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The construction and use of a phase diagram to investigate the 

properties of a dynamic system 

 

1. Introduction 

Many economic or biological-economic models can be represented as dynamic systems of 

differential equations and associated „measurement equations‟. The differential equations 

contain information about the equilibrium (or equilibria) of the system being investigated, 

the stability properties of that equilibrium, and the dynamics of the adjustment processes 

implicit in that system. Both this equilibrium and dynamic adjustment information can be 

compactly represented in a visual way by means of a phase diagram of the system. 

 

In this document, the construction and interpretation of phase diagrams is explained. The 

computer package Maple is used to construct two example of a phase diagram. Although it 

will be convenient for you to have access to Maple and to replicate these example yourself, 

that is not necessary for what follows. If you do not have access to Maple, a Word 

document copy of each of the Maple files is available from the Additional Materials pages. 

Moreover, in some simple cases at least, it should be possible for you to construct an 

approximation to an actual phase diagram using pen, paper and a little bit of simple 

algebra. 

 

The first example we shall use is the simple open access fishery model examined in the 

text of Chapter 17. The bioeconomic system in question is laid out in Table 17.8, 

Appendix 17.1, of the main text. You should look at the column labelled „Continuous-time 

model‟. Of the two equations at the foot of the table under the heading „FISHERY 

EFFORT DYNAMICS‟, it is the former – the open-access entry rule‟ which is applicable 

in this case. For convenience, we lay out the equations from that table which are relevant 

for our present purposes in Table 1 below. There are some minor changes in notation from 

Table 17.8 which should require no further explanation.  
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Table 1 The continuous-time version of the open access fishery model (with assumed 

functional forms) 

 

Fishery production  function (1)    H = eES 

Net (of harvest) growth of fish stock 

(2)    S
S

S
1g)S(G

dt

dS

MAX








 - H 

Fishery profit (3)     NB = B - C = PeES –wE 

Open access entry rule 
(4)    

dt

dE
= (NB) 

 

Substituting equation (1) into equation (2), and equation (3) into equation (4), we obtain 

the following dynamic system consisting of two differential equations.  

 

 eES 
S

S
 - 1gS

dt

dS

MAX









               (5) 

   wEPeESδ
dt

dE
     (6) 

 

Note two points: 

 Equations (5) and (6) are two differential equations in two variables, stock (S) and 

effort (E). All other terms in the two differential equations are parameters, baseline 

values of which are specified in the text.  

 The two (implicit) measurement equations are H = eES (defining the fishery 

harvest) and NB = B - C = PeES –wE (defining the industry‟s net benefit, or 

profit). These allow us to compute the values of associated variables of interest 

once the solution values for S and E have been obtained.  
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2. Equilibrium solution 

The variable S will be in equilibrium for all combinations of S and E which satisfy dS/dt = 0 

in equation (5). That is, when  

 eES 
S

S
 - 1gS0

MAX









               (7) 

By rearranging (7) to give S as a function of E, this yields 

g

)eEg(S
S MAX 
     (8) 

The variable E will be in equilibrium for all combinations of S and E which satisfy dE/dt = 0 

in equation (6). That is, when 

   wEPeESδ0      (9) 

which – written again in the form of S as a function of E - can be simplified to  

Pe

w
S       (10) 

An equilibrium solution for the dynamic system given by Equations (5) and (6) consists of 

a pair of values for S and E at which the rates of change of S and E over time are 

simultaneously zero (i.e. dS/dt = 0 and dE/dt = 0). That is, a solution will be one in which 

equations (7) and (9) hold together.  

 

To obtain a numerical solution, particular parameter values are required. With our baseline 

parameter values  
g 0.15  

S
MAX

1  

e 0.015  

P 200  

 0.4  

w 0.6  

the two equations that must be satisfied simultaneously are : 

E1.01S   (11)    which follows from 
g

)eEg(S
S0

dt

dS MAX 
  

and 
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2.0S   (12)    which follows from 
Pe

w
S0

dt

dE
  

 

Solving (11) and (12) together gives S* = 0.2 and E* = 8. These two equilibrium 

relationships can be expressed graphically as shown in Figure 1 (which corresponds to Figure 

17.6 in the textbook). 

