Regression with Panel Data

(SW Ch. 8)

A panel dataset contains observations on multiple entities (individuals), where each entity is observed at two or more points in time.

Examples:

· Data on 420 California school districts in 1999 and again in 2000, for 840 observations total.

· Data on 50 U.S. states, each state is observed in 3 years, for a total of 150 observations.

· Data on 1000 individuals, in four different months, for 4000 observations total.
Notation for panel data

A double subscript distinguishes entities (states) and time periods (years)

i = entity (state), n = number of entities, 

so i = 1,…,n 

t = time period (year), T = number of time periods

so t =1,…,T
Data:  Suppose we have 1 regressor.  The data are:

(Xit, Yit), i = 1,…,n, t = 1,…,T
Panel data notation, ctd.
Panel data with k regressors:

(X1it, X2it,…,Xkit, Yit), i = 1,…,n, t = 1,…,T
n = number of entities (states)

T = number of time periods (years)

Some jargon… 

· Another term for  panel data is longitudinal data
· balanced panel:  no missing observations

· unbalanced panel:  some entities (states) are not observed for some time periods (years)

Why are panel data useful?

With panel data we can control for factors that:

· Vary across entities (states) but do not vary over time

· Could cause omitted variable bias if they are omitted

· are unobserved or unmeasured – and therefore cannot be included in the regression using multiple regression

Here’s the key idea:

If an omitted variable does not change over time, then any changes in Y over time cannot be caused by the omitted variable.

Example of a panel data set:

Traffic deaths and alcohol taxes

Observational unit: a year in a U.S. state

· 48 U.S. states, so n = of entities = 48

· 7 years (1982,…, 1988), so T = # of time periods = 7

· Balanced panel, so total # observations = 7(48 = 336

Variables:

· Traffic fatality rate (# traffic deaths in that state in that year, per 10,000 state residents)

· Tax on a case of beer

· Other (legal driving age, drunk driving laws, etc.)

Traffic death data for 1982
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Higher alcohol taxes, more traffic deaths?

Traffic death data for 1988
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Higher alcohol taxes, more traffic deaths?

Why might there be higher more traffic deaths in states that have higher alcohol taxes?

Other factors that determine traffic fatality rate:

· Quality (age) of automobiles

· Quality of roads

· “Culture” around drinking and driving

· Density of cars on the road

These omitted factors could cause omitted variable bias.

Example #1: traffic density.  Suppose:

(i) High traffic density means more traffic deaths

(ii) (Western) states with lower traffic density have lower alcohol taxes

· Then the two conditions for omitted variable bias are satisfied.  Specifically, “high taxes” could reflect “high traffic density” (so the OLS coefficient would be biased positively – high taxes, more deaths)

· Panel data lets us eliminate omitted variable bias when the omitted variables are constant over time within a given state.

Example #2: cultural attitudes towards drinking and driving

(i)  arguably are a determinant of traffic deaths; and 

(ii) potentially are correlated with the beer tax, so beer

taxes could be picking up cultural differences

(omitted variable bias).

· Then the two conditions for omitted variable bias are satisfied.  Specifically, “high taxes” could reflect “cultural attitudes towards drinking” (so the OLS coefficient would be biased)

· Panel data lets us eliminate omitted variable bias when the omitted variables are constant over time within a given state.

Panel Data with Two Time Periods

(SW Section 8.2)

Consider the panel data model,

FatalityRateit = (0 + (1BeerTaxit + (2Zi + uit
Zi is a factor that does not change over time (density), at least during the years on which we have data.

· Suppose Zi is not observed, so its omission could result in omitted variable bias.

· The effect of Zi can be eliminated using T = 2 years.

The key idea:  

Any change in the fatality rate from 1982 to 1988 cannot be caused by Zi, because Zi (by assumption) does not change between 1982 and 1988.

The math:  consider fatality rates in 1988 and 1982:

FatalityRatei1988 = (0 + (1BeerTaxi1988 + (2Zi + ui1988
FatalityRatei1982 = (0 + (1BeerTaxi1982 + (2Zi + ui1982
Suppose E(uit|BeerTaxit, Zi) = 0.

Subtracting 1988 – 1982 (that is, calculating the change), eliminates the effect of Zi…

FatalityRatei1988 = (0 + (1BeerTaxi1988 + (2Zi + ui1988
FatalityRatei1982 = (0 + (1BeerTaxi1982 + (2Zi + ui1982
so

FatalityRatei1988 – FatalityRatei1982 =

(1(BeerTaxi1988 – BeerTaxi1982) + (ui1988 – ui1982)

· The new error term, (ui1988 – ui1982), is uncorrelated with either BeerTaxi1988 or BeerTaxi1982.

