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Chapter 15

The theory of optimal resource extraction: non-renewable resources
Behold, I have played the fool, and have erred exceedingly.
1 Samuel 26:21

Learning objectives

After the end of this chapter the reader should be able to

· understand the concept of non-renewable resources

· appreciate the distinctions between alternative measures of resource stock, such as base resource, resource potential and resource reserves

· understand the role of resource substitution possibilities and the ideas of a backstop technology and a resource choke price

· construct and solve simple discrete time and continuous time models of optimal resource depletion

· understand the meaning of a socially optimal depletion programme, and why this may differ from privately optimal programmes

· carry out simple comparative dynamic analysis in the context of resource depletion models, and thereby determine the consequences of changes in interest rates, known stock size, demand, price of backstop technology, and resource extraction costs

· compare resource depletion outcomes in competitive and monopolistic markets

· identify the consequences of taxes and subsidies on resource net prices and resource revenues

· understand the concept of natural resource scarcity, and be aware of a variety of possible measures of scarcity

Introduction

Non-renewable resources include fossil-fuel energy supplies – oil, gas and coal – and minerals – copper and nickel, for example. They are formed by geological processes over millions of years and so, in effect, exist as fixed stocks which, once extracted, cannot be renewed. One question is of central importance: what is the optimal extraction path over time for any particular non-renewable resource stock?

We began to answer this question in Chapter 14. There the optimal extraction problem was solved for a special case in which there was one homogeneous (uniform-quality) non-renewable resource. By assuming a single homogeneous stock, the possibility that substitute non-renewable resources exist is ruled out. The only substitution possibilities considered in Chapter 14 were between the non-renewable resource and other production inputs (labour and capital).

But in practice, non-renewable resources are heterogeneous. They comprise a set of resources varying in chemical and physical type (such as oil, gas, uranium, coal, and the various categories of each of these) and in terms of costs of extraction (as a result of differences in location, accessibility, quality and so on). This chapter investigates the efficient and optimal extraction of one component of this set of non-renewable resources where substitution possibilities exist. Substitution will take place if the price of the resource rises to such an extent that it makes alternatives economically more attractive. Consider, for example, the case of a country that has been exploiting its coal reserves, but in which coal extraction costs rise as lower-quality seams are mined. Meanwhile, gas costs fall as a result of the application of superior extraction and distribution technology. A point may be reached where electricity producers will substitute gas for coal in power generation. It is this kind of process that we wish to be able to model in this chapter.

Although the analysis that follows will employ a different (and in general, simpler) framework from that used in Chapter 14, one very important result carries over to the present case. The Hotelling rule is a necessary efficiency condition that must be satisfied by any optimal extraction programme. The chapter begins by laying out the conditions for the extraction path of a non-renewable resource stock to be socially optimal. It then considers how a resource is likely to be depleted in a market economy. As you would expect from the analysis in Chapters 5 and 11, the extraction path in competitive market economies will, under certain circumstances, be socially optimal. It is usually argued that one of these circumstances is that resource markets are competitive. We investigate this matter by comparing extraction paths under competitive and mono-poly market structures against the benchmark of a ‘first-best’ social optimum.

The model used in most of this chapter is simple, and abstracts considerably from specific detail. The assumptions are gradually relaxed to deal with increasingly complex situations. To help understanding, it is convenient to begin with a model in which only two periods of time are considered. Even from such a simple starting point, very powerful results can be obtained, which can be generalised to analyses involving many periods. If you have a clear understanding of Hotelling’s rule from Chapter 14, you might wish to skip the two-period model in the next section. Then, having analysed optimal depletion in a two-period model, a more general model is examined in which depletion takes place over T periods, where T may be a very large number.

There are two principal simplifications used in the chapter. First, we assume that utility comes directly from consuming the extracted resource. This is a considerably simpler, yet more specialised, case than that investigated in Chapter 14 where utility derived from consumption goods, obtained through a production function with a natural resource, physical capital (and, implicitly, labour) as inputs. Although doing this pushes the production function into the background, more attention is given to another kind of substitution possibility. As we remarked above, other non-renewable resources also exist. If one or more of these serve as substitutes for the resource being considered, this is likely to have important implications for economically efficient resource depletion paths.

Second, we do not take any account of adverse external effects arising from the extraction or consumption of the resource. The reader may find this rather surprising given that the production and consumption of non-renewable fossil-energy fuels are the primary cause of many of the world’s most serious environmental problems. In particular, the combustion of these fuels accounts for between 55% and 88% of carbon dioxide emissions, 90% of sulphur dioxide, and 85% of nitrogen oxide emissions (IEA, 1990). In addition, fossil fuel use accounts for significant proportions of trace-metal emissions.

However, the relationship between non-renewable resource extraction over time and environmental degradation is so important that it warrants separate attention. This will be given in Chapter 16. Not surprisingly, we will show that the optimal extraction path will be different if adverse externalities are present causing environmental damage. The depletion model developed in this chapter will be used in Chapter 16 to derive some important results about efficient pollution targets and instruments.

Finally, a word about presentation. A lot of tedious – although not particularly difficult – mathematics is required to derive our results. The main text of this chapter lays emphasis on key results and the intuition which lies behind them; derivations, where they are lengthy, are placed in appendices. You may find it helpful to omit these on a first reading.

For much of the discussion in this chapter, it is assumed that there exists a known, finite stock of each kind of non-renewable resource. This assumption is not always appropriate. New discoveries are made, increasing the magnitude of known stocks, and technological change alters the proportion of mineral resources that are economically recoverable. Later sections indicate how the model may be extended to deal with some of these complications. Box 15.1 – which you should read now – considers several measures of resource stock, and throws some light on the issue of whether it can be reasonable to assume that there are fixed quantities of non-renewable resources.
Box 15.1 Are stocks of non-renewable resources fixed?

Non-renewable resources include a large variety of mineral deposits – in solid, liquid and gaseous forms – from which, often after some process of refining, metals, fossil fuels and other processed minerals are obtained. The crude forms of these resources are produced over very long periods of time by chemical, biological or physical processes. Their rate of formation is sufficiently slow in timescales relevant to humans that it is sensible to label such resources non-renewable. At any point in time, there exists some fixed, finite quantities of these resources in the earth’s crust and environmental systems, albeit very large quantities in some cases.

So, in a physical sense, it is appropriate to describe non-renewable resources as existing in fixed quantities. However, that description may not be appropriate in an economic sense. To see why not, consider the information shown in Table 15.1. The final column – Base resource – indicates the mass of each resource that is thought to exist in the earth’s crust. This is the measure closest to that we had in mind in the previous paragraph. However, most of this base resource consists of the mineral in very dispersed form, or at great depths below the surface. Base resource figures such as these are the broadest sense in which one might use the term ‘resource stocks’. In each case, the measure is purely physical, having little or no relationship to economic measures of stocks. Notice that each of these quantities is extremely large relative to any other of the indicated stock measures.

The column labelled Resource potential is of more relevance to our discussions, comprising estimates of the upper limits on resource extraction possibilities given current and expected technologies. Whereas the resource base is a pure physical measure, the resource potential is a measure incorporating physical and technological information. But this illustrates the difficulty of classifying and measuring resources; as time passes, technology will almost certainly change, in ways that cannot be predicted today. As a result, estimates of the resource potential will change (usually rising) over time. To some writers, the possibility that resource constraints on economic activity will bite depends primarily on whether or not technological improvement in extracting usable materials from the huge stocks of base resources (thereby augmenting resource potential) will continue more-or-less indefinitely.

However, an economist is interested not in what is technically feasible but in what would become available under certain conditions. In other words, he or she is interested in resource supplies, or potential supplies. These will, of course, be shaped by physical and technological factors. But they will also depend upon resource market prices and the costs of extraction via their influence on exploration and research effort and on expected profitability. Data in the column labelled World reserve base consist of estimates of the upper bounds of resource stocks (including reserves that have not yet been discovered) that are economically recoverable under ‘reasonable expectations’ of future price, cost and technology possibilities. Those labelled Reserves consist of quantities that are economically recoverable under present configurations of costs and prices.

In economic modelling, the existence of fixed mineral resource stocks is often used as a simplifying assumption. But our observations suggest that we should be wary of this. In the longer term, economically relevant stocks are not fixed, and will vary with changing economic and technological circumstances.

Table 15.1 Production, consumption and reserves of some important resources: 1991 (figures in millions of metric tons)

	Production
	Reserves
	World reserve base
	Consumption 
	Resource Potential
	Base resource

	
	
	Quantity
	Reserve life
(yrs)
	Reserve base
	Base life
(yrs)
	
	
	Base resource(crustal mass)

	Aluminium
	112.22
	23000
	222
	28000
	270
	19.46
	3519000
	1990000000000

	Iron ore
	929.75
	150000
	161
	230000
	247
	959.6
	2035000
	1392000000000

	Potassium
	na
	20000
	800
	na
	>800
	25
	na
	408000000000

	Manganese
	25
	800
	32
	5000
	200
	22
	42000
	31200000000

	Phosphorus
	na
	110
	Na
	na
	270
	na
	51000
	28800000000

	Fluorine
	na
	2.5
	Na
	na
	12
	na
	20000
	10800000000

	Sulphur
	56.87
	na
	Na
	na
	na
	57.5
	na
	9600000000

	Chromium
	13
	419
	32
	1950
	150
	13
	3260
	2600000000

	Zinc
	7.137
	140
	20
	330
	46
	6.993
	3400
	2250000000

	Nickel
	0.922
	47
	51
	111
	119
	0.882
	2590
	2130000000

	Copper
	9.29
	310
	33
	590
	64
	10.714
	2120
	1510000000

	Lead
	3.424
	63
	18
	130
	38
	5.342
	550
	290000000

	Tin
	0.179
	8
	45
	10
	56
	0.218
	68
	40000000

	Tungsten
	0.0413
	3.5
	80
	>3.5
	>80
	0.044
	51
	26400000

	Mercury
	0.003
	0.130
	43
	0.240
	80
	0.005
	3.4
	2100000

	Silver
	0.014
	0.28
	20
	na
	na
	0.02
	2.8
	1800000

	Platinum
	0.0003
	0.37
	124
	na
	na
	0.00029
	1.2
	1100000


Source: Figures compiled from a variety of sources
15.1
A non-renewable resource two-period model

Consider a planning horizon that consists of two periods, period 0 and period 1. There is a fixed stock of known size of one type of a non-renewable resource. The initial stock of the resource (at the start of period 0) is denoted R. Let Rt be the quantity extracted in period t and assume that an inverse demand function exists for this resource at each time, given by
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where Pt is the price in period t, with a and b being positive constant numbers. So, the demand functions for the two periods will be:
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These demands are illustrated in Figure 15.1.

