File: C:\WINWORD\MSCBE\Ref1.DOC


UNIVERSITY OF STRATHCLYDE
QM&FT LECTURE NOTES

ESTIMATION AND STATISTICAL INFERENCE UNDER A VARIETY OF DIFFERENT ASSUMPTIONS 
Aims
In these notes, we examine the properties of parameter estimators and of several regression-based statistics under a variety of assumptions about the (observable and unobservable) variables entering the regression model. Our focus is on one particular estimator: the Ordinary Least Squares (OLS) estimator.

CLASS 1:  NON-STOCHASTIC REGRESSORS

CASE 1.1: THE CLASSICAL LINEAR REGRESSION MODEL WITH NON-STOCHASTIC REGRESSOR VARIABLES AND NORMALLY DISTRIBUTED DISTURBANCES 

TABLE 1: REGRESSION MODEL ASSUMPTIONS

  The k variable regression model is
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(1)
The dependent variable is a linear function of the set of non-stochastic regressor variables and a random disturbance term as specified in Equation (1). No variables which influence Y are omitted from the regressor set X (where X is taken here to mean the set of variables Xj, j=1,...,k), nor are any variables which do not influence Y included in the regressor set. In other words, the model specification is correct.

(2)
The set of regressors is not perfectly collinear. This means that no regressor variable can be obtained as an exact linear combination of any subset of the other regressor variables.

(3)
The disturbance process has zero mean. That is, E(ut) = 0 for all t.

(4)
The disturbance terms, ut, t=1,..,T, are serially uncorrelated. That is, Cov(ut,us) = 0 for all s(t.

(5)
The disturbances have a constant variance. That is, Var(ut) = 2 for all t.

(6)
The equation disturbances are normally distributed, for all t.

These assumptions are taken to hold for all subsequent models discussed in this paper unless stated otherwise.

THE LINEAR REGRESSION MODEL IN MATRIX NOTATION

In ordinary algebra, the k-variable linear regression model is
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(1)

For notational convenience, we could reverse the variable subscript notation to
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Now define the following vectors; first a k(1 vector of parameters
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and secondly, a 1(k row vector of the t th observation on each of the k variables:
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Equation (1) may now be written as
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(1b)

You should now convince yourself that equations (1) and (1b) are identical.

Now define the following vectors or matrices: firstly a T(1 vector of all T observations on Yt:


[image: image7.wmf]Y

Y

Y

Y

T

=

×

×

×

é

ë

ê

ê

ê

ê

ê

ê

ê

ù

û

ú

ú

ú

ú

ú

ú

ú

1

2


Secondly, u, a T(1 vector of disturbances:
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And finally X, a T(k matrix of T observations on each of k explanatory variables:
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An individual element of the matrix X can be labelled Xij, where i denotes the row number (= observation number) and j the column number (= variable number). So, for example, X32 refers to the third observation [t=3] on the second variable (X2) in our data set. You need to be careful with notation. Some textbooks use an alternative notation in which X32 , for example, denotes the second observation [t=2] on the third variable (X3). It is obviously important to check how the terms are being used in whichever text you are reading!

Putting this all together we have:
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which, more compactly, is 
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In matrix notation, the regression model assumptions listed above in Table 1 can be restated as:

The k variable regression model is

Y = X( + u

(1) The T(k matrix of regressors, X, is non-stochastic, and the regression model is correctly specified.

(2) The X matrix is non-singular (of full rank) so there is no perfect collinearity among the regressors.

(3) E(u) = 0

(4) Var(u) = (2I,   where I is a T(T identity matrix.

Note that this assumption corresponds to assumptions (4) and (5) in Table 1. Var(u) is the variance-covariance matrix of disturbances. Elements lying along the main diagonal are variances of elements of u (and are all equal to a constant number, (2, so the disturbances are homoscedastic). Elements off the main diagonal are covariances of pairs of disturbances at different time periods, and are all equal to zero, so the disturbances are not serially correlated).

(5) The disturbance vector u is multivariate normally distributed.

THE OLS ESTIMATOR OF (
The OLS estimator of ( is given by




where the symbol / denotes the transpose of a vector or matrix, and the symbol -1 denotes the inverse of a matrix. Note that 
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is a (k(1) vector of estimators of individual parameters. That is:
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SOME statistical RESULTS FOR CASE 1.1
1
For the regression model
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the OLS estimator of the parameter vector  is given by
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Substituting for Y in (2) from (1) we obtain
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FINITE SAMPLE RESULTS FOR CASE 1.1

When we use the phrase ‘finite sample results’ we are referring to statistical results which hold exactly true for any (finite sized) sample of observations. (This is to be contrasted with asymptotic or ‘large sample’ results which are properties that are true only in a special, limiting case in which the sample size is infinitely large. These will be introduced later.)

