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1. Models of biological interaction  

The bio-economic models examined so far in this course have typically considered just one 

population of a single biological species interacting with its natural environment (the 

biological component) and human harvesting of that population (the economic component). 

There are two circumstances in which it is sensible to develop a bio-economic model in this 

way. First, if the biological growth behaviour of a single population of interest is independent 

of that of any other population or species. In that case, there is no useful information to be 

brought into the modelling exercise by jointly studying the biological growth of this species 

and any other. It is most unlikely that any population will be strictly independent of all others, 

but it may be approximately so in some cases. As a practical matter, this might justify its 

analysis in isolation. 

 

Second, we may accept that the behaviour of the population of interest is affected in many 

ways by many other populations or species, but with no single relationship being particularly 

dominant. In that case, a researcher might choose to regard all other populations/species as 

constituting (part of) that population‟s environment. The modeller would then give greater 

attention to modelling that environment – perhaps by treating it as being stochastic or 

uncertain in some way – but would not develop models of interaction between specific 

species or populations.  

 

But there are circumstances where proceeding in this way is not appropriate. Of most 

importance are those cases where particular species interact in important ways. These 

relationships may be as predators and prey, as with big cats and herbivore mammals;  they 

may involve parasitism in which one species inhibits the growth of another; they may exhibit 

mutualism (or symbiosis) where each species requires the other for its survival (such as some 

bacteria and hosts); or they may involve one of several other types of relationship.
1
  Wherever 

the relationship between two or more populations is significant, the researcher into the 

behaviour of one of those populations is throwing away important and relevant information 

by ignoring that relationship. In this set of notes we investigate some models of biological 

interaction between populations, and then briefly show how such models can be used to shed 

light on the issues of biodiversity and sustainability.
2
 

   

   It will be helpful to begin by outlining a classification of models of biological interaction 

developed by Shone (1997). We shall also investigate some of the examples he considers. 

Suppose that there are two populations of different species, labelled F and P. Let f denote the 

net contribution of a „representative‟ individual in F to the magnitude of population F, and let 

p denote the net contribution of one individual in P to the size of population P. We specify f 

and p in the following, relatively general, ways. 
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tt PχFβαf      (1) 

tt FφPεδp      (2) 

 

In Equations 1 and 2, the parameters  and  are population-specific natural growth 

coefficients. They correspond to the parameter that we called the intrinsic growth rate of a 

fish population in the logistic growth model of a single population examined earlier.  

 

Parameters  and  are population-specific crowding (or self-limiting) coefficients, which can 

be interpreted in the following ways: 

 If  and  are both negative, both species are subject to (intra population) crowding 

effects, and so there will be limits to which the population size could grow, even in 

the absence of any limits imposed by relationships with other species.  

 If  and  are both positive, the fertility of each population increases the larger is the 

size of that population. There is a kind of mutualism within a population.  

Mixed cases are, of course, also possible.  

 

The parameters  and  relate to the interaction between different species or populations. In 

particular: 

 ,  both negative implies inter species competition 

 ,  both positive implies mutually beneficial interaction (mutualism or cooperation) 

 ,  of opposite sign implies a predator- prey relationship (the population with the 

positive parameter being the predator, and with the negative being the prey) 

 

In the absence of migration, the growth of each population is given by the product of the net 

contribution of a representative individual and the number of individuals in the population. 

That is, in continuous time notation 

tfFF   

tpPP   

 

and in discrete time notation 

1t1t1tt FfFF    

1t1t1tt PpPP    

 

(In large part, we focus on using continuous time notation in these notes.) 

 

By imposing restrictions on this general specification, various particular models of biological 

interaction are generated. We consider four of these. For reference purposes, we list these 

together with the parameter values being used in our modelling examples in the table below.  
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Model  

 

        

Competition, with no self-limitation 

 

+ + 0 0   

  tt FbPaF           tt PdFcP   a = 4 c = 3   b = 3 d =1 

Predator-prey with no self-limitation 

 

+  0 0  + 

  tt FbPaF           tt PdFcP   a = 1 c = 0.1   b = 1 d =0.1 

Predator-prey model with population-

specific crowding for prey 

 

+   0  + 

  ttt FuFbPaF      tt PdFcP   a = 1 c = 0.1 u = 0.1  b = 1 d =0.1 

Predator-prey model with population-

specific crowding for prey and predators 

 

+   0  + 

  ttt FuFbPaF      ttt PvPdFcP   a = 1 c = 0.1 u = 0.1 v = 1/8 b = 1 d =0.1 

 