A linear and negatively sloped demand function such as this one has the property that demand goes to zero at some price, in this case the price a. Hence, either this resource is non-essential or it possesses a substitute which at the price a becomes economic-ally more attractive. The assumption of linearity of demand is arbitrary and so you should bear in mind that the particular results derived below are conditional upon the assumption that the demand curve is of this form.

The shaded area in Figure 15.1 (algebraically, the integral of P with respect to R over the interval R = 0 to R = Rt) shows the total benefit consumers obtain from consuming the quantity Rt in period t. From a social point of view, this area represents the gross social benefit, B, derived from the extraction and consumption of quantity Rt of the resource.1 We can express this quantity as
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where the notation B(Rt) is used to make explicit the fact that the gross benefit at time t (Bt) is dependent on the quantity of the resource extracted and consumed (Rt).
[Figure 15.1 near here]
However, the gross benefit obtained by consumers is not identical to the net social benefit of the resource, as resource extraction involves costs. In this chapter, we assume that these costs are fully borne by the resource-extracting firms, and so private and social costs are identical.2 This assumption will be dropped in the following chapter. Let us define c to be the constant marginal cost of extracting the resource (c ≥ 0).3 Then total extraction costs, Ct, for the extracted quantity Rt units will be

Ct = cRt

The total net social benefit from extracting the quantity Rt is

NSBt = Bt – Ct

where NSB denotes the total net social benefit and B is the gross social benefit of resource extraction and use.4 Hence
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(15.1)

15.1.1
A socially optimal extraction policy

Our objective in this subsection is to identify a socially optimal extraction programme. This will serve as a benchmark in terms of which any particular extraction programme can be assessed. In order to find the socially optimal extraction programme, two things are required. The first is a social welfare function that embodies society’s objectives; the second is a statement of the technical possibilities and constraints available at any point in time. Let us deal first with the social welfare function, relating this as far as possible to our discussion of social welfare functions in Chapters 3 and 5.

As in Chapter 3, the social welfare function that we shall use is discounted utilitarian in form. So the general two-period social welfare function

W = W(U0, U1)

takes the particular form
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where ( is the social utility discount rate, reflecting society’s time preference. Now regard the utility in each period as being equal to the net social benefit in each period.5 Given this, the social welfare function may be written as
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Only one relevant technical constraint exists in this case: there is a fixed initial stock of the non-renewable resource, 
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R. We assume that society wishes to have none of this resource stock left at the end of the second period. Then the quantities extracted in the two periods, R0 and R1, must satisfy the constraint:6
R0 + R1 = 
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The optimisation problem can now be stated. Resource extraction levels R0 and R1 should be chosen to maximise social welfare, W, subject to the constraint that total extraction of the resources over the two periods equals 
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. Mathematically, this can be written as
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subject to

R0 + R1 = 
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There are several ways of obtaining solutions to constrained optimisation problems of this form. We use the Lagrange multiplier method, a technique that was explained in Appendix 3.1. The first step is to form the Lagrangian function, L:
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(15.2)

in which ( is a ‘Lagrange multiplier’. Remembering that R0 and R1 are choice variables – variables whose value must be selected to maximise welfare – the necessary conditions include:
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(15.3)
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(15.4)

Since the right-hand side terms of equations 15.3 and 15.4 are both equal to zero, this implies that
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Using the demand function Pt = a – bRt, the last equation can be written as
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where P0 and P1 are gross prices and P0 – c and P1 – c are net prices. A resource’s net price is also known as the resource rent or resource royalty. Rearranging this expression, we obtain
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If we change the notation used for time periods so that P0 = Pt1, P1 = Pt and c = ct = ct1, we then obtain


[image: image19.wmf]11

11

()()

ρ

()

tttt

tt

PcPc

Pc

--

--

---

=

-


(15.5)

which is equivalent to a result we obtained previously in Chapter 14, equation 14.15, commonly known as Hotelling’s rule. Note that in equation 15.5, P is a gross price whereas in equation 14.15, P refers to a net price, resource rent or royalty. However, since P – c in equation 15.5 is the resource net price or royalty, these two equations are identical (except for the fact that one is in discrete-time notation and the other in continuous-time notation).

What does this result tell us? The left-hand side of equation 15.5, (, is the social utility discount rate, which embodies some view about how future utility should be valued in terms of present utility. The right-hand side is the proportionate rate of growth of the resource’s net price. So if, for example, society chooses a discount rate of 0.1 (or 10%), Hotelling’s rule states that an efficient extraction programme requires the net price of the resource to grow at a proportionate rate of 0.1 (or 10%) over time.

Now we know how much higher the net price should be in period 1 compared with period 0, if welfare is to be maximised; but what should be the level of the net price in period 0? This is easily answered. Recall that the economy has some fixed stock of the resource that is to be entirely extracted and consumed in the two periods. Also, we have assumed that the demand function for the resource is known. An optimal extraction programme requires two gross prices, P0 and P1, such that the following conditions are satisfied:

P0 = a – bR0

P1 = a – bR1

R0 + R1 = 
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P1 – c = (1 + ()(P0 – c)

This will uniquely define the two prices (and so the two quantities of resources to be extracted) that are required for welfare maximisation. Problem 1, at the end of this chapter, provides a numerical example to illustrate this kind of two-period optimal depletion problem. You are recommended to work through this problem before moving on to the next section.

15.2
A non-renewable resource multi-period model

Having investigated resource depletion in the simple two-period model, the analysis is now generalised to many periods. It will be convenient to change from a discrete-time framework (in which there is a number of successive intervals of time, denoted period 0, period 1, etc.) to a continuous-time framework which deals with rates of extraction and use at particular points in time over some continuous-time horizon.7
To keep the maths as simple as possible, we will push extraction costs somewhat into the background. To do this, P is now defined to be the net price of the non-renewable resource, that is, the price after deduction of the cost of extraction. Let P(R) denote the inverse demand function for the resource, indicating that the resource net price is a function of the quantity extracted, R. The social utility from consuming a quantity R of the resource may be defined as
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(15.6a)

which is illustrated by the shaded area in Figure 15.2. You will notice that the demand curve used in Figure 15.2 is non-linear. We shall have more to say about this particular form of the demand function shortly.
[Figure 15.2 near here]
By differentiating total utility with respect to R, the rate of resource extraction and use, we obtain
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(15.6b)

which states that the marginal social utility of resource use equals the net price of the resource.

Assume, as for the two-period model, that the intertemporal social welfare function is utilitarian. Future utility is discounted at the instantaneous social utility discount rate (. Then the value of social welfare over an interval of time from period 0 to period T can be expressed as8
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Our problem is to make social-welfare-maximising choices of

(a)
Rt, for t = 0 to t = T (that is, we wish to choose a quantity of resource to be extracted in each period), and

(b)
the optimal value for T (the point in time at which depletion of the resource stock ceases), subject to the constraint that
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where R is the total initial stock of the non-renewable resource. That is, the total extraction of the resource is equal to the size of the initial resource stock. Note that in this problem, the time horizon to exhaustion is being treated as an endogenous variable to be chosen by the decision maker.

We define the remaining stock of the natural resource at time t, St, as
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then by differentiation with respect to time, we obtain
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where 
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F = dS/dt, the rate of change of the remaining resource stock with respect to time.

So the dynamic optimisation problem involves the choice of a path of resource extraction Rt over the interval t = 0 to t = T that satisfies the resource stock constraint and which maximises social welfare, W. Mathematically, we have:
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subject to 
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It would be a useful exercise at this point for you to use the optimisation technique explained in Appendix 14.1 to derive the solution to this problem. Your derivation can be checked against the answer given in Appendix 15.1.
Thinking point

Before moving on to interpret the main components of this solution, it will be useful to pause for a moment to reflect on the nature of this model. It is similar in general form to the model we investigated in Chapter 14, and laid out in full in Appendix 14.2. However, the model is simpler in one important way from that of the previous chapter as utility is derived directly from the consumption of the natural resource, rather than indirectly from the consumption goods generated through a production function. There is a fixed, total stock available of the natural resource, and this model is sometimes called the ‘cake-eating’ model of resource depletion.

It would also be reasonable to interpret this model as one in which a production function exists implicitly. However, this production function has just one argument – the non-renewable natural resource input – as compared with the two arguments – the natural resource and human-made capital – in the model of Chapter 14.

It is clear that this model can at most be regarded as a partial account of economic activity. One possible interpretation of this partial status is that the economy also produces, or could produce, goods and services through other production functions, using capital, labour and perhaps renewable resource inputs. In this interpretation the non-renewable resource is like a once-and-for-all gift of nature. Using this non-renewable resource provides something over and above the welfare possible from production in its absence. It is this additional welfare that is being measured by our term W.

