of the joint determination of X and Y, parameter estimation will in general be inconsistent.

(2) Errors in variables
Assume the true model is   Y = x( + u      (1),  but x is measured with random error, so the series we observe is X where

X = x + v                          (2)

with v being random measurement error.

The true model can be written as

Y =  x( + u

    = (X-v)( + u

    = X( + (u - v()               (3)

However we estimate

Y = X( + (                             (4)

in which we do not take account of the structure of the error term implied by the true model (ie (=(u - v() ).

Using OLS, the estimator of ( in (4) is













Now even if X and u are asymptotically uncorrelated, X and v will not be. To see this, just look at (2) again. It follows that the regressors X will be correlated with the equation disturbance in the model we estimate; that is, X will be correlated with (u - v(). The fact that the final term will not tend to zero imparts inconsistency to the OLS estimator of (.

(3) The model includes a lagged dependent variable and has a serially correlated disturbance.
Suppose we estimate

Y = (1 + (2 Xt + (3Yt-1 + ut
in which

ut =  (ut-1 + (t
with ( non-zero. By lagging the equation for Y by one period, it is clear that Yt-1 is correlated with ut irrespective of the sample size (given that ((0).

(4) The disturbance term in the equation we are interested in estimating is correlated with the disturbance term in the equation which determines one of the regressors in our model.

We repeat the key points here of an example used in the discussion of weak exogeniety. In the following two regressions, suppose we are interested primarily in the parameters of (10):




and the disturbance terms in (10) and (11) are correlated:





(12)

with Cov(vt , et) = 0

Substitute (12) into (10) giving





The disturbance term in (10) is thus (vt + et. But as Xt depends on vt (see (11)), Xt is correlated with the equation disturbance term in (10).
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