 

Figure 1 

 

 

 

2.0S
Pe

w
S0

dt

dE
  

E1.01S
g

)eEg(S
S0

dt

dS MAX 


  

S* 

E* 
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3. System behaviour out of equilibrium 

We next attempt to establish the dynamic paths of E and S whenever {Et, St} {E*, S*}. To 

do so, we consider the following questions: 

 In which direction does E move when E is not in equilibrium? 

 In which direction does S move when S is not in equilibrium? 

Combining the information from the answers to these two questions gives us qualitative 

information about the dynamic behaviour of the system when out of equilibrium. 

 

In which direction does E move when E is not in equilibrium? 

From Equation (6) it can be seen that if S > 0.2 then dE/dt > 0.
1
 Hence any point on the phase 

diagram above the line S = 0.2 must be one in which dE/dt is positive, and so E is increasing 

over time. Conversely, if S < 0.2 then dE/dt < 0. Hence any point on the phase diagram below 

the line S = 0.2 must be one in which dE/dt is negative, and so E is decreasing over time. This 

reasoning divides the space on the phase plan diagram into two sub-spaces, with E increasing 

in one and falling in the other.  

 

In which direction does S move when S is not in equilibrium? 

From Equation (5) it can be seen that if S > (1 - 0.1E)  then dS/dt < 0.
2
 Hence any point on 

the phase diagram to the right of the line S = 1- 0.1E must be one in which dS/dt is negative, 

and so S is decreasing over time. Conversely, if S < (1 - 0.1E)  then dS/dt > 0. Hence any 

point on the phase diagram to the left of the line S = 1- 0.1E must be one in which dS/dt is 

                     
1
 Take Equation (6) and divide both sides by E. Then substitute in parameter values for P, e 

and w on the right-hand side. Simplifying the resulting expression gives 4S20
E

)
dt

dE
(

 . 

Hence if (20S – 4) > 0, then (dE/dt)/E >0. But then dividing each of these inequalities by 20, 

it follows that if (S – 0.2) > 0 then (dE/dt)/20E > 0, which in turn implies that dE/dt > 0.   

 
2
 Take Equation (5) and divide both sides by S. Then substitute in parameter values for g, e 

and SMAX on the right-hand side. Simplifying the resulting expression gives 

E015.0)S1(15.0
S

)
dt

dS
(

 . You should be able to deduce the necessary inequalities from 

this result.    
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positive, and so S is rising over time. This reasoning also divides the space on the phase plan 

diagram into two sub-spaces, with S increasing in one and falling in the other.  

 

This information is put together in Figure 2. The diagram is effectively divided into four 

quadrants by the two equilibrium lines. In each quadrant is a “direction indicator” shown by 

two combined arrows, one pointing horizontally and the other vertically. For example in the 

quadrant above the  S = 0.2 line and to the left of the S = 1 – 0.1E line the direction indicator 

is shown by the symbol  

 

 

 

The directions of each of the arrowheads show the movement of E and S. Specifically, E (the 

variable on the horizontal axis) is rising, and S (the variable on the vertical axis) is also rising. 

 

At different points in the space spanned by this quadrant the relative magnitudes of the forces 

changing E and S will differ.  For example, it can be calculated from the two equations (5) 

and (6) (although this is not done so here) that at a point towards the bottom right of this 

quadrant – such as the point {E, S} = {2, 0.25} – that the absolute size of the upward 

movement of S is greater than the size of the increase in E. So, if the direction indicator at 

that point was drawn to a correct (relative) scale it would resemble 

 

 

 

and the vector of combined forces would be represented by the dashed line below 

 

 

 

In fact, we could calculate the dotted arrow vector of combined forces for every point on the 

space of the diagram. Figure 3 (identical to Figure 17.6: Phase-plane analysis of stock and 

effort dynamic paths for the illustrative model in the text) shows what this would look like 

(but using red solid rather than dashed arrows). Figure 3 has been obtained by using the 
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Maple package. The required code is shown in Chapter17.mw (and is copied in a Word file as 

Chapter17mw.doc).   

 

Figure 2 

 

 

 

 

 

 

 

 

 

 

2.0S
Pe
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dt

dE
  

E1.01S
g

)eEg(S
S0

dt

dS MAX 
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Finally, note that Figure 3 (or equivalently Figure 17.6) shows one particular trajectory as a 

blue line. This line describes the dynamic adjustment process for the system from an initial 

point at which S is just below 1 and E is just larger than zero. The adjustment path through 

time is shown by the curved blue line. We begin at the top left point of the curved adjustment 

path. As time passes, stock falls and effort rises – the adjustment path heads south-eastwards. 

