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HYPOTHESIS TESTING IN THE GENERAL LINEAR MODEL
The general linear model can be represented in various ways:




1
or in terms of all n observations on each variable written explicitly




in which we have X1 = 1 for all observations. In compact matrix notation it is written as



2
(1)

Here, Y is a (n(1) vector of observations on the dependent variable, X is a (n(k) matrix of n observations on k explanatory variables, one of which will usually be an intercept. ( is a (k(1) vector of parameters, and u is a (n(1) vector of disturbance terms.

The following assumptions are being made throughout this set of notes: 

(1)
The dependent variable is a linear function of the set of non-stochastic regressor variables and a random disturbance term as specified in Equation (1). This model specification is taken to be the correct one.

(2)
The n(k matrix X has full rank, k.

(3)
The random errors,  ui, i=1,..,n,  are mean zero, homoscedastic and independent random variables. That is   E(u) = 0  and Var(u) = E(uu( ) = 2In 

OLS POINT ESTIMATES OF PARAMETERS

The OLS estimator of the parameter vector  is given by
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(2)

Substituting for Y in (2) from (1) we obtain




SAMPLING PRECISION OF THE OLS ESTIMATOR OF (
Information about the sampling precision of 

 - and the basis for testing hypotheses - comes from the variance/covariance matrix of the OLS estimator, 


Var/Cov (

 ) = 



(4)

In (4), for a given sample X is known but (2 is not, so (4) as it stands can not be used directly for statistical inference. To proceed, we require an estimator of the scalar term (2.

AN UNBIASED LEAST-SQUARES BASED ESTIMATOR OF (2

An unbiased estimator of (2 is given by 
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where 

 is the least squares residuals vector.

AN ADDITIONAL ASSUMPTION

In addition to the three assumptions made previously, we now also assume that the vector of error terms is normally distributed. Thus we may write




This assumption implies that the vector Y is multivariate normally distributed with mean vector as




Given this distribution, the maximum likelihood estimator has very attractive properties. We have

· 


· 


· 


· 

 is a biased estimator of (2
· 


is a best unbiased estimator of (2
A result which is critical to what follows, is




HYPOTHESIS TESTS ON INDIVIDUAL ELEMENTS OF THE PARAMETER VECTOR: the t test

Consider one element, (j, of the ( vector. Suppose we wish to test a null hypothesis against an alternative hypothesis of the following kinds:

H0: 
(j  = c

Ha: 
(j  ( c

where c is some number.

We can do this using a t test in the following way:

We know that 


It follows that each element of this vector of estimators is normally distributed, so that




where (jj is the jth diagonal element of the data matrix 


Given this normality result we also know that 




Furthermore




The ratio of a standard normal random variable to the square root of an independent chi-square random variable divided by its degrees of freedom (d. of f.) is itself a random variable. This ratio is distributed as a student-t (or just t) random variable, with d. of f. equal to the d. of f. of the chi-square random variable. 

So we have





(5)

The statistic given in (5) can be used for testing our hypothesis. Note that apart from (j all quantities in this expression are known. The quantity 

  is usually outputted automatically by regression packages and is known as the “standard error” of the parameter estimator when a least squares estimator is used. Note also that although the estimator in the numerator term is the ML estimator, the least squares estimator is identical under the assumptions we are maintaining here. 

Suppose that the particular null we wish to test is 

H0 : (3 = 0

we proceed as follows. The true but unknown parameter (j (=(3 in this case) is replaced in (5) with the value we hypothesise it will have under the null (0 in this case).

If the null is true then





(6)
So we compute the value of this test statistic and compare it with critical values of the t distribution with n-k degrees of freedom. 

How do we decide whether to reject the null or not to reject it? To answer this, it is useful to think about the kinds of errors that can be made in testing hypotheses. To do so, consider Figure 1.

Figure 1



Status of the null




Null true
Null false

Decision
Do not reject null
(
Type 2 error


Reject null
Type 1 error
(

A Type I error is rejecting a true null hypothesis

A Type II error is accepting a false null hypothesis

A tick in a cell in this table indicates a correct decision. 

The classic method of hypothesis testing begins with setting the size of the type 1 error. The probability of making a type 1 error is usually set at a “small” value such as 0.01 (1%), 0.05 (5%) or 0.1 (10%). This is known as the size of the test, often denoted by the symbol (. Critical values of the test statistic are determined to correspond to this size. 

Suppose that the null hypothesis we are testing is in fact true, that n-k=100, and so the t test statistic defined in expression (6) does have a t distribution with 100 degrees of freedom. Furthermore, suppose that we have decided to conduct a test of size 0.05 (5%).  We know (from tabulations of the t distribution) that




That is, there is a 95% probability that a realisation from a random experiment of a random variable distributed as t with 100 d of f will lie between -1.984 and +1.984. It follows that there is a 95% probability that our test statistic will lie within this interval. If it does we will not reject the null (and will have made a correct decision). 

However, there is a 5% probability that the test statistic will lie outside this interval (and so we will reject the null) even under the conditions we have described. A type 1 error will have been made. 

One might think that the test should be constructed so as to reduce to zero the probability of making a type 1 error. But this can only be achieved by setting the critical values at minus and plus infinity. Clearly, a null will never be rejected.

But the penalty for doing this will be that a null hypothesis will always be accepted even when it is false (and no matter “how false” it is). Loosely speaking, we face a trade-off between the probabilities of making type 1 and type 2 errors. For any given true value of a parameter (which is, of course, unknown) and a particular value of that parameter hypothesised under a null which is in fact false, decreasing the size of the test will increase the probability of making a type 2 error.  

As the range of critical values is broadened (so we make the Do not reject the null region wider) the Type 1 probability will be reduced.  This is a good thing.  However as this range is increased, the probability of a Type 2 error is increased, which is a bad thing. This implies that there is a trade-off between the probability of a Type I error and the probability of a Type 2 error. We can only reduce one by increasing the other.

How is this trade-off handled? Quite simply by setting the probability of a Type I error at some level that gives us what we feel is a satisfactory type 1 error probability in conjunction with satisfactory probabilities of type 2 errors when the null is in fact false by particular amounts. 

THE FORMS OF THE NULL AND ALTERNATIVE HYPOTHESES.

In the previous discussion, we considered an example of a test statistic in which the null was of the form (j = 0.  But of course, the null can hypothesise any particular value for the parameter of interest, such as (j = -3  , in which case our hypotheses would be of the form

H0 : (j = -3     v  Ha : (j  (-3

This will make no difference to the test procedure, all that happens is that the test depends upon a different statistic, because the unknown term (j in the test statistic is given the value -3 rather than 0 as previously. 

4
So far, our discussion has dealt with the case in which the critical (reject the null) region occurs in each of the two tails of the t distribution. We refer to such a test procedure as a "two-tailed test". A "one-tailed test" might be more appropriate if we have some prior information. For example, suppose that in the model





5
we know that ( is either zero or positive. A natural way of carrying out an appropriate hypothesis test might be by specifying the null and alternative hypotheses as:

H0 : ( = 0

Ha : ( > 0

Here the alternative hypothesis utilises the prior information that the only alternative to ( being zero is that it is positive.

In this case, the test procedure is based upon rejecting the null hypothesis if the ratio

 eq \O()   eq \O()

/SE ( eq \O()

 eq \O()) is "significantly greater than zero". The test procedure will be termed a one-tailed test.
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