· This “difference” equation can be estimated by OLS, even though Zi isn’t observed.

· The omitted variable Zi doesn’t change, so it cannot be a determinant of the change in Y
Example: Traffic deaths and beer taxes

1982 data:

Fatality Rate
 = 
2.01 + 
0.15BeerTax

(n = 48)




            (.15)   
(.13)

1988 data:

Fatality Rate
 = 
1.86 + 
0.44BeerTax

(n = 48)





(.11)   
(.13)

Difference regression (n = 48)

FR1988 - FR1982 = 

–.072    – 
1.04(BeerTax1988–BeerTax1982) 




 (.065)   

(.36)
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Fixed Effects Regression

(SW Section 8.3)

What if you have more than 2 time periods (T > 2)? 

Yit = (0 + (1Xit + (2Zi + ui, i =1,…,n, T = 1,…,T
We can rewrite this in two useful ways:

1. “n-1 binary regressor” regression model

2. “Fixed Effects” regression model

We first rewrite this in “fixed effects” form.  Suppose we have n = 3 states: California, Texas, Massachusetts. 

Yit = (0 + (1Xit + (2Zi + ui, i =1,…,n, T = 1,…,T
Population regression for California (that is, i = CA):

YCA,t = (0 + (1XCA,t + (2ZCA + uCA,t



  = ((0 + (2ZCA) + (1XCA,t  + uCA,t 

or



YCA,t = (CA + (1XCA,t  + uCA,t
· (CA = (0 + (2ZCA  doesn’t change over time

· (CA is the intercept for CA, and (1 is the slope

· The intercept is unique to CA, but the slope is the same in all the states: parallel lines.

For TX:

YTX,t = (0 + (1XTX,t + (2ZTX + uTX,t



  = ((0 + (2ZTX) + (1XTX,t  + uTX,t 

or



YTX,t = (TX + (1XTX,t  + uTX,t, where (TX = (0 + (2ZTX
Collecting the lines for all three states:



YCA,t = (CA + (1XCA,t  + uCA,t


YTX,t = (TX + (1XTX,t  + uTX,t
YMA,t = (MA + (1XMA,t  + uMA,t
or



Yit = (i + (1Xit + uit, i = CA, TX, MA, T = 1,…,T
The regression lines for each state in a picture


[image: image4]
Recall (Fig. 6.8a) that shifts in the intercept can be represented using binary regressors…


[image: image5]
In binary regressor form:

Yit = (0 + (CADCAi + (TXDTXi + (1Xit + uit
· DCAi = 1 if state is CA, = 0 otherwise

· DTXt = 1 if state is TX, = 0 otherwise

· leave out DMAi (why?)

Summary:  Two ways to write the fixed effects model

“n-1 binary regressor” form

Yit = (0 + (1Xit + (2D2i + … + (nDni + ui
where D2i = 
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“Fixed effects” form:

Yit = (1Xit + (i + ui
· (i is called a “state fixed effect” or “state effect” – it is the constant (fixed) effect of being in state i
Fixed Effects Regression: Estimation
Three estimation methods:

1. “n-1 binary regressors” OLS regression

2. “Entity-demeaned” OLS regression

3. “Changes” specification (only works for T = 2)

· These three methods produce identical estimates of the regression coefficients, and identical standard errors. 

· We already did the “changes” specification (1988 minus 1982) – but this only works for T = 2 years

· Methods #1 and #2 work for general T
· Method #1 is only practical when n isn’t too big

1.  “n-1 binary regressors” OLS regression

Yit = (0 + (1Xit + (2D2i + … + (nDni + ui

(1)

where

D2i = 
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0 otherwise
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etc.

· First create the binary variables D2i,…,Dni
· Then estimate (1) by OLS

· Inference (hypothesis tests, confidence intervals) is as usual (using heteroskedasticity-robust standard errors)

· This is impractical when n is very large (for example if n = 1000 workers)

2.  “Entity-demeaned” OLS regression

The fixed effects regression model:

Yit = (1Xit + (i + ui
The state averages satisfy:
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Deviation from state averages:

Yit – 
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Entity-demeaned OLS regression, ctd.

Yit – 
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or
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where 
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· For i=1 and t = 1982, 
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 is the difference between the fatality rate in Alabama in 1982, and its average value in Alabama averaged over all 7 years.