After some time, the stock continues to fall but so too does effort – the adjustment path 

follows a south-west direction. Looking at the path as a whole, we see that it converges 

through a series of diminishing cycles on the steady state equilibrium.   

 

As the main text pointed out, the (open access fishery model) examined here, in conjunction 

with the particular baselines parameter values being assumed, has strong stability properties: 

irrespective of where stock and effort happen to be the adjustment paths will lead to the 

unique steady state equilibrium, albeit through a  damped, oscillatory adjustment process.  
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Figure 3: Phase plane dynamics of the open access model 
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4. Dynamics of the Local Stock Pollution Model of Chapter 16. 

 

The second example we investigate is the local stock pollution model discussed in Chapter 

16. The dynamic system was defined as the two differential equations 16.9 and 16.25a. That 

is: 

 

A5.0 M = 
dt

dA
      (16.9b) 

4.14A5.0M6.0= 
dt

dM
     (16.25b) 

 

These two equations determine the dynamics of the state variable (At, the pollution stock) 

and the instrument or control variable (Mt, the flow of emissions). In steady state, variables 

are unchanging through time, so dA/dt A =0 and dM/dt M =0. Imposing these values, and 

solving the two resulting equations yields  M
*
 = 9 and A

*
 = 18. This steady state solution is 

shown in the „phase plane‟ diagram, Figure 16.5 by the intersection of the two lines labelled 

A =0 and M =0 (which are here A = 2M  and A = (-0.6/0.5)M + 28.8 from 16.9
/
 and 16.25

/
). 

Figure 16.5 is reproduced below for convenience. 

 

    Next, we establish in which direction A and M will move over time from any pair of 

initial values {A0, M0 }. The two lines A =0 and M =0 (known as isoclines) divide the space 

into four quadrants. Above the line A =0, A > 2M , decay exceeds emissions flows, and so A 

is falling. Conversely below the line A =0, A < 2M , decay is less than emissions flows, and 

so A is rising. These movements are shown by the downward facing directional arrows in 

the two quadrants labelled a and b, and by upward facing directional arrows in the two 

quadrants labelled c and d.  

 

    Above the line M =0, 0.6M > 14.4 – 0.5A, and so from Equation 16.25b we see that M is 

rising. Below the line M =0, 0.6M < 14.4 – 0.5A, and so M is falling. These movements are 

shown by the leftward facing directional arrows in the two quadrants labelled a and d, and 

by rightward facing directional arrows in the two quadrants labelled b and c.  
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    Taking these results together we obtain the pairs of direction indicators for movements in 

A and M for each of the four quadrants when the system is not in steady state. The curved  

lines illustrate four paths that the variables would take from particular initial values. Thus, 

for example, if the initial values lie in quadrant d with M = 15 and A = 2, the differential 

equations which determine A and M would at first cause M to fall and A to rise over time. 

As this trajectory crosses the M =0 isocline into quadrant c, A will continue to rise but now 

M will also rise too. Left alone, the system would not reach the steady state optimal solution, 

diverging ever further from it as time passes. Inspection of the other three trajectories shows 

that these also fail to attain the steady state optimum, and eventually diverge ever further 

from it.  

 

Inspection of Figure 16.5 shows two other lines, of a kind which we have not come across 

before. These two dotted lines – sometimes called separatrices - both pass through the 

steady-state equilibrium of the system. One of them – known as the stable arm  – is 

annotated with arrows which point towards the equilibrium The other – known as the 

unstable arm  – is annotated with arrows which point away from the equilibrium .  

 

Further inspection shows that there are only two paths which lead to the steady state 

equilibrium. These two paths consist of movements along the stable arm, either in a south-

easterly direction or in a north-westerly direction. Now suppose that the policy maker has 

determined that the steady-state equilibrium is an „optimal‟ target. Then, for any dynamic 

process such as this, the only way of reaching that optimum is for the policy maker to control 

M so as to reach the stable arm, and then to adjust M appropriately along the stable arm until 

the optimal point is reached. A system with the dynamic properties shown in Figure 16.5 

exhibits what is known as a „saddle point equilibrium‟.  
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Figure 16.5 Steady state solution and dynamics of the waste accumulation and disposal 

model.  
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5. A method of calculating the separatrices of the dynamic system 

 

How can we obtain the stable and unstable arms of the dynamic system? We will need to 

make use of a little matrix algebra, and the concepts of eigenvalues and eigenvectors.  