Taking expectations of (3) we have:
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in which we have used the assumption that E(u) = 0, and also the result that if X is non-random, it can be taken outside the expectation operator. This establishes that the OLS estimator of ( is unbiased. We will also state, without proof, some other well-known results for this case:

· 
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 is the minimum variance unbiased estimator of (
· 
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 is (exactly) normally distributed, with 
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· 
[image: image21.wmf]$
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 is the minimum variance unbiased estimator of (
· the OLS estimator of the disturbance term variance (2 is unbiased
· the previous two properties imply that t and F test statistics will have exact t and F distributions in any finite sample (if the relevant null hypothesis is true).

Although not a finite sample property, it is also true that 
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 is a consistent estimator of ( (the concept of consistency is defined and explained below). This follows from the properties that (i) 
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 is unbiased and (ii) as T goes to infinity, then X/X goes to infinity and so the variance of 
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goes to zero.
CASE 1.2: THE CLASSICAL LINEAR REGRESSION MODEL WITH NON-STOCHASTIC REGRESSOR VARIABLES AND NON-NORMALLY DISTRIBUTED DISTURBANCES 

All assumptions in Table 1 except (6) are taken to hold in this case. The results here are virtually identical to Case 1.1. The main difference is that, because the disturbance terms are no longer normally distributed, the normality of the estimator 
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 no longer holds in finite samples. As t and F test statistics are derived on the assumption that 
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 is normally distributed, inference based on t and F tests will now only be approximate in finite samples. It is now only possible to derive exact distributions for test statistics in one special case - the limiting case where the sample size is allowed to grow to infinity. This brings us into the realm of so-called asymptotic theory. Properties of test statistics for the case of infinite-size samples can be derived using various pieces of asymptotic statistical theory.

CLASS 2: STOCHASTIC BUT STATIONARY REGRESSORS

We now turn to examine regression models in which one or more regressor variables are stochastic. A variable is stochastic if it is a random variable and so has a probability distribution. It is non-stochastic if it not a random variable.

Some variables are non-stochastic, including intercept, quarterly dummies, dummies for special events and time trends. In any period, each takes one value known with certainty. However, many economic variables are stochastic (or they are very likely to be even if we do not know this for sure). Consider the case of a lagged dependent variable. In the following regression model, the regressor Yt-1 is a lagged dependent variable (LDV): 
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59
Clearly, Yt = f(ut), and so is a random variable. But, by the same logic, Yt-1 = f(ut-1), and so Yt-1 is a random or stochastic variable. Any LDV must be a stochastic  variable.

This is not the only circumstance where regressors are stochastic. Another case arises where a variable is measured by a process in which random error measurement occurs. This is likely to be the case where official data is constructed from sample surveys, which is common for many published series. Whenever a variable is determined by some process that includes a chance component, that variable will be stochastic. 

What  consequences follow from generalising the regression model to the case where one or more explanatory variables are stochastic variables? In order to answer this, note first that stochastic regressors, by virtue of being random variables, may be correlated with, or not independent of, the random disturbance terms of the regression model. This possibility did not arise when regressors were non-random.  

Before we proceed to investigate this issue, note that in Class 2 we are assuming that all regressor variables are stationary (as opposed to non-stationary). Let us define stationarity. Consider a sequence of observations on a time series variable, Xt, t = 1, 2, .... The variable X is said to be weakly or covariance stationary (or just stationary, for short) if all of the following conditions are satisfied:

(i) 
E(Xt) = (,  with ( a constant finite number;

(ii) 
Var(Xt) = (2, with ( a finite, positive number;

(iii) 
Cov(Xt, Xt-k) = (k, a constant, finite number, for k(0 and for any t.

These conditions will be explained and discussed in detail later.