An alternative interpretation is more commonly found in the literature. Here, non-renewable resources consist of a diverse set of different resources. Each element of this set is a particular resource that is fixed and homogeneous. Substitution possibilities exist between at least some elements of this set of resources. For historical, technical or economic reasons, production might currently rely particularly heavily on one kind of resource. Changing technological or economic conditions might lead to this stock being replaced by another. With the passage of time, a sequence of resource stocks are brought into play, with each one eventually being replaced by another. In this story, what our resource depletion model investigates is one stage in this sequence of depletion processes. This interpretation will be used later in the chapter when the concepts of a backstop technology and a choke price are introduced.

These comments raise a general issue about choices that need to be made in doing resource modelling. It is often too difficult to explain everything of interest in one framework. Sometimes, one needs to pick ‘horses for courses’. In the previous chapter, we were concerned with substitution between natural resources and physical capital; that required that we explicitly specify a conventional type of production function. In this chapter, that is not of central concern, and so the production function can be allowed to slip somewhat into the background. However, we do wish here to place emphasis on substitution processes between natural resources. That can be done in a simple way, by paying greater attention to the nature of resource demand functions, and to the idea of a choke price for a resource.
Whether or not you have succeeded in obtaining a formal solution to this optimisation problem, intuition should suggest one condition that must be satisfied if W is to be maximised. Rt must be chosen so that the discounted marginal utility is equal at each point in time, that is,
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To understand this, let us use the method of contradiction. If the discounted marginal utilities from resource extraction were not equal in every period, then total welfare W could be increased by shifting some extraction from a period with a relatively low discounted marginal utility to a period with a relatively high discounted marginal utility. Rearranging the path of extraction in this way would raise welfare. It must, therefore, be the case that welfare can only be maximised when discounted marginal utilities are equal. What follows from this result? First note equation 15.6b again:
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So, the requirement that the discounted marginal utility be constant is equivalent to the requirement that the discounted net price is constant as well – a result noted previously in Chapter 14. That is,
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Rearranging this condition, we obtain

Pt = P0e(t
(15.7a)

By differentiation9 this can be rewritten as
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(15.7b)

This is, once again, the Hotelling efficiency rule. It now appears in a different guise, because of our switch to a continuous-time framework. The rule states that the net price or royalty Pt of a non-renewable resource should rise at a rate equal to the social utility discount rate, (, if the social value of the resource is to be maximised.

We now know the rate at which the resource net price or royalty must rise. However, this does not fully characterise the solution to our optimising problem. There are several other things we need to know too. First, we need to know the optimal initial value of the resource net price. Secondly, we need to know over how long a period of time the resource should be extracted – in other words, what is the optimal value of T? Thirdly, what is the optimal rate of resource extraction at each point in time? Finally, what should be the values of P and R at the end of the extraction horizon?

It is not possible to obtain answers to these questions without one additional piece of information: the particular form of the resource demand function. So let us suppose that the resource demand function is

P(R) = Ke–aR
(15.8)

which is illustrated in Figure 15.2.10 Unlike the demand function used in the two-period analysis, this function exhibits a non-linear relationship between P and R, and is probably more representative of the form that resource demands are likely to take than the linear function used in the section on the two-period model. However, it is similar to the previous demand function in so far as it exhibits zero demand at some finite price level.

To see this, just note that P(R = 0) = K. K is the so-called choke price for this resource, meaning that the demand for the resource is driven to zero or is ‘choked off’ at this price. At the choke price people using the services of this resource would switch demand to some alternative, substitute, non-renewable resource, or to an alternative final product not using that resource as an input.

As we shall demonstrate shortly, given knowledge of

· a particular resource demand function,

· Hotelling’s efficiency condition,

· an initial value for the resource stock, and

· a final value for the resource stock,

it is possible to obtain expressions for the optimal initial, interim and final resource net price (royalty) and resource extraction rates. What about the final stock level? This is straightforward. An optimal solution must have the property that the stock goes to zero at exactly the same point in time that demand and extraction go to zero.11 If that were not the case, some resource will have been needlessly wasted. So we know that the solution must include ST = 0 and RT = 0, with resource stocks being positive, and positive extraction taking place over all time up to T. As you will see below, that will give us sufficient information to fully tie down the solution.

Before we proceed to obtain all the details of the solution, one important matter must be reiterated. The solution to a problem of this type will depend upon the demand function chosen. Hence the particular solutions derived below are conditional upon the demand function chosen, and will not be valid in all circumstances. Our model in this chapter assumes that the resource has a choke price, implying that a substitute for the resource becomes economically more attractive at that price. If you wish to examine the case in which there is no choke price – indeed, where there is no finite upper limit on the resource price – you may find it useful to work through some of the exercises provided in the Additional Materials for this chapter, which deal with this case among others.
Table 15.2 Optimality conditions for the multi-period model

	
	Initial (t = 0)
	Interim (t = t)
	Final (t = T)
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As the mathematics required to obtain the full solution are rather tedious (but not particularly difficult), the derivations are presented in Appendix 15.1. You are strongly recommended to read this now, but if you prefer to omit these derivations, the results are presented in Table 15.2. There it can be seen that all the expressions for the initial, interim and final resource royalty (or net prices) and rate of resource extraction are functions of the parameters of the model (K, ( and a) and T, the optimal depletion time. As the final expression indicates, T is itself a function of those parameters. Given the functional forms we have been using in this section, if the values of the parameters K, ( and a were known, it would be possible to solve the model to obtain numerical values for all the variables of interest over the whole period for which the resource will be extracted.

Figure 15.3 portrays the solution to our optimal depletion model. The diagram shows the optimal resource extraction and net price paths over time corresponding to social welfare maximisation. As we show subsequently, it also represents the profit-maximising extraction and price paths in perfectly competitive markets. In the upper right quadrant, the net price is shown rising exponentially at the social utility discount rate, (, thereby satisfying the Hotelling rule. The upper left quadrant shows the resource demand curve with a choke price K. The lower left quadrant gives the optimal extraction path of the non-renewable resource, which is, in this case, a linear declining function of time.

The net price is initially at P0, and then grows until it reaches the choke price K at time T. At this point, demand for the resource goes to zero, and the accumulated extraction of the resource (the shaded area beneath the extraction path) is exactly equal to the total initial resource stock, 
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. The lower right quadrant maps the time axes by a 45° line. A worked numerical example illustrating optimal extraction is presented in Appendix 15.3.

[Figure 15.3 near here]
15.3
Non-renewable resource extraction in perfectly competitive markets

Until this point, we have said nothing about the kind of market structure in which decisions are made. It is as if we have been imagining that a rational social planner were asked to make decisions that maximise social welfare, given the constraints facing the economy. The optimality conditions listed in Table 15.2, plus the Hotelling efficiency condition, are the outcome of the social planner’s calculations.

How will matters turn out if decisions are instead the outcome of profit-maximising decisions in a perfectly competitive market economy? This section demonstrates that, ceteris paribus, the outcomes will be identical. Hotelling’s rule and the optimality conditions of Table 15.2 are also obtained under a perfect competition assumption.

Suppose there are m competitive firms in the market. Use the subscript j to denote any one of these m firms. Assume, for simplicity, that all firms have equal and constant marginal costs of extracting the resource. Now as all firms in a competitive market face the same fixed selling price at any point in time, the market royalty will be identical over firms. Given the market royalty Pt, each firm chooses an amount to extract and sell, Rj,t, to maximise its profits.

Mathematically, the jth firm’s objective is to maximize
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where (j = P·Rj is firm j’s profit and i is the market interest rate. Note that the same stock constraint operates on all firms collectively; the industry as a whole cannot extract more than the fixed initial stock over the whole time horizon. The profit-maximising extraction path is obtained when each firm selects an extraction Rj,t at each time, t = 0 to t = T, so that its discounted marginal profit will be the same at any point in time t, that is,
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where M(j is firm j’s marginal profit function. If discounted marginal profits were not the same over time, total profits could be increased by switching extraction between time periods so that more was extracted when discounted profits were high and less when they were low. The result that the discounted marginal profit is the same at any point in time implies that

Pte–it = P0 or Pt = P0eit

Not surprisingly, Hotelling’s efficiency rule continues to be a required condition for profit maximisation, so that the market net price of the resource must grow over time at the rate i. The interest rate in this profit maximisation condition is the market rate of interest. Our analysis in Chapter 11 showed that, in perfectly competitive capital markets and in the absence of transactions costs, the market interest rate will be equal to r, the consumption rate of interest, and also to , the rate of return on capital.

We appear now to have two different efficiency conditions,
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the former emerging from maximising social welfare, the latter from private profit maximisation. But these are in fact identical conditions under the assumptions we have made in this chapter; by assuming that we can interpret areas under demand curves (that is, gross benefits) as quantities of utility, we in effect impose the condition that ( = r. Given this result, it is not difficult to show, by cranking through the appropriate maths in a similar manner to that done in Appendix 15.1, that all the results of Table 15.2 would once again be produced under perfect competition, provided the private market interest rate equals the social consumption discount rate. We leave this as an exercise for the reader.

Finally, note that the appearance of a positive net price or royalty, Pt > 0, for non-renewable resources reflects the fixed stock assumption. If the resource existed in unlimited quantities (that is, the resource were not scarce) net prices would be zero in perfect competition, as the price of the product will equal the marginal cost (c), a result which you may recall from standard theory of long-run equilibrium in competitive markets. In other words, scarcity rent would be zero as there would be no scarcity.

15.4
Resource extraction in a monopolistic market

It is usual to assume that the objective of a mono-poly is to maximise its discounted profit over time. Thus, it selects the net price Pt (or royalty) and chooses the output Rt so as to maximize
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where (t = P(Rt)Rt.