 

 

1.1(a) Competition between species with no crowding or self-limitation 

 

This model is obtained from the general specification (1 and 2) by imposing the restrictions 

{ > 0,  = 0,  < 0} and { > 0,  = 0,  < 0}. The population growth models may then be 

written as  

  tt FbPaF   (a, b > 0)        (3) 

  tt PdFcP   (c, d > 0)    (4) 

 

What do these equations tell us? First, both intrinsic growth rate coefficients (here a and c) 

are positive, so in isolation each population becomes larger over time. Indeed, the absence of 

any self-limitation (strictly speaking, the property that  = 0 and  = 0) means that in isolation 

the populations would grow without bounds. However, the populations are not in isolation; 

the negative coefficients in the terms -bP and -dF show that each species is in competition 

with the other for scarce resources. In Equation 3, for example, the term –bPt means that the 

net contribution to the F-population of one individual member of F is negatively related to the 

size of the other population, P. As this relationship is true for both populations, we have a 

„species competition‟ model. 

 

    There are three possible outcomes to this interactive relationship. It may be helpful to think 

of the example of two competing garden plants (or perhaps a chosen plant and a weed) to 

visualise these. Two of these are equilibrium outcomes. The first – a trivial (uninteresting) 

solution - is that the equilibrium stock of each is zero. A second equilibrium outcome is that 

there is a positive stock of both, in which the competitive force that each exerts on the other is 

completely balanced. But such an equilibrium will be a „knife-edge‟, or unstable, equilibrium. 
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Any event leading one population to become larger than its equilibrium level will precipitate 

a chain reaction sequence driving the other to zero. This points to the third kind of outcome: 

one species will become increasingly dominant, and the stock of the other will be driven 

towards zero. 
3
 

 

    It will be helpful to give a numerical example. We assume (using Example 12.4 in Shone, 

1997) that Equations 3 and 4 take the particular forms 

 

  tt FP34F        (5) 

  tt PF3P     (6) 

 

By definition, an equilibrium occurs where the two population levels are simultaneously 

constant, that is, 0F   and 0P  . Imposing these equilibrium conditions on 5 and 6 gives 

 

  tt FP340         

  tt PF30       

 

which yield the pair of solutions {F = 0, P = 0} and {F = 3, P = 4/3}. These are shown in 

Figure 1 below (generated using Maple), the former at the origin, the latter by the intersection 

of the two straight lines representing 0F   and 0P  . The arrows show the directions in 

which the two populations will move (defined by Equations 5 and 6) from any arbitrarily-

chosen starting point. If sequences of these directional arrows are connected together, we 

obtain dynamic time paths for the two populations. Several such paths are shown in the 

diagram by the heavily-drawn curved lines.
4
 It is evident from that diagram that our previous 

conclusions are valid. A steady state equilibrium with positive values of F and P does exist. 

However, this is an unstable „knife edge‟ equilibrium; any deviation from this equilibrium 

will lead to the population levels diverging even further, with one of the species becoming 

increasingly dominant and the other becoming ever-closer to zero with the passage of time. 

Moreover, almost all initial starting points fail to find that equilibrium and so – in the absence 

of deliberate management – the equilibrium is most unlikely to be achieved.  
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Figure 1 Equilibrium and dynamics of the competition with no crowding model. 
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1.1(b) Predator-prey model with no population-specific crowding or self-limitation 

 

Suppose we wish to examine biological interaction between populations of a predator and a 

prey, but still retain the property that neither population is subject to crowding or self-

limitation. This can be done by imposing the restrictions { > 0,  = 0,  < 0} and { < 0,  = 

0,  > 0} on the general specification (equations 1 and 2). The resulting model – first 

developed by Lotka (1925) and Volterra (1931) – takes the form   

 

  tt FbPaF   (a, b > 0) 

  tt PdFcP   (c, d > 0) 

 

    In this predator-prey model, F is the prey population and P is the predator population. In 

the differential equation for F, the positive intrinsic growth rate a implies that in the absence 

of predation the prey population would increase through time. Moreover, the restriction  = 0 

implies the absence of any self-limiting factor, and so this growth process would be without 

bounds: the prey population would expand indefinitely.  

 

    However, the prey population is constrained by its relationship with the predators. The 

term – bFP, found by multiplying out the terms within and outside brackets, shows that the 

prey population falls because of predation, and that this effect is larger the greater is the 

predator population.  