Entity-demeaned OLS regression, ctd.
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where  
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· First construct the demeaned variables 
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· Then estimate (2) by regressing 
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· Inference (hypothesis tests, confidence intervals) is as usual (using heteroskedasticity-robust standard errors)

· This is like the “changes” approach, but instead Yit is deviated from the state average instead of Yi1.

· This can be done in a single command in STATA

Example:  Traffic deaths and beer taxes in STATA

. areg vfrall beertax, absorb(state) r;

Regression with robust standard errors                 Number of obs =     336
F(  1,   287) =   10.41

Prob > F      =  0.0014

R-squared     =  0.9050

Adj R-squared =  0.8891

Root MSE      =  .18986

------------------------------------------------------------------------------

|               Robust

vfrall |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

beertax |  -.6558736   .2032797    -3.23   0.001    -1.055982   -.2557655

_cons |   2.377075   .1051515    22.61   0.000     2.170109    2.584041

-------------+----------------------------------------------------------------

state |   absorbed                                      (48 categories)

· “areg” automatically de-means the data

· this is especially useful when n is large

· the reported intercept is arbitrary
Example, ctd.

For n = 48, T = 7:

Fatality Rate

 =
 –.66BeerTax + State fixed effects





   (.20)

· Should you report the intercept?

· How many binary regressors would you include to estimate this using the “binary regressor” method?

· Compare slope, standard error to the estimate for the 1988 v. 1982  “changes” specification (T = 2, n = 48):

FR1988 – FR1982


 = 
–.072 – 1.04(BeerTax1988–BeerTax1982) 







 (.065)   (.36)

Regression with Time Fixed Effects

(SW Section 8.4)

An omitted variable might vary over time but not across states:

· Safer cars (air bags, etc.); changes in national laws

· These produce intercepts that change over time

· Let these changes (“safer cars”) be denoted by the variable St, which changes over time but not states.

· The resulting population regression model is:

Yit = (0 + (1Xit + (2Zi + (3St + uit
Time fixed effects only

Yit = (0 + (1Xit + (3St + uit
In effect, the intercept varies from one year to the next:

Yi,1982 = (0 + (1Xi,1982 + (3S1982 + ui,1982

    = ((0 + (3S1982) + (1Xi,1982 + ui,1982

or

Yi,1982 = (1982 + (1Xi,1982 + ui,1982,     (1982 = (0 + (3S1982
Similarly,

Yi,1983 = (1983 + (1Xi,1983 + ui,1983,     (1983 = (0 + (3S1983
etc.

Two formulations for time fixed effects
1.  “Binary regressor” formulation:

Yit = (0 + (1Xit + (2B2t + … (TBTt + uit
where  B2t = 
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2.  “Time effects” formulation:

Yit = (1Xit + (t + uit
Time fixed effects: estimation methods

1.  “T-1 binary regressors” OLS regression

Yit = (0 + (1Xit + (2B2it + … (TBTit + uit
· Create binary variables B2,…,BT
· B2 = 1 if t = year #2, = 0 otherwise

· Regress Y on X, B2,…,BT using OLS

· Where’s B1?

2.  “Year-demeaned” OLS regression

· Deviate Yit, Xit from year (not state) averages

· Estimate by OLS using “year-demeaned” data

State and Time Fixed Effects

Yit = (0 + (1Xit + (2Zi + (3St + uit
1.  “Binary regressor” formulation:

Yit = (0 + (1Xit + (2D2i + … + (nDni 

+ (2B2t + … (TBTt + uit
2.  “State and time effects” formulation:

Yit = (1Xit + (i + (t + uit
State and time effects: estimation methods

1.  “n-1 and T-1 binary regressors” OLS regression

· Create binary variables D2,…,Dn
· Create binary variables B2,…,BT
· Regress Y on X, D2,…,Dn, B2,…,BT using OLS

· What about D1 and B1?

2.  “State- and year-demeaned” OLS regression

· Deviate Yit, Xit from year and state averages

· Estimate by OLS using “year- and state-demeaned” data

These two methods can be combined too.

STATA example:  Traffic deaths…

. gen y83=(year==1983);

. gen y84=(year==1984);

. gen y85=(year==1985);

. gen y86=(year==1986);

. gen y87=(year==1987);

. gen y88=(year==1988);

. areg vfrall beertax y83 y84 y85 y86 y87 y88, absorb(state) r;