CASE 2.1: THE CLASSICAL LINEAR REGRESSION MODEL WITH STATIONARY, STOCHASTIC REGRESSOR VARIABLES AND INDEPENDENT AND IDENTICALLY-DISTRIBUTED (IID) NORMAL (GAUSSIAN) DISTURBANCES, independent of THE regressors
FINITE SAMPLE PROPERTIES 
Using an earlier derivation we have


[image: image28.wmf][

]

[

]

[

]

  

E

 

=

 

 

+

 E

(

X

X

)

X

u

E

 

=

 

 

+

E

E 

(X

X

)

X

u

X

E

 

=

 

 E

X

X

X

E

u

E

 

      

-1

-1

(

$

)

(

$

)

{

[

]

}

(

$

)

(

)

(

$

)

/

/

/

b

b

b

b

b

b

b

b

¢

¢

¢

+

=

-

1


In this derivation, we have assumed that E[(X/X)-1X/] exists, which will be true given our assunption that the matrix X is stationary. Also, we have used the results:

(i) If a and b are independent, then Cov(a,b) = E(ab) - E(a)E(b) and therefore E(ab) = E(a)E(b)

(ii) E(a) = E{E[a(b]}

In this case, the OLS estimator is still unbiased. This unbiasedness also applies to OLS estimators of (2, and to the OLS standard errors. It is also the case that the OLS estimators are efficient.
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 is no longer normally distributed, although 
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 conditional on X is normally distributed. The t and F test statistics have the same distribution as in Case 1.1, so in this particular case, although the regressors are stochastic, we still have the result that exact finite sample inference is possible. However, the assumption that the regressors are independent of the disturbances for any size of sample is very strong, and unlikely to be satisfied in practice.

CASE 2.2: THE CLASSICAL LINEAR REGRESSION MODEL WITH STATIONARY, STOCHASTIC REGRESSOR VARIABLES AND INDEPENDENT AND IDENTICALLY-DISTRIBUTED (IID) BUT NON-NORMAL DISTURBANCES , independent of regressors
With non-normality of the disturbances, 
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 continues to be unbiased. However, for hypothesis testing, the finite sample distributions of s2 (the OLS estimator of (2) , and of the t and F test statistics are no longer standard (in other words they are not those reported in standard statistical tables). Hypothesis testing has to be justified using asymptotic theory.  In the circumstances of case 2.2 (and all previous cases too), it can be shown that the OLS estimator is consistent. To explain that idea, we now introduce some key ideas from asymptotic theory.

SOME CONCEPTS FROM ASYMPTOTIC THEORY: CONSISTENCY AND CONVERGENCE IN PROBABILITY

Consider a sequence of random variables which depends in some way on the sample size, T. Denote this random sequence as XT. 

For example, the sample mean of a series of variables Y1, Y2, ...,YT  , defined as 
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can be thought of as a random sequence. We can imagine a sequence of the random variables 
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We begin by defining the idea of convergence in probability :

Let XT represent a sequence of random variables. The random sequence XT
converges in probability to a constant X if, as T((
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where the symbol | | denotes “the absolute value of”. 

This idea can also be expressed in two other ways:

· XT    
[image: image39.wmf]®
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   X

where the arrow with P above it reads as ‘convrges in probability’.

· plim(XT) = X

A CONSISTENT ESTIMATOR

Now consider 
[image: image40.wmf]$
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, an estimator of (. An estimator is said to be consistent if it converges in probability to the true parameter value. Thus we can say:
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 is a consistent estimator of ( if 


[image: image42.wmf](

)

T

it

for

any

®

¥

-

>

=

>

lim

Pr

$

b

b

¶

¶

0

0


Alternatively, we could write that 
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 is a consistent estimator of ( if

·    
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The intuition here is that as the sample size grows to infinity, the probability of 
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differing from ( in absolute value by more than any positive amount, no matter how small, collapses to zero. Note, however, that if an estimator is consistent, that does not tell us anything about whether or not the estimator is biased in a finite sized sample, nor anything about how large that bias may be.

It is also worth noting that an estimator 
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will be consistent if, as T ((,
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Figure 1: A consistent estimator:

However, although this pair of conditions is sufficient for consistency, they are not necessary for it. That is, together they guarantee consistency; but if they are not both present, it is still possible that an estimator is consistent. 

Some further results for case 2.2

Our assumption of stationarity implies that 
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  where Q is a positive definite matrix.

Given this, it can be established that 
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where the arrow symbol with a D above it is read as ‘converges in distribution to’. Put another way, what this says is that as the sample size grows ever larger, then in the limit the term on the left hand side becomes arbitrarily close to a random variable with distribution as given on the right-hand side of the expression. 