 

    In contrast, the negative intrinsic growth coefficient for the predator implies that the 

predator depends on the prey population for its existence:  in the absence of F, the population 

P would collapse to zero. However, the presence of prey acts to increase the predator 

population; this effect is represented by the interaction term dFP.  

 

    What kind of outcome would one expect in this situation? Intuition suggests that we might 

find a balance between predator and prey populations. To see why, note that an equilibrium 

will, by definition, exist where both predator and prey populations are constant. The prey 

population will be constant where net recruitment (aF) equals net losses due to predation 

(bFP). The predator population will be constant when natural population loss (cP) is just 

balanced by growth associated with presence of the prey population (dFP). This gives us two 

equations; knowing values of the parameters a, b, c and d, these two equations could be 

solved for the two unknowns, the equilibrium levels of F and P. By way of example, we take 

the parameter values to be a = 1, b = 1, c = 0.1 and d = 0.1. The two equilibrium equations are 

then  

1P   
and 

1.0F1.0   

which yield the equilibrium solution F
*
 = 1 and P

*
 = 1. 

5
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    However, this intuition and „steady-state algebra‟ both fail to reveal one of the important 

features of this model. Except fortuitously, or through deliberate management, the 

equilibrium outcome F
*
 = 1 and P

*
 = 1 will never be realised! Instead, what will happen is 

that populations of both F and P will continually fluctuate, cycling above and below those 

steady state levels but not actually converging to them.
6
 (This is shown in Figure 2b below.) 

Moreover the amplitude of the oscillations depends on the initial values of the variables: 

different initial values lead to different amplitudes. This can be observed by examining Figure 

2a. 
7
  

 

Figure 2a Equilibrium and dynamics in the LV predator-prey model. 
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Figure 2b Population cycles in the predator-prey model where neither population is self-

limiting. 

 

 
 

1.1(c) Predator-prey model with population-specific crowding for prey 

 

The cycling, non-convergent dynamic behaviour of the model examined in the section 1.1(b) 

is a mathematical property of the set of differential equations (and the associated parameter 

restrictions) which underlies the L-V predator-prey model. Many biologists regard these 

dynamic properties as being inconsistent with the observed evidence, or feel that they are 

overly restrictive. Various generalisations to the predator-prey model have been developed.  

 

    One such generalisation involves introducing upper limits to the population sizes of the 

prey, much as we did earlier when looking at biological models of fisheries. This can be 

implemented by making the parameter  in the general specification be negative (rather than 

zero). Then this model is obtained from the general specification (1 and 2) by imposing the 

restrictions { > 0,  < 0,  < 0} and { < 0,  = 0,  > 0}.  A predator-prey model with 

logistic-like population specific upper size on the prey thus can be specified with the 

following general structure 
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  ttt FuFbPaF    (a, b, u > 0) 

  tt PdFcP    (c, d > 0) 

 

These equations imply that the prey population has a component that corresponds to a logistic 

form of biological growth function.
8,

 
9
  To see that these equations do indeed contain logistic-

like growth functions, consider the F population. Multiplying out terms and rewriting, the 

resultant equation gives 

  tt
MAX

t
ttt

t
ttt

2
tttttt FbP

F

F
1aFFbP

a

uF
1aFFbPuFaFFuFbPaF 

















  

 where FMAX = a/u. 

 

It is evident that there are here two limiting influences on the population of F: 

1. FMAX is the maximum carrying capacity of the population in the absence of the 

predator population P; as F rises from low levels, members of the F-population face 

increasingly intense “self-competition” given the environmental milieu in which they 

are located. 

2. The multiplicative term – bPtFt implies that the prey population, F, is negatively 

related to the size of the predator population, P.  

 

For a numerical example we consider the following specific forms: 

tt
t

ttt
MAX

t
t PF

10

F
1FPbF

F

F
1aFF 



















    (7) 

tttttt PF1.0P1.0PdFcPP      (8) 

 

which involves the following parameter value assumptions: 

 

a = 1,  b = 1, u = 1/10,  c= 1/10, and d = 1/10. 

 

Setting F and P equal to zero, and solving these two equations for F and P gives three 

equilibrium solutions: F
*
 = 0 and P

*
 = 0;  F

*
 = 10 and P

*
 = 0; F

*
 = 1 and P

*
 = 0.9. The first of 

these is the empty or 'trivial' solution in which neither predators nor prey exist. The second is 

where predators are entirely absent, and the prey grow to maximum population size, 10.  