 

The first step is to write our two equation differential equation system in the special matrix 

form of a linear system
3
 

bAxx   

where  








































0

4.14

5.01

5.06.0

A

M

A

M
bAxx




  

For the moment, we ignore the vector of constant terms b. Our next step is to obtain the 

eigenvalues and eigenvectors of the matrix A. The eigenvalues of A (also known as the 

characteristic roots of A) are the values of  which satisfy the equation 

det(A - I) = 0   (13) 

where the symbol det denotes the determinant of the matrix in parentheses which follows it, 

and I is the identity matrix. The eigenvectors of the matrix are the solutions to (13) for each 

particular eigenvalue. 
4
 These can be easily found using a mathematical package. For 

example, using the following Maple code (in the Maple file Stock pollution 1.mws), we obtain 

the two eigenvalues of A as r1 = 0.945836434 and r2 = -0.8458236434. Corresponding to the 

eigenvalue r1 = 0.945836434 is the eigenvector  











5688427541.0

8224463028.0
1v  

 

and corresponding to the eigenvalue r2 = -0.8458236434 is the eigenvector  











9811948352.0

3393203728.0
2v  

 

                     
3
 The order in which the equations appear is arbitrary. Our results would be identical for the 

other ordering. 
4
 For a simple treatment of eigenvectors and eigenvalues, see Chiang (1984), chapter 11. 
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The gradients of these two eigenvectors determine the directions of the two separatrices of 

the system: the unstable arm (v1 in this case) and the stable arm (v2 in this case). These 

separatrices must pass through the equilibrium (or „fixed point‟ of the system at A* = 18 and 

M* = 9. They are shown in Figure 16.5 as the two dotted blue lines, with the stable 

(unstable) arm showing arrows pointing to (away from) the fixed point.  

 

The eigenvalues of the system determine the nature of the equilibrium of the system. 

Specifically for a two-equation system, the possibilities include 
5
 

1. If the eigenvalues are real numbers, are distinct, and are of the same sign, then the 

equilibrium is stable (with both separatrices being stable arms)  

2. If the eigenvalues are real numbers, are distinct, and are of opposite signs, then the 

system has an unstable saddle point equilibrium (with one separatrix being the stable 

arm and the other the unstable arm)  

3. If the eigenvalues are complex numbers, then (depending on the particular values of 

r1 and r2 ) the system will have one of the following properties: 

 a stable equilibrium with the convergence paths spiralling inwards towards the 

fixed point 

 an unstable equilibrium with dynamic adjustment paths diverging in a spiral 

manner outwards and away from the fixed point 

 dynamic paths taking the form of closed circles or ellipses (with either clockwise 

or anticlockwise direction), and so neither converging on nor diverging from the 

centre of the closed curve.  

 

Clearly, in the example of the local stock-pollution model that we have just been 

investigating, the eigenvalues of A ( r1 = 0.945836434 and r2 = -0.8458236434)  fall into 

category 2 above, that of an unstable saddle point equilibrium (as we discovered earlier by 

inspection of the phase diagram for the system). We shall see later in this document that the 

open access model falls into (the first bullet pointed case of) category 3. 

 

                     
5
 See Shone (2002) Chapter 4 for more details and a complete catalogue of all possible 

forms of equilibria. 
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The text below shows the Maple code used to generate the phase plane diagram which 

underlies Figure 16.5. The first line defines two ratios of constant numbers (actually ratios of 

elements of the matrix of eigenvectors) which are used lower down in the code to draw lines 

representing the two separatrices. Our code – rather inelegantly – manipulates the locations of 

the stable and unstable arms so that they not only have the correct directions but also pass 

through the fixed (equilibrium) point of the system. (See the code beginning „lines92‟.) At the 

end of the code itself, we have copied the phase plane diagram as it constructed by Maple 

from this code.   
 