For the same reason as in the case of perfect competition, the profit-maximising solution is obtained by choosing a path for R so that the discounted marginal profit will be the same at any time. So we have
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that is,

M(t = M(0eit
(15.9)

Looking carefully at equation 15.9, and comparing this with the equation for marginal profits in the previous section, it is clear why the profit-maximising solutions in monopolistic and competitive markets will differ. Under perfect competition, the market price is exogenous to (fixed for) each firm. Thus we are able to obtain the result that in competitive markets, marginal revenue equals price. However, in a monopolistic market, price is not fixed, but will depend upon the firm’s output choice. Marginal revenue will be less than price in this case.

The necessary condition for profit maximisation in a monopolistic market states that the marginal profit (and not the net price or royalty) should increase at the rate of interest i in order to maximise the discounted profits over time. The solution to the monopolist’s optimising problem is derived in Appendix 15.2. If you wish to omit this, you will find the results in Table 15.3.

15.5
A comparison of competitive and monopolistic extraction programmes

Table 15.3 summarises the results concerning optimal resource extraction in perfectly competitive and monopolistic markets. The analytical results presented are derived in Appendices 15.1 and 15.2. For convenience, we list below the notation used in Table 15.3.
Table 15.3 The comparison table: perfect competition v. monopoly

	
	Perfect competition
	Monopoly

	Objective
	max 
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	Constraint
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	Demand curve
	Pt = Ke–aRt
	Pt = Ke–aRt

	
	
	Optimal Solution

	Exhaustion time
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	Initial royalty
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	Royalty path
	Pt = P0eit
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	Extraction path
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Pt is the net price (royalty) of non-renewable resource with fixed stock 
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Rt is the total extraction of the resource at time t

Rjt is the extraction of individual firm j at time t

i is the interest rate

T is the exhaustion time of the natural resource

K and a are fixed parameters

h = (1.6)2

Two key results emerge from Tables 15.2 and 15.3. First, under certain conditions, there is equivalence between the perfect competition market outcome and the social welfare optimum. If all markets are perfectly competitive, and the market interest rate is equal to the social consumption discount rate, the profit-maximising resource depletion programme will be identical to the one that is socially optimal.

Secondly, there is non-equivalence of perfect com-petition and monopoly markets: profit-maximising extraction programmes will be different in perfectly competitive and monopolistic resource markets. Given the result stated in the previous paragraph, this implies that monopoly must be sub-optimal in a social-welfare-maximising sense.

For the functional forms we have used in this section, a monopolistic firm will take ((h = 1.6 times longer to fully deplete the non-renewable resource than a perfectly competitive market in our model. As Figure 15.4 demonstrates, the initial net price will be higher in monopolistic markets, and the rate of price increase will be slower. Extraction of the resource will be slower at first in monopolistic markets, but faster towards the end of the depletion horizon. Monopoly, in this case at least, turns out to be an ally of the conservationist, in so far as the time until complete exhaustion is deferred further into the future.12 As the comparison in Figure 15.4 illustrates, a monopolist will restrict output and raise prices initially, relative to the case of perfect competition. The rate of price increase, however, will be slower than under perfect competition. Eventually, an effect of monopolistic markets is to increase the time horizon over which the resource is extracted. We illustrate these results numerically in the Excel file polcos.xls, the contents of which are explained in the Word file polcos.doc. These can both be found in the Additional Materials for Chapter 15.

15.6
Extensions of the multi-period model of non-renewable resource depletion

To this point, a number of simplifying assumptions in developing and analysing our model of resource depletion have been made. In particular, it has been assumed that

· the utility discount rate and the market interest rate are constant over time;

· there is a fixed stock, of known size, of the non-renewable natural resource;

· the demand curve is identical at each point in time;

· no taxation or subsidy is applied to the extraction or use of the resource;

· marginal extraction costs are constant;

· there is a fixed ‘choke price’ (hence implying the existence of a backstop technology);

· no technological change occurs;

· no externalities are generated in the extraction or use of the resource.

We shall now undertake some comparative dynamic analysis. This consists of finding how the optimal paths of the variables of interest change over time in response to changes in the levels of one or more of the parameters in the model, or of finding how the optimal paths alter as our assumptions are changed. We adopt the device of investigating changes to one parameter, holding all others unchanged, comparing the new optimal paths with those derived above for our simple multi-period model. (We shall only discuss these generalisations for the case of perfect competition; analysis of the monopoly case is left to the reader as an exercise.)

The reader interested in doing comparative dynamics analysis by Excel simulation may wish to explore the file hmodel.xls (together with its explanatory document, hmodel.doc) in the Additional Materials to Chapter 15. The consequences of each of the changes described in the following subsections can be verified using that Excel workbook.

15.6.1
An increase in the interest rate

Let us make clear the problem we wish to answer here. Suppose that the interest rate we had assumed in drawing Figure 15.3 was 6% per year. Now suppose that the interest rate was not 6% but rather 10%; how would Figure 15.3 have been different if the interest rate had been higher in this way? This is the kind of question we are trying to answer in doing comparative dynamics.

The answer is shown in Figure 15.5. The thick, heavily drawn line represents the original optimal price path, with the price rising from an initial level of P0 to its choke price, K, at time T. Now suppose that the interest rate rises. Since the resource’s net price must grow at the market interest rate, an increase in i will raise the growth rate of the resource royalty, Pt; hence the new price path must have a steeper slope than the original one. The new price path will be the one labelled C in Figure 15.5. It will have an initial price lower than the one on the original price path, will grow more quickly, and will reach its final (choke) price earlier in time (before t = T). This result can be explained by the following observations. First, the choke price itself, K, is not altered by the interest rate change. Second, as we have already observed, the new price path must rise more steeply with a higher interest rate. Third, we can deduce that it must begin from a lower initial price level from using the resource exhaustion constraint. The change in interest rate does not alter the quantity that is to be extracted; the same total stock is extracted whatever the interest rate might be. If the price path began from the same initial value (P0) then it would follow a path such as that shown by the curve labelled A and would reach its choke price before t = T. But then the price would always be higher than along the original price path, but for a shorter period of time. Hence the resource stock will not be fully extracted along path A and that path could not be optimal.
[Figure 15.5 near here]
A path such as B is not feasible. Here the price is always lower (and so the quantity extracted is higher) than on the original optimal path, and for a longer time. But that would imply that more resources are extracted over the life of the resource than were initially available. This is not feasible. The only feasible and optimal path is one such as C. Here the price is lower than on the original optimal path for some time (and so the quantity extracted is greater); then the new price path crosses over the original one and the price is higher thereafter (and so the quantity extracted is lower).

Note that because the new path must intersect the original path from below, the optimal depletion time will be shorter for a higher interest rate. This is intuitively reasonable. Higher interest rate means greater impatience. More is extracted early on, less later, and total time to full exhaustion is quicker. The implications for all the variables of interest are summarised in Figure 15.6.
[Figure 15.6 near here]
15.6.2
An increase in the size of the known resource stock

In practice, estimates of the size of reserves of non-renewable resources such as coal and oil are under constant revision. Proven reserves are those unextracted stocks known to exist and can be recovered at current prices and costs. Probable reserves are stocks that are known, with near certainty, to exist but which have not yet been fully explored or researched. They represent the best guess of additional amounts that could be recovered at current price and cost levels. Possible reserves are stocks in geological structures near to proven fields. As prices rise, what were previously uneconomic stocks become economically recoverable.

Consider the case of a single new discovery of a fossil fuel stock. Other things being unchanged, if the royalty path were such that its initial level remained unchanged at P0, then given the fact that the rate of royalty increase is unchanged, some proportion of the reserve would remain unutilised by the time the choke price, K, is reached. This is clearly neither efficient nor optimal. It follows that the initial royalty must be lower and the time to exhaustion is extended. At the time the choke price is reached, T´, the new enlarged resource stock will have just reached complete exhaustion, as shown in Figure 15.7.
[Figure 15.7 near here]
Now suppose that there is a sequence of new discoveries taking place over time, so that the size of known reserves increases in a series of discrete steps. Generalising the previous argument, we would expect the behaviour of the net price or royalty over time to follow a path similar to that illustrated in Figure 15.8. This hypothetical price path is one that is consistent with the actual behaviour of oil prices.
[Figure 15.8 near here]
15.6.3
Changing demand

Suppose that there is an increase in demand for the resource, possibly as a result of population growth or rising real incomes. The demand curve thus shifts outwards. Given this change, the old royalty or net price path would result in higher extraction levels, which will exhaust the resource before the net price has reached K, the choke price. Hence the net price must increase to dampen down quantities demanded; as Figure 15.9 shows, the time until the resource stock is fully exhausted will also be shortened.