 

The third solution, investigated further here, is that in which there is a joint equilibrium of 

one prey and 0.9 predators. (Note that we have not specified units in this example, so 0.9 

may, for example, be in units of thousands, in which case P = 0.9 corresponds to 900 

individuals.) The dynamics of this model are shown in Figure 3a. It is evident from looking at 

the directional arrows and the examples of dynamic adjustment paths (shown by the heavy 

continuous lines) that F
*
 = 1 and P

*
 = 0.9 is an equilibrium solution that will eventually be 

achieved provided that at least some individuals of both species exist; dynamic adjustment 

paths from any arbitrary position all lead to that equilibrium. Moreover, this is a stable 

equilibrium (a disturbance would only knock the system out of equilibrium temporarily as 

dynamic adjustments will restore the equilibrium). This is also evident in Table 3b showing 
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the convergent oscillatory dynamics of the two populations over time, starting from some 

arbitrarily chosen initial population levels. 

 

 

 

 

 

 

 

 

 

 

Figure 3a Equilibrium and dynamics in the predator-prey model with logistic self-limiting 

(crowding) of the prey species. 
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Figure 3b 

 

 
 

A useful exercise for you to do at this point would be to set up a discrete time counterpart to 

Equations 7 and 8 in a spreadsheet, and to verify the solution we have just described. Try a 

series of alternative starting values of F and P (ideally not too far away from the equilibrium 

values) and observe what happens. You might also like to see what happens as you change 

the parameter values of the model. If you wish to verify that you have set up your spreadsheet 

correctly, an example is provided in the file Interaction.xls.   

 

 

1.1. (d) Predator-prey model with population-specific crowding for prey and predators 

 

Next consider the case where there are upper limits to the population sizes of the predators 

and prey. This can be implemented by making the parameters  and   in the general 

specification each be negative (rather than zero). A predator-prey model with logistic-like 

population specific upper size limits thus can be specified with the following general 

structure 
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  ttt FuFbPaF    (a, b, u > 0) 

  ttt PvPdFcP    (c, d, v > 0) 

 

These equations imply that each population has a component that corresponds to a logistic 

form of biological growth function. 
10

  We saw in the previous sub-section that these 

equations do indeed contain logistic-like growth functions; this time, consider the P 

population. Multiplying out terms and rewriting, the resultant equation gives 

  tt
MAX

t
ttt

t
ttt

2
tttttt PdF

P

P
1cPFdP

c

vP
1cPPdFvPcPPdFvPcP 

















  

where PMAX = c/v. 

 

We see there are two influences on the population of predators: 

1. PMAX is the maximum carrying capacity of the population in the absence of the 

population F; as P rises from low levels, members of the P-population face 

increasingly intense “self-competition” given the environmental milieu in which 

they are located. 

2. The multiplicative term + dFtPt implies that the predator population, P, is 

positively related to the size of the prey population, F.  

 

For a numerical example we consider the following specific forms: 

 

tt
t

ttt
MAX

t
t PF

10

F
1FPbF

F

F
1aFF 



















    (7*) 

 

tt
t

ttt
MAX

t
t PF1.0

8.0

P
1P1.0PdF

P

P
1cPP 



















   (8*) 

 

which involves the following parameter value assumptions: 

 

a = 1,  b = 1, u = 1/10,  c= 1/10,  d = 1/10 and v = 1/8. 

 

Setting F and P equal to zero, and solving these two equations for F and P gives the 

equilibrium solution F
*
 = 2/9 and P

*
 = 44/45. 

11
 The dynamics of this model are shown in 

Figure 4. It is evident from looking at the directional arrows and the examples of dynamic 

adjustment paths (shown by the heavy continuous lines) that F
*
 = 2/9 and P

*
 = 44/45 is an 

equilibrium solution that will eventually be achieved (dynamic adjustment paths from any 

arbitrary position all lead to it) and that it is a stable equilibrium (a disturbance would only 

knock the system out of equilibrium temporarily as dynamic adjustments will restore the 

equilibrium).  

 

A useful exercise for you to do at this point would be to set up a discrete time counterpart to 

Equations 7 and 8 yourself in a spreadsheet, and to verify the solution we have just described. 

Try a series of alternative starting values of F and P (ideally not too far away from the 

equilibrium values) and observe what happens. You might also like to see what happens as 
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you change the parameter values of the model. If you wish to verify that you have set up your 

spreadsheet correctly, an example is provided in the file Interaction.xls in the Additional 

Materials.   

 

 

Figure 4: Equilibrium and dynamics in the  predator-prey model with crowding. 