> rat1:=-9811948352/.3393203728;rat2:=.5688427541/.8224463028; 

 := rat1 -2.891647286  

 := rat2 0.6916472871 

The differential equations defined: 

> eqs92:={diff(M(t),t)=0.5*A(t)+0.6*M(t)-14.4, 

diff(A(t),t)=M(t)-0.5*A(t)}; 

 := eqs92 { },
d

d

t
( )M t  0.5 ( )A t 0.6 ( )M t 14.4 

d

d

t
( )A t ( )M t 0.5 ( )A t  

 

>init92:=[[M(0)=8,A(0)=25],[M(0)=12,A(0)=8],[M(0)=6,A(0)=25],[

M(0)=15,A(0)=2]]; 

init92 [ ],( )M 0 8 ( )A 0 25 [ ],( )M 0 12 ( )A 0 8 [ ],( )M 0 6 ( )A 0 25, , ,[ := 

[ ],( )M 0 15 ( )A 0 2 ]  

>curves92:=DEplot(eqs92,[M(t),A(t)],t=0..200,M=0..15,A=0..30,i

nit92,stepsize=.2,arrows=thin,linecolour=blue,thickness=1): 

> lines92:=plot({(18-rat2*9)+(.5688427541/.8224463028)*M,(18-

rat1*9)+(-

.9811948352/.3393203728)*M},M=0..15,A=0..30,colour=cyan, 

thickness=2): 

> lines93:=plot({(2*M), ((-0.6/0.5)*M+(14.4/0.5))}, 

M=0..15,A=0..30,colour=black): 

> display({curves92,lines93,lines92}); 
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6. Revisiting the open access model 

 

Finally, we return to our open access model. The two differential equations of the dynamic 

system are (see footnotes 1 and 2): 

 

S)E015.0)S1(15.0(
dt

dS
  

E)4S20(
dt

dE
  

 

This is a non-linear differential equation system. We have already seen that it has a fixed 

point (equilibrium) at (S = S* = 0.2, E = E* = 8). To examine the stability properties of the 

system near this equilibrium, we need to obtain a linear approximation to the non-linear 

system around the fixed point. Such an approximation can be obtained using Taylor series 

expansions. Thus, if we write the system as 

 

)E,S(f
dt

dS
  

)E,S(g
dt

dE
  

a linear approximation to the non-linear system around the point (S = S*, E = E*) is given by 

 

*)EE(
E

*)E*,S(f
*)SS(

S

*)E*,S(f
*S

dt

dS










  

 

*)EE(
E

*)E*,S(g
*)SS(

S

*)E*,S(g
*E

dt

dE










  

 

Then the matrix of coefficients A is formed as (the numerical values of ) the partial 

derivatives 

 


































E

*)E*,S(g

S

*)E*,S(g
E

*)E*,S(f

S

*)E*,S(f

A  

 

From this matrix we may proceed as before, obtaining eigenvalues and eigenvectors to 

establish the system stability properties around the fixed point. The following Maple code 

obtains the eigenvalues of the linear approximation to this system around the point {S* = 0.2, 

E* = 8} 

 
> taylor((0.15*(1-s)-0.015*e)*s, s=S,2); 

 ( ) 0.15 0.15 S 0.015 e S ( ) 0.15 0.30 S 0.015 e ( )s S ( )O ( )s S 2
 

> taylor((0.15*(1-s)-0.015*e)*s, e=E,2); 
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( ) 0.15 0.15 s 0.015 E s 0.015 s ( )e E  

> taylor((20*s-4)*e, s=S,2); 

( )20 S 4 e 20 e ( )s S  

> taylor((20*s-4)*e, e=E,2); 

( )20 s 4 E ( )20 s 4 ( )e E  

Obtaining numerical values of the partial derivatives: 

>0.15-0.30*0.2-0.015*8;-0.015*0.2;20*8;20*0.2-4; 

-0.030  

-0.0030  

160  

0.   

We have below labelled the A matrix as beta1: 
 

> beta1:=matrix([[-0.03, -0.003], [160, 0]]); 

 := 










-0.03 -0.003

160 0
 

> eigenvalues(beta1); 

,-0.01500000000 0.6926579242I -0.01500000000 0.6926579242I  

We see that the two eigenvalues are complex numbers of the form  

iβαr

iβαr

2

1




 

with  < 0 and >0. This configuration of roots corresponds to a stable equilibrium, 

converging (in terms of Figure 3) by means of a damped clockwise spiral to the fixed point 

equilibrium.  

 

 