15.6.4
A fall in the price of backstop technology

In the model developed in this chapter, we have assumed there is a choke price, K. If the net price were to rise above K, the economy will cease consumption of the non-renewable resource and switch to an alternative source – the backstop source. Suppose that technological progress occurs, increasing the efficiency of a backstop technology. This will tend to reduce the price of the backstop source, to PB (PB < K). Hence the choke price will fall to PB. Given the fall in the choke price to PB, the initial value of the resource net price on the original optimal price path, P0, cannot now be optimal. In fact, it is too high since the net price would reach the new choke price before T, leaving some of the economic-ally useful resource unexploited. So the initial price of the non-renewable resource, P0, must fall to a lower level, P´0 , to encourage an increase in demand so that a shorter time horizon is required until complete exhaustion of the non-renewable resource reserve. This process is illustrated in Figure 15.10. Note that when the resource price reaches the new, reduced choke price, demand for the non-renewable resource falls to zero.
[Figure 15.9 near here]
15.6.5
A change in resource extraction costs

Consider the case of an increase in extraction costs, possibly because labour charges rise in the extraction industry. To analyse the effects of an increase in extraction costs, it is important to distinguish carefully between the net price and the gross price of the resource. Let us define:

pt = Pt  – c

where pt is the resource net price, Pt is the gross price of the non-renewable resource, and c is the marginal extraction cost, assumed to be constant. Hotelling’s rule requires that the resource net price grows at a constant rate, equal to the discount rate (which we take here to be constant at the rate i). Therefore, efficient extraction requires that

pt = p0eit

Now look at Figure 15.11(a). Suppose that the marginal cost of extraction is at some constant level, cL, and that the curve labelled Original net price describes the optimal path of the net price over time (i.e. it plots pt = p0eit); also suppose that the corresponding optimal gross price path is given by the curve labelled Original gross price (i.e. it plots Pt = pt + cL = p0eit + cL).
[Figure 15.10 near here]
Next, suppose that the cost of extraction, while still constant, now becomes somewhat higher than was previously the case. Its new level is denoted cH. We suppose that this change takes place at the initial time period, period 0. Consider first what would happen if the gross price remained unchanged at its initial level, as shown in Figure 15.11(a). The increase in unit extraction costs from cL to cH would then result in the net price being lower than its original initial level. However, with no change having occurred in the interest rate, the net price must grow at the same rate as before. Although the net price grows at the same rate as before, it does so from a lower starting value, and so it follows that the new net price pt would be lower at all points in time than the original net price, and it will also have a flatter profile (as close inspection of the diagram makes clear). This implies that the new gross price will be lower than the old gross price at all points in time except in the original period.
[Figure 15.11 near here]
However, the positions of the curves for the new gross and net prices in Figure 15.11(a) cannot be optimal. If the gross (market) price is lower at all points in time except period 0, more extraction would take place in every period. This would cause the reserve to become completely exhausted before the choke price (K) is reached. This cannot be optimal, as any optimal extraction path must ensure that demand goes to zero at the same point in time as the remaining resource stock goes to zero.

Therefore, optimal extraction requires that the new level of the gross price in period 0, P´0, must be greater than it was originally (P0). It will remain above the original gross price level for a while but will, at some time before the resource stock is fully depleted, fall below the old gross price path. This is the final outcome that we illustrate in Figure 15.11(b). As the new gross price eventually becomes lower than its original level, it must take longer before the choke price is reached. Hence the time taken before complete resource exhaustion occurs is lengthened.

All the elements of this reasoning are assembled together in the four-quadrant diagram shown in Figure 15.12. A rise in extraction costs will raise the initial gross price, slow down the rate at which the gross price increases (even though the net price or royalty increases at the same rate as before), and lengthen the time to complete exhaustion of the stock.

What about a fall in extraction costs? This may be the consequence of technological progress decreasing the costs of extracting the resource from its reserves. By following similar reasoning to that we used above, it can be deduced that a fall in extraction costs will have the opposite effects to those just described. It will lower the initial gross price, increase the rate at which the gross price increases (even though the net price increases at the same rate as before), and shorten the time to complete exhaustion of the stock.

If the changes in extraction cost were very large, then our conclusions may need to be amended. For example, if a cost increase were very large, then it is possible that the new gross price in period 0, P´0, will be above the choke price. It is then not economically viable to deplete the remaining reserve – an example of an economic exhaustion of a resource, even though, in physical terms, the resource stock has not become completely exhausted.

One remaining point needs to be considered. Until now it has been assumed that the resource stock consists of reserves of uniform, homogeneous quality, and the marginal cost of extraction was constant for the whole stock. We have been investigating the consequences of increases or decreases in that marginal cost schedule from one fixed level to another. But what if the stock were not homogeneous, but rather consisted of reserves of varying quality or varying accessibility? It is not possible here to take the reader through the various possibilities that this opens up. It is clear that in this situation marginal extraction costs can no longer be constant, but will vary as different segments of the stock are extracted. There are many meanings that could be attributed to the notion of a change in marginal extraction costs. A fall in extraction costs may occur as the consequence of new, high-quality reserves being discovered. An increase in costs may occur as a consequence of a high-quality mine becoming exhausted, and extraction switching to another mine in which the quality of the resource reserve is somewhat lower. Technical progress may result in the whole profile of extraction costs being shifted downwards, although not necessarily at the same rate for all components.

We do not analyse these cases in this text. The suggestions for further reading point the reader to where analysis of these cases can be found. But it should be evident that elaborating a resource depletion model in any of these ways requires dropping the assumption that there is a known, fixed quantity of the resource. Instead, the amount of the resource that is ‘economically’ available becomes an endogenous variable, the value of which depends upon resource demand and extraction cost schedules. This also implies that we could analyse a reduction in extraction costs as if it were a form of technological progress; this can increase the stock of the reserve that can be extracted in an economically viable manner. Hence, changes in resource extraction costs and changes in resource stocks become interrelated – rather than independent – phenomena.

15.7
The introduction of taxation/subsidies

15.7.1
A royalty tax or subsidy

A royalty tax or subsidy will have no effect on a resource owner’s extraction decision for a reserve that is currently being extracted. The tax or subsidy will alter the present value of the resource being extracted, but there can be no change in the rate of extraction over time that can offset that decline or increase in present value. The government will simply collect some of the mineral rent (or pay some subsidies), and resource extraction and production will proceed in the same manner as before the tax/subsidy was introduced.

This result follows from the Hotelling rule of efficient resource depletion. To see this, define ( to be a royalty tax rate (which could be negative – that is, a subsidy), and denote the royalty or net price at time t by pt. Then the post-tax royalty becomes (1 – ()pt. But Hotelling’s rule implies that the post-tax royalty must rise at the discount rate, i, if the resource is to be exploited efficiently. That is:

(1 – ()pt = (1 – ()p0eit

or

pt = p0eit

Hotelling’s rule continues to operate unchanged in the presence of a royalty tax, and no change occurs to the optimal depletion path. This is also true for a royalty subsidy scheme. In this case, denoting the royalty subsidy rate by (, we have the efficiency condition

(1 + ()pt = (1 + ()p0eit ( pt = p0eit

We can conclude that a royalty tax or subsidy is neutral in its effect on the optimal extraction path. However, a tax may discourage (or a subsidy encourage) the exploration effort for new mineral deposits by reducing (increasing) the expected pay-off from discovering the new deposits.

15.7.2
Revenue tax/subsidy

The previous subsection analysed the effect of a tax or subsidy on resource royalties. We now turn our attention to the impact of a revenue tax (or subsidy). In the absence of a revenue tax, the Hotelling efficiency condition is, in terms of net prices and gross prices,

pt = p0eit

( (Pt – c) = (P0 – c)eit

Under a revenue tax scheme, with a tax of ( per unit of the resource sold, the post-tax royalty or net price is

pt = (1 – ()Pt  – c

So Hotelling’s rule becomes:

[(1 – ()Pt  – c] = [(1 – ()P0  – c]eit  (0 < ( < 1)
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Since c/(1 – () > c, an imposition of a revenue tax is equivalent to an increase in the resource extraction cost. Similarly, for a revenue subsidy scheme, we have
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A revenue subsidy is equivalent to a decrease in extraction cost. We have already discussed the effects of a change in extraction costs, and you may recall the results we obtained: a decrease in extraction costs will lower the initial gross price, increase the rate at which the gross price increases (even though the net price or royalty increases at the same rate as before) and shorten the time to complete exhaustion of the stock.

15.8
The resource depletion model: some extensions and further issues

15.8.1
Discount rate

We showed above that resource extraction under a system of perfectly competitive markets might produce the socially optimal outcome. But this equivalence rests upon several assumptions, one of which is that firms choose a private discount rate identical to the social discount rate that would be used by a rational planner. If private and social discount rates differ, however, then market extraction paths may be biased toward excessive use or conservation relative to what is socially optimal.

15.8.2
Forward markets and expectations

The Hotelling model is an abstract analytical tool; its operation in actual market economies is dependent upon the existence of a set of particular institutional circumstances. In many real situations these institutional arrangements do not exist and so the rule lies at a considerable distance from the operation of actual market mechanisms. In addition to the discount rate equivalence mentioned in the previous section, two assumptions are required to ensure a social optimal extraction in the case of perfect competition, First, the resource must be owned by the competitive agents. Secondly, each agent must know at each point in time all current and future prices. One might just assume that agents have perfect foresight, but this hardly seems tenable for the case we are investigating. In the absence of perfect foresight, knowledge of these prices requires the existence of both spot markets and a complete set of forward markets for the resource in question. But no resource does possess a complete set of forward markets, and in these circumstances there is no guarantee that agents can or will make rational supply decisions.

15.8.3
Optimal extraction under uncertainty

Uncertainty is prevalent in decision making regarding non-renewable resource extraction and use. There is uncertainty, for example, about stock sizes, extraction costs, how successful research and development will be in the discovery of substitutes for non-renewable resources (thereby affecting the cost and expected date of arrival of a backstop techno-logy), pay-offs from exploration for new stock, and the action of rivals. It is very important to study how the presence of uncertainty affects appropriate courses of action. For example, what do optimal extraction programmes look like when there is uncertainty, and how do they compare with programmes developed under conditions of certainty?

Let us assume an owner of a natural resource (such as a mine) wishes to maximise the net present value of utility over two periods:13
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If there is a probability (() of a disaster (for example, the market might be lost) associated with the second period of the extraction programme, then the owner will try to maximise the expected net present value of the utility (if he or she is risk-neutral):
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where
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Note that

(1 + (*)(1 – () = 1 + (
( (* – ( = ((1 + (*) > 0
(if 1 ≥ ( > 0)

( (* > (
Therefore, in this example, the existence of risk is equivalent to an increase in the discount rate for the owner, which implies, as we have shown before, that the price of the resource must rise more rapidly and the depletion is accelerated.

15.9
Do resource prices actually follow the Hotelling rule?

The Hotelling rule is an economic theory. It is a statement of how resource prices should behave under a specified (and very restrictive) set of conditions. Economic theory begins with a set of axioms (which are regarded as not needing verification) and/or a set of assumptions (which are treated as being provisionally correct). These axioms or assumptions typically include goals or objectives of the relevant actors and various rules of how those actors behave. Then logical reasoning is used to deduce outcomes that should follow, given those assumptions.