 

 
 

1.2 Economic Policy 

The various models of species interaction that we have examined in this note can be used to 

generate a number of policy implications. One way of doing so is to add, as an extra 

component to the model, a social welfare function (SWF). This could be specified in various 

ways. It might contain F and P as arguments, and so reflect society‟s relative valuations over 

the possible combinations of F and P populations. Alternatively, the arguments of the SWF 

might be the costs and benefits of harvesting each population at various rates. If the in situ 

stock size of F and/or P also contributes to utility, those benefits should also enter as 

arguments of the SWF.  

 

    Given a SWF, an optimisation exercise can then be undertaken, maximising social welfare 

subject to the constraints of the differential equations that are thought to be appropriate for F 

and P, and for given initial values of F and P. Note that an optimisation analysis of this kind 

will only be useful for policy purposes if populations of F and/or P can be controlled by 

human intervention. Hartwick and Olewiler (1998) do an analysis of this kind for two 

interacting species, sharks and tuna, and demonstrate how interesting policy inferences can be 

drawn from such an exercise.  
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    An alternative way of deriving policy insight is to bring human intervention explicitly into 

the model being considered. One way of doing so is to introduce more species into the model, 

including one which is bred and maintained for human benefit, yet which also interacts with 

one or more species of our model. In most cases of interest, this third species will be some 

kind of domesticated livestock animal or farm crop. Conrad (1999, pages 173-182) 

investigates a three species model of grass-herbivore-predator interactions, and where farmers 

breed and maintain domesticated cattle which also compete for grass. This is a useful basis 

for studying policy implications of farming or agriculture, and so we shall examine a slightly 

modified version of his model, given by Equations 9-11. Note that we now change notation 

slightly, using H rather than F for the herbivore. 
12

 

 

Grass biomass (G) dynamics: 

t1

MAX

t

t H
G

G
1gGG 








           (9) 

Herbivore (H) dynamics: 

tt

t

t

t PH
G

H
1hHH 












     (10) 

Predator (P) dynamics: 

tt

MAX

t

t PH
P

P
1pPP 








     (11) 

 

Examining these three equations, you will see that the first component on the right-hand side 

of each equation constitutes a logistic growth process, with the qualification that a fixed 

maximum herbivore population has been replaced by the term Gt, indicating that the upper 

limit to which the herbivore population can grow is a fixed multiple of grass biomass.  

 

    The remaining terms on the right-hand side further specify the form of biological 

interactions. Grass is consumed by the herbivore population at the rate  per individual, and 

so at the rate 1Ht by the population at time t. The term -HtPt shows that herbivores are 

consumed by predators at a rate given by a fixed multiple of the product of the herbivore and 

the predator populations. In contrast, the predator population is positively related to that 

product.  Once again, given knowledge of the parameter values and initial values for the 

variables G, F and P, one could identify steady state (equilibrium) populations, and simulate 

the dynamic evolution of these variables through time. 

 

Next we follow Conrad by introducing a fourth population, domestic cattle, into the model. 

This is done by assuming that cattle consume grass at the rate 2 per head. Equation 9 is then 

amended to become 
13

   

CαHα
G

G
1gGG 2t1

MAX

t
t 








           (12) 

 

Note that in Equation 12, the variable C is not time-subscripted. That is, we are treating the 

cattle stock as a fixed constant, predetermined by economic agents.  
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    At this stage of development, the model has become quite rich, and can be used in various 

ways. The researcher could leave the various equations of the model in general parametric 

form (as in 10 to 12 above) and could undertake qualitative analysis. Alternatively, particular 

parameter values and initial values of the variables G, F, P and P could be chosen and 

quantitative analysis be done. In either case, it would be possible to address the following 

types of questions: 

(1) Given particular choices of cattle stock, P, what are the steady-state equilibrium 

values of G, F and P? How do those equilibrium values change as P is changed?  

(2) Using dynamic simulation, how do the paths of G, F and P vary over time in response 

to changes in the stock of domestic cattle? Do adjustment paths converge on a new 

steady state equilibrium?  

(3) What, if any, are the limits to which cattle stocks can be raised before the biological 

system breaks down (with one or more of the other stocks being driven to zero, or 

below some critical threshold)?  

(4) What level of cattle stocks maximise some appropriately specified social welfare 

function? 