Regression with robust standard errors                 Number of obs =     336

                                                       F(  7,   281) =    3.70

                                                       Prob > F      =  0.0008

                                                       R-squared     =  0.9089

                                                       Adj R-squared =  0.8914

                                                       Root MSE      =  .18788

------------------------------------------------------------------------------

             |               Robust

      vfrall |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

     beertax |  -.6399799   .2547149    -2.51   0.013    -1.141371   -.1385884

         y83 |  -.0799029   .0502708    -1.59   0.113    -.1788579    .0190522

         y84 |  -.0724206   .0452466    -1.60   0.111     -.161486    .0166448

         y85 |  -.1239763   .0460017    -2.70   0.007     -.214528   -.0334246

         y86 |  -.0378645   .0486527    -0.78   0.437    -.1336344    .0579055

         y87 |  -.0509021   .0516113    -0.99   0.325    -.1524958    .0506917

         y88 |  -.0518038     .05387    -0.96   0.337    -.1578438    .0542361

       _cons |    2.42847   .1468565    16.54   0.000     2.139392    2.717549

-------------+----------------------------------------------------------------

       state |   absorbed                                      (48 categories)

Some Theory:  The Fixed Effects Regression Assumptions (SW App. 8.2)

For a single X:

Yit = (1Xit + (i + uit,  i = 1,…,n, t = 1,…, T
1. E(uit|Xi1,…,XiT,(i) = 0.

2. (Xi1,…,XiT,Yi1,…,YiT), i =1,…,n, are i.i.d. draws from their joint distribution.

3. (Xit, uit) have finite fourth moments.

4. There is no perfect multicollinearity (multiple X’s)

5. corr(uit,uis|Xit,Xis,(i) = 0 for t ( s.

Assumptions 3&4 are identical; 1, 2, differ; 5 is new

Assumption #1: E(uit|Xi1,…,XiT,(i) = 0
· uit has mean zero, given the state fixed effect and the entire history of the X’s for that state

· This is an extension of the previous multiple regression Assumption #1

· This means there are no omitted lagged effects (any lagged effects of X must enter explicitly)

· Also, there is not feedback from u to future X:

· Whether a state has a particularly high fatality rate this year doesn’t subsequently affect whether it increases the beer tax.

· We’ll return to this when we take up time series data.

Assumption #2:  (Xi1,…,XiT,Yi1,…,YiT), i =1,…,n, are i.i.d. draws from their joint distribution.

· This is an extension of Assumption #2 for multiple regression with cross-section data

· This is satisfied if entities (states, individuals) are randomly sampled from their population by simple random sampling, then data for those entities are collected over time.

· This does not require observations to be i.i.d. over time for the same entity – that would be unrealistic (whether a state has a mandatory DWI sentencing law this year is strongly related to whether it will have that law next year).

Assumption #5:  corr(uit,uis|Xit,Xis,(i) = 0 for t ( s
· This is new.

· This says that (given X), the error terms are uncorrelated over time within a state.

· For example, uCA,1982 and uCA,1983 are uncorrelated

· Is this plausible?  What enters the error term?

· Especially snowy winter

· Opening major new divided highway

· Fluctuations in traffic density from local economic conditions

· Assumption #5 requires these omitted factors entering uit to be uncorrelated over time, within a state.

What if Assumption #5 fails: corr(uit,uis|Xit,Xis,(i) (0?

· A useful analogy is heteroskedasticity.

· OLS panel data estimators of (1 are unbiased, consistent

· The OLS standard errors will be wrong – usually the OLS standard errors understate the true uncertainty

· Intuition:  if uit is correlated over time, you don’t have as much information (as much random variation) as you would were uit uncorrelated.

· This problem is solved by using “heteroskedasticity and autocorrelation-consistent standard errors” – we return to this when we focus on time series regression

Application: Drunk Driving Laws and Traffic Deaths

(SW Section 8.5)

Some facts

· Approx. 40,000 traffic fatalities annually in the U.S.

· 1/3 of traffic fatalities involve a drinking driver

· 25% of drivers on the road between 1am and 3am have been drinking (estimate)

· A drunk driver is 13 times as likely to cause a fatal crash as a non-drinking driver (estimate)

Drunk driving laws and traffic deaths, ctd.
Public policy issues

· Drunk driving causes massive externalities (sober drivers are killed, etc. etc.) – there is ample justification for governmental intervention

· Are there any effective ways to reduce drunk driving?  If so, what?