But a theory is not necessarily correct. Among the reasons it may be wrong are inappropriateness of one or more of its assumptions, and flawed deduction. A theory may also fail to ‘fit the facts’ because it refers to an idealised model of reality that does not take into account some elements of real-world complexity. However, failing to fit the facts does not make the theory false; the theory only applies to the idealised world for which it was constructed.

But it would be interesting to know whether the Hotelling principle is sufficiently powerful to fit the facts of the real world. Indeed, many economists take the view that a theory is useless unless it has predictive power: we should be able to use the theory to make predictions that have a better chance of being correct than chance alone would imply. A theory is unlikely to have predictive power if it cannot describe or explain current and previous behaviour. Of course, even if it could do that, this does not necessarily mean it will have good ex ante predictive power.

In an attempt to validate the Hotelling rule (and other associated parts of resource depletion theory), much research effort has been directed to empirical testing of that theory. What conclusions have emerged from this exercise? Unfortunately, no consensus of opinion has come from empirical analysis. As Berck (1995) writes in one recent survey of results ‘the results from such testing are mixed’.

A simple version of the Hotelling rule for some marketed non-renewable resource was given by equation 15.7b; namely
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In this version, all prices are denominated in units of utility, and  is a utility discount rate. These magnitudes are, of course, unobservable, so equation 15.7b is not directly testable. But we can rewrite the Hotelling rule in terms of money-income (or consumption) units that can be measured:
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(15.10)

Here, p* denotes a price in money units, and ( is a consumption discount rate. Empirical testing normally uses discrete time-series data, and so the discrete-time version of Hotelling’s rule is employed:
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(15.11)

or, expressed in an alternative way,

p*t+1 = pt*(1 + ()
(15.12)

Notice right away that equations 15.11 and 15.12 are assuming that there is a constant discount rate over time. If this is not correct (and there is no reason why it has to be) then ( should enter those two equations with a time subscript, and the Hotelling principle no longer implies that a resource price will rise at a fixed rate. But this is a complication we ignore in the rest of this section.

One way of testing Hotelling’s rule seems to be clear: collect time-series data on the price of a resource, and see if the proportionate growth rate of the price is equal to (. This was one thing that Barnett and Morse (1963) did in a famous study. They found that resource prices – including iron, copper, silver and timber – fell over time, which was a most disconcerting result for proponents of the standard theory. Subsequent researchers, looking at different resources or different time periods, have come up with a bewildering variety of results. There is no clear picture of whether resource prices typically rise or fall over time. We can no more be confident that the theory is true than that it is not true – a most unsatisfactory state of affairs.

But we now know that the problem is far more difficult than this to settle, and that a direct examination of resource prices is not a reasonable way to proceed. Note first that the variable p* in Hotelling’s rule is the net price (or rent, or royalty) of the resource, not its market price. Roughly speaking, these are related as follows:

P* = p* + MC
(15.13)

where P* is the gross (or market) price of the extracted resource, p* is the net price of the resource in situ (i.e. unextracted), and MC is the marginal extraction cost. It is clear from equation 15.13 that if the marginal cost of extraction is falling, P* might be falling even though p* is rising. We noted this earlier in doing comparative statics to examine the effect of a fall in extraction costs. So evidence of falling market prices cannot, in itself, be regarded as invalidating the Hotelling principle.

This suggests that the right data to use is the resource net price. But that is an unobservable variable, for which data do not therefore exist. And this is not the only unobservable variable: ( is also un-observed, as we shall see shortly. In the absence of data on net price, one might try to construct a proxy for it. The obvious way to proceed is to subtract marginal costs from the gross, market price to arrive at net price. This is also not as easy as it seems: costs are observable, but the costs recorded are usually averages, not marginals. We shall not discuss how this (rather serious) difficulty has been dealt with. However, many studies have pursued this approach. Slade (1982) made one of the earliest studies of this type; she concluded that some resources have U-shaped quadratic price paths, having fallen in the past but latterly rising. Other studies of this type are Stollery (1983), which generally supported the Hotelling hypothesis, and Halvorsen and Smith (1991), which was unable to support it.

Any attempt to construct a proxy measure for net price comes up against an additional problem. The measure that is obtained is a proxy, and it will contain estimation errors. If this variable is simply treated as if it were the unobserved net price itself, a statistical problem – known to econometricians as an errors-in-variables problem – will occur, and estimates of parameters will in general be biased (and so misleading) no matter how large is the sample of data available to the researcher. This casts doubt on all studies using proxies for the net price which have not taken account of this difficulty. Appropriate statistical techniques in the presence of errors-in-variables are discussed in most intermediate econometrics texts, such as Greene (1993). Harvey (1989) is a classic text on the Kalman filter, which is one way of resolving this problem.

Other approaches have also been used to test the Hotelling rule, and we shall mention only two of them very briefly. Fuller details can be found in the survey paper by Berck (1995). Miller and Upton (1985) use the valuation principle. This states that the stock market value of a property with unextracted resources is equal to the present value of its resource extraction plan; if the Hotelling rule is valid this will be constant over time, and so the property’s stock market value will be constant. Evidence from this approach gives reasonably strong support for the Hotelling principle. Farrow (1985) adopts an approach that interprets the Hotelling rule as an asset-efficiency condition, and tests for efficiency in resource prices, in much the same way that finance theorists conduct tests of market efficiency. These tests generally reject efficiency, and by implication are taken to not support the Hotelling rule. However, it has to be said that evidence in favour of efficient asset markets is rarely found, but that does not stop economists assuming (for much of the time) that asset markets are efficient.

Let us now return to a comment we made earlier. The right-hand side of the Hotelling rule equation consists of the consumption discount rate (. But this is also a theoretical construct, not directly observable. What we do observe are market rates of interest, which will include components reflecting transaction costs, various degrees of risk premia, and other market imperfections. Even if we could filter these out, the market rate of interest measures realised or ex post returns; but the Hotelling theory is based around an ex ante measure of the discount rate, reflecting expectations about the future. This raises a whole host of problems concerning how expectations might be proxied that are beyond the scope of this text.

Finally, even if we did find convincing evidence that the net price of a resource does not rise at the rate ( (or even that it falls), should we regard this as evidence that invalidates the Hotelling rule? The answer is that we should not draw this conclusion. There are several circumstances where resource prices may fall over time even where a Hotelling rule is being followed. For example, in Figure 15.8 we showed that a sequence of new mineral discoveries could lead to a downward-sloping path of the resource’s net price. Pindyck (1978) first demonstrated this in a seminal paper. If resource extraction takes place in non-competitive markets, the net price will also rise less quickly than the discount rate (see Figure 15.4). And in the presence of technical progress continually reducing extraction costs, the market price may well fall over time, thereby apparently contradicting a simple Hotelling rule.

The history of attempts to test the Hotelling principle is an excellent example of the problems faced by economists in all branches of that discipline. Many of the variables used in our theories are un-observable or latent variables. Shadow prices are one class of such latent variables. The best we can do is to find proxy variables for them. But if the theory does not work, is that because the theory is poor or because our proxy was not good? More generally, a theory pertains to a particular model. So unless it contains a logical error, a theory can never be wrong. What can be, and often is, incorrect, is a presumption that a theory that is correct in the context of one particular model will generate conclusions that are valid in a wide variety of ‘real’ situations.

15.10 Natural resource scarcity

Concern with the supposed increasing scarcity of natural resources, and the possibility of running out of strategically important raw materials or energy sources, is by no means new. Worries about resource scarcity can be traced back to medieval times in Britain, and have surfaced periodically ever since. The scarcity of land was central to the theories of Malthus and the other classical economists. In the 20th century, fears about timber shortages in several countries led to the establishment of national forestry authorities, charged with rebuilding timber stocks. As we have seen earlier, pessimistic views about impending resource scarcity have been most forcibly expressed in the Limits to Growth literature (see Chapter 2 of this text for examples); during the 1970s, the so-called oil crises further focused attention on mineral scarcities.

What do we mean by resource scarcity? One use of the term – what might be called absolute scarcity – holds that all resources are scarce, as the availability of resources is fixed and finite at any point in time, while the wants which resource use can satisfy are not limited. Where a market exists for a resource, the existence of any positive price is viewed as evidence of absolute scarcity; where markets do not exist, the existence of a positive shadow price – the implicit price that would be necessary if the resource were to be used efficiently – similarly is an indicator of absolute scarcity for that resource.

But this is not the usual meaning of the term in general discussions about natural resource scarcity. In these cases, scarcity tends to be used to indicate that the natural resource is becoming harder to obtain, and requires more of other resources to obtain it. The relevant costs to include in measures of scarcity are both private and external costs; it is important to recognise that if private extraction costs are not rising over time, social costs may rise if negative externalities such as environmental degradation or depletion of common property resources are increasing as a consequence of extraction of the natural resource. Thus, a rising opportunity cost of obtaining the resource is an indicator of scarcity – let us call this use of the term relative scarcity. In the rest of this section, our comments will be restricted to this second form.

Before we take this matter any further, it is necessary to say something about the degree of aggregation used in examining resource scarcity. To keep things as simple as possible, first consider only non-renewable natural resources. There is not one single resource but a large number, each distinct from the others in some physical sense. However, physically distinct resources may be economically similar, through being substitutes for one another. Non-renewable resources are best viewed, then, as a structure of assets, components of which are substitutable to varying degrees. In Chapter 14, when we discussed the efficient extraction of a single non-renewable resource, what we had in mind was some aggregate set of resources in this particular sense. Moreover, when the class of resources is extended to incorporate renewable resources, so the structure is enlarged, as are the substitution possibilities.