 

   Conrad takes this kind of model one stage further by making the grass growth function 

stochastic rather than deterministic. This can be done by replacing the deterministic growth 

rate g in Equation 12 by gt, a random variable with some suitably chosen distribution. It 

should be evident that, provided that the expected value of gt is g, steady state equilibrium 

solutions will not be changed. However, the dynamic adjustments paths will now exhibit 

more variability. Moreover, if the variance of gt is sufficiently large, these dynamic time paths 

may well breach biological threshold points leading to population collapses. In a stochastic 

environment, therefore, it is likely to be the case that human impacts on the system (measured 

in this case by the size of cattle stocks) will need to be smaller to avoid possible ecosystem 

collapse. This is one way of modelling the idea of a safe minimum standard of conservation 

that we described earlier. Alternatively, it is a useful way of modelling sustainability 

questions in a relatively simple bio-economic model framework.   

 

    This brief account of a multiple species bio-economic model has been given primarily as a 

pointer to how you might go about doing this kind of modelling yourself. We take it no 

further here in these notes. But the Conrad-type model is operationalised and simulated in 

both the Excel file and the Maple file referred to below. Using those files, you can examine 

the questions (1) to (4) that we listed above. 

 

If you are interested in seeing how some of the issues here could be operationalised, a 

sensible option might be to follow the exposition in Conrad (1999), Chapter 8. Alternatively, 

we have provided in the Additional Materials to Chapter 17 of the Perman et al text an Excel 

file (Interaction.xls) which simulates a stochastic version the „three species + cattle‟ model 

that has just been described, and which is used to explore the questions raised in this sub-

section.   You will also find in the Additional Materials the Maple file which has been used to 

generate all the results (and graphics) used in this set of notes, and which you can edit 

yourself if you wish to experiment further with simulations. (It uses version 9.5 of Maple.)
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ENDNOTES: 

  
1
 Ecologists recognise at least four other forms of biological interaction (see, for example, Dajoz, 1977): 

competition, where species are in competition for scarce resources; cooperation, where symbiotic relationships 

are chosen for common purposes, such as security against predation; commensalism, where one species benefits 

but the other neither suffers nor benefits; and amensalism, where one species is unaffected but the other suffers 

from a relationship.  

 

2 Discussions of this type sometimes refer to species interaction and sometimes to population interaction. 

Generally, it is the former which is relevant, provided we take care to note that the populations are of different 

species. In some special cases, the populations of interest may equate with entire species, in which case either is 

appropriate.  

 

3 Mathematically, this kind of outcome is a not an equilibrium outcome in this model, as no fixed point will ever 

be reached. It is worth noting that this property comes from the fact that this model has no (intra-population) 

crowding or self-limitation; hence there is no fixed point to which it can grow.  

   

4
 Figure 1 is an example of what is called phase plane analysis. A discrete time counterpart to the continuous 

time specification used for this model is given by: 

  ttt1t FP34FF    

  ttt1t FF3PP    

The file Interaction.xls shows how this discrete time model can be analysed by means of an Excel spreadsheet. 

 

5
 There is also a second, trivial, solution F = 0 and P = 0. 

 
6
 Strictly speaking, this is only true in continuous time models. If a discrete time counterpart model is examined, 

cyclical behaviour will also be observed, but it will be explosive, with cycles of increasing amplitude (until the 

system collapses).  This can be seen by examining sheet LV in the Excel file Interaction.xls in the Additional 

Materials. 

 

7
 Figure 2 was generated using Maple. A discrete time version can be found in the Excel file Interaction.xls 

(sheet = LV).  

 

8
 For the generalisation that we are discussing here to make sense, it is usual to specify that the parameter c in 

the predator equation is positive, unlike in the LV model without crowding effects (where it was negative). 
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9 Note that as FMAX, Ft/FMAX  0, and so the logistic component disappears.  Hence the linear form used in 

the L-V model can be regarded as a special form of logistic in which the quadratic collapses to a linear by virtue 

of there being an infinitely large upper limit to the population size. 

 

10 Note that as FMAX, Ft/FMAX  0, and so the logistic component disappears.  Hence the linear form used in 

the L-V model can be regarded as a special form of logistic in which the quadratic collapses to a linear by virtue 

of there being an infinitely large upper limit to the population size. 

 

11 Mathematically there are also three other solutions. Can you deduce what these are? 

 
12 The major variation concerns Equation 11 below. Unlike in our equation, Conrad specifies the predator 

population to be directly related to the herbivore population, and does not contain a logistic component in the 

form given by 11. 

 

13 Conrad (1999) actually uses (in his Equation 8.7) a discrete time counterpart to our continuous time 

specification 12. 

 