Another way in which this is sometimes written is
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(a N((, (2(X/X)-1 )

Given this, a t test statistic will be asymptotically distributed as N(0,1) , an F test statistic for m restrictions will be asymptotically distributed as F(m, T-k), and also mFT [the Wald form of the chi-square test] will be asymptotically distributed as a chi-square variate with m degrees of freedom. So although ‘exact’ hypothesis testing is not possible, we can carry out hypothesis tests in conventional ways and justify this on the grounds that inference will be approximately true (and the approximation will be better the larger is the sample size we use). 

CASE 2.3:   THE LINEAR REGRESSION MODEL WITH STATIONARY, STOCHASTIC REGRESSOR VARIABLES AND IID DISTURBANCES .    X and  u are asymptotically uncorrelated
The assumption that the equation disturbances and the regressors are independent is an extremely strong assumption indeed, and will be untenable in many circumstances. For example, suppose that the regressors are independent of the contemporaneous disturbance but not of preceding disturbances. In this case, however, the equation disturbances and the regressors are uncorrelated in the limit as the sample size goes to infinity, even  though they are correlated in finite size samples. 

We shall label the situation in which the equation disturbances and the regressors are uncorrelated in the limit as the sample size goes to infinity (even  though they may be correlated in finite size samples) as “the regressors are asymptotically uncorrelated with the disturbances”.

Formally, we have:
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or in matrix terms
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FINITE SAMPLE RESULTS

The OLS estimator will be biased in finite samples. 

ASYMPTOTIC  RESULTS

In the case considered here, the OLS estimator has some desirable ‘large sample’ or asymptotic properties, being consistent and asymptotically efficient.  Furthermore, in these circumstances, OLS estimators of the disturbance variance and so of coefficient standard errors will also have desirable large sample properties.  The basis for valid statistical inference using classical procedures remains, but our inferences will have to be based upon asymptotic or large sample properties of estimators.

The following proof demonstrates the consistency of the OLS estimator of (. 

From equation (3) we have:
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Now take the probability limit of this expression:


[image: image57.wmf](

)

plim(

) 

=

 

 

+

 plim

1

T

X

X

T

X

u

-1

$

b

b

¢

æ

è

ç

ö

ø

÷

¢

é

ë

ê

ê

ù

û

ú

ú

1



[image: image58.wmf](

)

plim(

) 

=

 

 

+

 plim

1

T

X

X

.

plim

1

T

X

u

-1

$

b

b

¢

æ

è

ç

ö

ø

÷

é

ë

ê

ê

ù

û

ú

ú

¢

é

ë

ê

ù

û

ú

60
(4)

If, as we assume 
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(5)

then 
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and so the OLS estimator is consistent for (. It is important to note that our proof has assumed that
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exists and is a non-singular matrix. This requires that the variables in X be stationary. A later part of this course explains the consequences of regression among non-stationary variables.

CASE 2.4:   THE LINEAR REGRESSION MODEL WITH STATIONARY, STOCHASTIC REGRESSOR VARIABLES AND IID DISTURBANCES .    X and  u are correlated even asymptotically 
If 
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then the last term in (4) will be non-zero. Given that the term preceding it is non-zero by assumption, it follows that  that 
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, and so OLS is inconsistent in general.
CORRELATION OF REGRESSORS AND DISTURBANCE TERM

There are (among others) three possible causes of correlation of regressors and disturbances:

(1) Simultaneous equations bias

(2) Errors in variables
(3) The model includes a lagged dependent variable and has a serially correlated disturbance.
We shall ahve more to say about this later. But for now, for example, suppose that we estimated by OLS the regression model

Y = (1 + (2 Xt + (3Yt-1 + ut
in which

ut =  (ut-1 + (t
with ( non-zero. By lagging the equation for Y by one period, it is clear that Yt-1 is correlated with ut irrespective of the sample size (given that ((0). 

CLASS 3

NON-STATIONARY STOCHASTIC REGRESSORS
The regression model will contain stochastically non-stationary regressors if one or more of the following conditions is not satisfied:

(i) 
E(Xt) = (,  with ( a constant finite number;

(ii) 
Var(Xt) = (2, with ( a finite, positive number;

(iii) 
Cov(Xt, Xt-k) = (k, a constant, finite number, for k(0 and for any t.

In the case of non-stationary regressors, most of the results given previously are no longer valid. We shall explore these matters later in the notes on unit roots, spurious regression and cointegration.

Roger Perman, August 1999
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