Except for resources for which no substitution possibilities exist – if indeed such resources exist – it is of limited usefulness to enquire whether any individual resource is scarce or not. If one particular resource, such as crude oil, were to become excessively costly to obtain for any reason, one would expect resource use to substitute to another resource, such as natural gas or coal. A well-functioning price mechanism should ensure that this occurs. Because of this, it is more useful to consider whether natural resources in general are becoming scarcer: is there any evidence of increasing generalised resource scarcity?

What indicators might one use to assess the degree of scarcity of particular natural resources, and natural resources in general? There are several candidates for this task, including physical indicators (such as reserve quantities or reserve-to-consumption ratios), marginal resource extraction cost, marginal exploration and discovery costs, market prices, and resource rents. We shall now briefly examine each of these. In doing so, you will see that the question of whether resources are becoming scarce is closely related to the question of whether the Hotelling rule is empirically validated.

15.10.1
Physical indicators

A variety of physical indicators have been used as proxies for scarcity, including various measures of reserve quantities, and reserve-to-consumption ratios. Several such measures were discussed earlier in this chapter and appropriate statistics listed (see Box 15.1 and Table 15.1). Inferences drawn about impending resource scarcity in the Limits to Growth literature were drawn on the basis of such physical indicators. Unfortunately, they are severely limited in their usefulness as proxy measures of scarcity for the reasons discussed in Box 15.1. Most importantly, most natural resources are not homogeneous in quality, and the location and quantities available are not known with certainty; extra amounts of the resource can be obtained as additional exploration, discovery and extraction effort is applied. A rising resource net price will, in general, stimulate such effort. It is the absence of this information in physical data that limits its usefulness.

15.10.2
Real marginal resource extraction cost

We argued earlier that scarcity is concerned with the real opportunity cost of acquiring additional quantities of the resource. This suggests that the marginal extraction cost of obtaining the resource from existing reserves would be an appropriate indicator of scarcity. The classic study by Barnett and Morse (1963) used an index of real unit costs, c, defined as
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where L is labour, K is capital and Q is output of the extractive industry, and ( and ( are weights to aggregate inputs. Rising resource scarcity is proxied by rising real unit costs. Note that ideally marginal costs should be used, although this is rarely possible in practice because of data limitations. An important advantage of an extraction costs indicator is that it incorporates technological change. If technological progress relaxes resource constraints by making a given quantity of resources more productive, then this reduction in scarcity will be reflected in a tendency for costs to fall. However, the measure does have problems. First, the measurement of capital is always difficult, largely because of the aggregation that is required to obtain a single measure of the capital stock. Similarly, there are difficulties in obtaining valid aggregates of all inputs used. Secondly, the indicator is backward-looking, whereas an ideal indicator should serve as a signal for future potential scarcity. Finally, it may well be the case that quantities and/or qualities of the resource are declining seriously, while technical progress that is sufficiently rapid results in price falling. In extreme cases, sudden exhaustion may occur after a period of prolonged price falls. Ultimately, no clear inference about scar-city can be drawn from extraction cost data alone.

Barnett and Morse (1963) and Barnett (1979) found no evidence of increasing scarcity, except for forestry. As we mentioned previously, they concluded that agricultural and mineral products, over the period 1870 to 1970, were becoming more abundant rather than scarcer, and explained this in terms of the substitution of more plentiful lower-grade deposits as higher grades were depleted, the discovery of new deposits, and technical change in exploration, extraction and processing. References for other, subsequent studies are given at the end of the chapter.

15.10.3 Marginal exploration and discovery costs

An alternative measure of resource scarcity is the opportunity cost of acquiring additional quantities of the resource by locating as-yet-unknown reserves. Higher discovery costs are interpreted as indicators of increased resource scarcity. This measure is not often used, largely because it is difficult to obtain long runs of reliable data. Moreover, the same kinds of limitations possessed by extraction cost data apply in this case too.

15.10.4
Real market price indicators and net price indicators

The most commonly used scarcity indicator is time-series data on real (that is, inflation-adjusted) market prices. It is here that the affinity between tests of scarcity and tests of the Hotelling principle is most apparent. Market price data are readily available, easy to use and, like all asset prices, are forward-looking, to some extent at least. Use of price data has three main problems. First, prices are often distorted as a consequence of taxes, subsidies, exchange controls and other governmental interventions; reliable measures need to be corrected for such distortions. Secondly, the real price index tends to be very sensitive to the choice of deflator. Should nominal prices be deflated by a retail or wholesale price index (and for which basket of goods), by the GDP deflator, or by some input price index such as manufacturing wages? There is no unambiguously correct answer to this question, which is unfortunate as very different conclusions can be arrived at about resource scarcity with different choices of deflator. Some evidence on this is given in the chapter on resource scarcity in Hartwick and Olewiler (1986); these authors cite an analysis by Brown and Field (1978) which compares two studies of resource prices using alternative deflators. For eleven commodities, Nordhaus (1973) used capital goods prices as a deflator and concluded that all eleven minerals were becoming less scarce. However, Jorgensen and Griliches (1967) used a manufacturing wages deflator and concluded that three of the minerals – coal, lead and zinc – were becoming scarcer over the same period.

The third major problem with resource price data is one we came across earlier. Market prices do not in general measuring the right thing; an ideal price measure would reflect the net price of the resource. Hotelling’s rule shows that it is this that rises through time as the resource becomes progressively scarcer. But we have seen that net resource prices are not directly observed variables, and so it is rather difficult to use them as a basis for empirical analysis.
[Figure 15.13 near here]
Despite the limitations of market price data, the early studies show a broad agreement between this measure and the others discussed in this section. One illustration is given in Figure 15.13, taken from Brown and Field (1979), which suggests that, for an aggregate index of all metals, scarcity was decreasing over the period 1890 to 1970. More recent studies present a much less clear picture, however – as we noted above.

Can any general conclusions about resource scarcity be obtained from the literature? The majority of economic analyses conducted up to the early 1980s concluded that few, if any, non-renewable natural resources were becoming scarcer. In the last 20 years, concern about increasing scarcity of non-renewable resources has increased, and an increasing proportion of studies seems to lend support to an increasing scarcity hypothesis.

Paradoxically, these studies also suggested it was in the area of renewable resources that problems of increasing scarcity were to be found, particularly in cases of open access. The reasons why scarcity may be particularly serious for some renewable resources will be examined in Chapter 17.

Summary

· Non-renewable resources consist of energy and material stocks that are generated very slowly through natural processes; these stocks – measured in terms of base resource – can be thought of as existing in fixed, finite quantities. Once extracted, they cannot regenerate in timescales that are relevant to humans.

· Resource stocks can be measured in several ways, including base resource, resource potential, and resource reserves. It is important to distinguish between purely physical measures of stock size, and ‘economic’ measures of resource stocks.

· Non-renewable resources consist of a large number of particular types and forms of resource, among which there may be substitution possibilities.

· The demand for a resource may exhibit a ‘choke price’; at such a price demand would become zero, and would switch to an alternative resource or to a ‘backstop’ technology.

· The chapter has shown – for two-period discrete time and for continuous time – how models of optimal resource depletion can be constructed and solved.

· One element of the solution of such models is that an efficient price path for the non-renewable resource must follow the Hotelling rule.

· In some circumstances, a socially optimal depletion programme will be identical to a privately optimal (profit-maximising) depletion programme. However, this is not always true. In particular, the equivalence will not hold if social and private discount rates diverge.

· Using comparative dynamic analysis, we have been able to determine the consequences of changes in interest rates, known stock size, demand, price of backstop technology, and resource extraction costs.

· Frequent new discoveries of the resource are likely to generate a price path which does not resemble constant exponential growth.

· Resource depletion outcomes differ between competitive and monopolistic markets. The time to depletion will be longer in a monopoly market, the resource net price will be higher in early years, and the net price will be lower in later years.

· Taxes or subsidies on royalties (or resource rents or net prices) will not affect the optimal depletion path, although they will affect the present value of after-tax royalties. However, revenue-based taxes or subsidies will affect depletion paths, being equivalent to changes in extraction costs.

· We explained the concept of natural resource scarcity. There are many measures that have been proposed, or are used, as measures of scarcity. The more theoretically attractive measures typically are unobtainable as they depend upon unobservable quantities.

Further reading

· The references for further reading given at the end of Chapter 14 are all relevant for further reading on the material covered in this chapter. In particular, very good (but rather advanced-level) presentations of the theory of efficient and optimal resource depletion can be found in Baumol and Oates (1988), Dasgupta and Heal (1979), Heal (1981) and the collection of papers in the May 1974 special issue on resource depletion of the Review of Economic Studies. As stated previously, less difficult presentations are given in Hartwick and Olewiler (1986), Anderson (1991) and Fisher (1981). Pindyck (1978) is the classic reference on resource exploration.

Good general discussions of resource scarcity can be found in Hartwick and Olewiler (1986, chapter 5), which provides an extensive discussion of the evidence, Barbier (1989a), Fisher (1979, 1981) and Harris (1993). Important works in the field of resource scarcity include Barnett (1979), Barnett and Morse (1963), Brown and Field (1979), Deverajan and Fisher (1980, 1982), Hall and Hall (1984), Jorgensen and Griliches (1967), Leontief et al. (1977), Nordhaus (1973), Norgaard (1975), Slade (1982), Smith (1979) and Smith and Krutilla (1979). Examinations of the extent to which the Hotelling rule are satisfied in practice are extensively referenced in the text, but the best place to go next is probably Berck (1995).

An excellent discussion on natural resource substitutability can be found in Dasgupta (1993). Adelman (1990, 1995) covers the economics of oil depletion. Prell (1996) deals with backstop technology.

Discussion questions

1. Discuss the merits of a proposal that the government should impose a tax or subsidy where an non-renewable resource is supplied monopolistically in order to increase the social net benefit.

2. ‘An examination of natural resource matters ought to recognise technical/scientific, economic, and socio-political considerations.’ Explain.