· What are effects of specific laws:

· mandatory punishment

· minimum legal drinking age

· economic interventions (alcohol taxes)

The drunk driving panel data set

n = 48 U.S. states, T = 7 years (1982,…,1988) (balanced)

Variables

· Traffic fatality rate (deaths per 10,000 residents)

· Tax on a case of beer (Beertax)

· Minimum legal drinking age

· Minimum sentencing laws for first DWI violation:

· Mandatory Jail 

· Manditory Community Service

· otherwise, sentence will just be a monetary fine
· Vehicle miles per driver (US DOT)
· State economic data (real per capita income, etc.)
Why might panel data help?
· Potential OV bias from variables that vary across states but are constant over time:

· culture of drinking and driving

· quality of roads

· vintage of autos on the road

( use state fixed effects

· Potential OV bias from variables that vary over time but are constant across states:

· improvements in auto safety over time

· changing national attitudes towards drunk driving

( use time fixed effects
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Empirical Analysis:  Main Results

· Sign of beer tax coefficient changes when fixed state effects are included

· Fixed time effects are statistically significant but do not have big impact on the estimated coefficients

· Estimated effect of beer tax drops when other laws are included as regressor

· The only policy variable that seems to have an impact is the tax on beer – not minimum drinking age, not mandatory sentencing, etc.

· The other economic variables have plausibly large coefficients:  more income, more driving, more deaths

Extensions of the “n-1 binary regressor” approach

The idea of using many binary indicators to eliminate omitted variable bias can be extended to non-panel data – the key is that the omitted variable is constant for a group of observations, so that in effect it means that each group has its own intercept.

Example:  Class size problem.

Suppose funding and curricular issues are determined at the county level, and each county has several districts.  Resulting omitted variable bias could be addressed by including binary indicators, one for each county (omit one to avoid perfect multicollinearity).

Summary:  Regression with Panel Data
(SW Section 8.6)

Advantages and limitations of fixed effects regression

Advantages

· You can control for unobserved variables that:

· vary across states but not over time, and/or 

· vary over time but not across states

· More observations give you more information

· Estimation involves relatively straightforward extensions of multiple regression

· Fixed effects estimation can be done three ways:

1. “Changes” method when T = 2

2. “n-1 binary regressors” method when n is small

3. “Entity-demeaned” regression

· Similar methods apply to regression with time fixed effects and to both time and state fixed effects

· Statistical inference: like multiple regression.

Limitations/challenges
· Need variation in X over time within states

· Time lag effects can be important

· Standard errors might be too low (errors might be correlated over time)
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[image: image1.png]TABLE 8.1 Regression Analysis of the Effect of Drunk Driving Laws on Traffic Deaths

Dependent Variable: Traffic Fatality Rate (Deaths Per 10,000).

Regressor m 2) 3) () (5) (6)
Beer tax 0. —0.66% —0.64* —0.70% —0.46*
(0 (0.20) (0.25) (0.25) 0.22
Drinking age 18 0.028 —0.011
(0.066) (0.064)
Drinking age 19 =0.019 ~0.078
(0.040) (0.049)
Drinking age 20 0.031 —0.102%
(0.046) (0.046)
Drinking age =0.002
0.017)
Mandatory jail? 0.013 —0.026
(0.032) (0.06
Mandatory community service? 0.033 0.147
(0.137)
Mandatory jail 0.031
or community service? (0.076)
Average vehicle miles per driver 0.008 0.017 0.009
(0.008) (0.010) (0.008)
Unemployment rate =0.063** =0.063**
0.012) 0.012)
Real income per capita (logarithm) 1.81% 1.79%
(0.47) (0.45)
no yes yes yes yes yes
no no yes yes yes yes

These regressions were estimated using panel data for 48 U.S. states from 1982 to 1988 (336 observations total), described in
Appendix 8.1 Standard errors are given in parentheses under the cocf
“statistics. The individual coefficient is statistically significant at the *3!

nts, and p-values are given in parentheses under the
el or ¥¥1%

gnificance
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[image: image1.png]TABLE 8.1 Regression Analysis of the Effect of Drunk Driving Laws on Traffic Deaths

Dependent Variable: Traffic Fatality Rate (Deaths Per 10,000).

m (2 (3) (@) (5) (6)
F-statistics and p-values Testing Exclusion of Groups of Variables:
Time effects = 0 2.47 11.44 2.28 11.59
(0.024) (<0.001) (0.037) (<0.001)
Drinking age coeflicients = 0 0.48 2.09
(0.696) (0.102)
Jail, community 0.17 0.59
service coefficients = 0 (0.845) (0.557)
Unemployment rate, 38.29 40.12
income per capita = 0 (<0.001) (<0.001)
RrR? 0.090 0.889 0.891 0.926 0.893 0.926

These regressions were estimated using panel data for 48 U.S. states from 1982 to 1988 (336 observations total), described in
Appendix 8.1. Standard errors are given in parentheses under the coefficients, and p-values are given in parentheses under the
Fstatistics. The individual coefficient is statistically significant at the *5% level or *#1% significance level.
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