3. ‘The exploitation of resources is not necessarily destructive...need not imply the impoverishment of posterity...It is the diversion of national income from its usual channels to an increased preservation of natural wealth that will harm posterity’ (Anthony Scott). Explain and discuss.

4. The notion of sustainability is used differently in economics than in the natural sciences. Explain the meaning of sustainability in these two frameworks, and discuss the attempts that have been made by economists to make the concept operational.

Problems

1. Consider two consecutive years, labelled 0 and 1. You are currently at the start of year 0. The following information is available. There is a single fixed stock of a non-renewable resource; the magnitude of this stock at the start of year 0 is 224 (million tonnes). The inverse resource demand functions for this resource in each of the years are

P0 = a – bR0
and
P1 = a – bR1

in which a = 107 and b = 1. The constant marginal cost of resource extraction is 5. All (non-physical) units are in European units of utility. The social welfare function is discounted utilitarian in form, with a social utility discount rate of 0.1. Given that the objective is to maximise social welfare over periods 0 and 1, calculate the amounts of resource that should be extracted in each period, subject to the restriction that at least 104 units of the resource should be left (unextracted) for the future at the end of period 1. What is the resource price in each period

(a)
in utility units;

(b)
in euros, given that U = log(C), where U is utility units, log is the natural logarithm operator, and C is consumption (or income), measured in euros?

2. The version of Hotelling’s rule given in equation 15.5 requires the net price to grow proportionately at the rate (. Under what circumstances would this imply that the gross price also should grow at the rate (?

3. In equation 15.5, if ( = 0, what are the implications for

(a)
P0 and P1?

(b)
R0 and R1?

(Problems 4, 5 and 6 are based on Table 15.3.)

4. Explain, with diagrams, why a monopolistic non-renewable resource market is biased towards conservation and therefore will increase the ‘life’ of the resource.

5. In the case of perfect competition, if the private discount rate is higher than the correct social discount rate, explain, with diagrams, why the market will exhaust the resource too quickly.

6. Discuss, with diagrams, the consequences of the discovery of North Sea oil for

(a)
the price and output levels for the oil market;

(b)
the date of exhaustion of oil reserves.

What will be the probable path over time of oil prices if there are frequent discoveries of oil?

Appendix 15.1 Solution of the multi-period resource depletion model

We wish to maximize
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The current-valued Hamiltonian for this problem is

H = U(Rt) + Pt(–Rt)

The necessary conditions for maximum social welfare are
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Rearranging equation 15.15 we obtain
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so that the resource shadow price, Pt, is equal to the marginal utility of the non-renewable resource, an equality used in the main text. Equation 15.14 is, of course, the Hotelling efficiency condition, given as equation 15.7b in the chapter.

As we noted in the chapter, an optimal solution must have the property that the stock goes to zero at exactly the point that demand goes to zero. In order for demand to be zero at time T (which we determine in a moment) the net price must reach the choke price at time T. That is,

PT = K
This, together with equation 15.7a in the main text, implies

K = P0e(T
(15.16)

To solve for Rt, it can be seen from equations 15.7a and 15.8 that

P0e(t = Ke–aR

Substituting for K from equation 15.16 we obtain
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(15.17)

This gives an expression for the rate at which the resource should be extracted along the optimal path. To find the optimal time period, T, over which extraction should take place, recall that the fixed stock constraint is:
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and so by substitution for Rt from equation 15.17 we obtain
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Therefore
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or
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Next we solve, using equation 15.16, for the initial royalty level, P0:
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To obtain an expression for the resource royalty at time t, we substitute equation 15.7a into the expression just derived for the initial royalty level to obtain the required condition:
Pt = Ke((t–T)

The optimal initial extraction level is, from equation 15.17,
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Appendix 15.2 The monopolist’s profit-maximising extraction programme

To solve for the monopolist’s profit-maximising extraction programme, we need to do some additional calculation. First, let us derive an expression for the firm’s marginal profit function, M(:
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(15.18)

Now, substituting for P(R) from the resource demand function (equation 15.8) we can express this equation as
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(15.19)

where h = 2.5. Notice the approximation here. We use this because otherwise it is not possible to obtain an analytical solution, given the double appearance of Rt.

Since resource extraction at the end of the planning horizon must be zero (RT = 0) we have

M(t = Ke–ahR(T) = K
(15.20)

To obtain M(0, using equation 15.9 we obtain
M(0 = M(T e–iT = Ke–iT
(15.21)

To obtain an expression for M(t, using equations 15.9 and 15.21, we have

M(t = M(0 eit = Kei(t–T)
(15.22)

Now we may obtain a solution equation for Rt, using equations 15.9 and 15.22:
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(15.23)

In order to obtain the optimal depletion time period T we use the fixed-stock constraint together with equation 15.23, the result we have just obtained:
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Therefore
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To solve the initial extraction R0, from equation 15.22:

[image: image89.wmf](

)

0

2

0

iiTiS

RT

hahaha

=-==


Finally, to solve the initial net price P0, from equation 15.8, (the demand curve)
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Appendix 15.3 A worked numerical example

Let us take 1990 as the ‘initial year’ of the study. In 1990, the oil price was P0 = $20 per barrel, and oil output was R0 = 21.7 billion barrels. From our demand function (equation 15.8)

P0 = Ke–aR0
we obtain
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The price elasticity of the initial year is, therefore,
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Assume that (( = –0.5; then we can estimate a:

[image: image93.wmf]0

11

0.1

ε0.521.7

a

R

=-=»

´


We can also estimate the parameter K as follows:

K = P0 exp(aR0) = 20 exp(0.1 ( 21.7) (( 175

The global oil reserve stock is S = 1150 billion barrels. The optimal oil extraction programme under the assumptions of a discount rate ( = 3% and perfect competition are given by the following.

The optimal exhaustion time is:
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The optimal initial oil output is
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The corresponding optimal initial oil price is
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The optimal oil output is obviously higher than the actual output in 1990, and the optimal price is lower than the actual one. So there is apparent evidence of distortion (inefficiency) in the world oil market.
Figure 15.1 The non-renewable resource demand function for the two-period model

Figure 15.2 A resource demand curve, and the total utility from consuming a particular quantity of the resource

Figure 15.3 Graphical representation of solutions to the optimal resource depletion model

Figure 15.4 A comparison of resource depletion in competitive and monopolistic markets

Figure 15.5 The effect of an increase in the interest rate on the optimal price of the non-renewable resource

Figure 15.6 An increase in interest rates in a perfectly competitive market

Figure 15.7 An increase in the resource stock

Figure 15.8 The effect of frequent new discoveries on the resource net price or royalty

Figure 15.9 The effect of an increase in demand for the resource

Figure 15.10 A fall in the price of a backstop technology

Figure 15.11 (a) An increase in extraction costs: deducing the effects on gross and net prices; (b) An increase in extraction costs: actual effects on gross and net prices

Figure 15.12 A rise in extraction costs

Figure 15.13 Price and unit costs for all metals, 1890–1970

Source: Brown and Field (1979). Copyright, Resources for the Future, Inc.
1 A demand curve is sometimes taken as providing information about the marginal willingness to pay (or marginal benefit) for successive units of the good in question. The area under a demand curve up to some given quantity is, then, the sum of a set of marginal benefits, and is equal to the total benefit derived from consuming that quantity.


2 We also assume that benefits represented in the resource demand function are the only benefits to society, so there are no beneficial externalities.


3 Constancy of marginal costs of extraction is a very strong assumption. In the previous chapter, we investigated a more general case in which marginal extraction costs are not necessarily constant. We do not consider this any further here. Later in this chapter, however, we do analyse the consequences for extraction of a once-and-for-all rise in extraction costs.


4 Strictly speaking, social benefits derive from consumption (use) of the resource, not extraction per se. However, we assume throughout this chapter that all resource stocks extracted in a period are consumed in that period, and so this distinction becomes irrelevant.


5 In order to make such an interpretation valid, we shall assume that the demand function is ‘quasi-linear’ (see Varian, 1987). Suppose there are two goods, X, the good whose demand we are interested in, and Y, money to be spent on all other goods. Quasi-linearity requires that the utility function for good X be of the form U = V(X) + Y. This implies that income effects are absent in the sense that changes in income do not affect the demand for good X. In this case, we can legitimately interpret the area under the demand curve for good X as a measure of utility.


6 The problem could easily be changed so that a predetermined quantity S* (S* ≥ 0) must be left at the end of period 1 by rewriting the constraint as R0 + R1 + S* = F. This would not alter the essence of the conclusion we shall reach.


7 The material in this section, in particular the worked example investigated later, owes much to Heijman (1990).


8 It may be helpful to relate this form of social welfare function to the discrete-time versions we have been using previously. We have stated that a T-period discrete-time discounted welfare function can be written as


�EMBED Unknown���


We could write this equivalently as


�EMBED Unknown���


A continuous-time analogue of this welfare function is then


�EMBED Unknown���


9 Differentiation of equation 15.7a with respect to time gives


dPt/dt �EMBED Unknown���t = P0(e(t


By substitution of equation 15.7a into this expression, we obtain


�EMBED Unknown���t = (Pt


and dividing through by Pt we obtain


�EMBED Unknown���t/Pt = (


as required.


10. For the demand function given in equation 15.8, we can obtain the particular form of the social welfare function as follows. The social utility function corresponding to equation 15.6a will be:


�EMBED Unknown���


The social welfare function, therefore, is


�EMBED Unknown���


11 In terms of optimisation theory, this constitutes a so-called terminal condition for the problem.


12 Note that this conclusion is not necessarily the case. The longer depletion period we have found is a consequence of the particular assumptions made here. Although in most cases one would expect this to be true, it is possible to make a set of assumptions such that a monopolist would extract the stock in a shorter period of time.


13 This argument follows very closely a presentation in Fisher (1981)
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