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Answers to Questions in Chapter 14

Discussion questions

1. Are non-renewable resources becoming more or less substitutable by other productive inputs with the passage of time? What are the possible implications for efficient resource use of the elasticity of substitution between non-renewable resources and other inputs becoming

(a) higher, and

(b) lower

with the passage of time?

It is difficult to come to a simple conclusion about the first part of this question. The development of technology has probably increased the substitutability of various non-renewable resources for each other; moreover, technological advance has also led to some non-renewable resources becoming more substitutable by other productive inputs. For example, computing and other information processing services have become far more parsimonious in their use of material and energy inputs. Technical efficiency gains have reduced the required fossil fuel inputs for given quantities of thermal or useful energy output. However, simple considerations from the laws of thermodynamics suggest that there are limits here; the processes of production and consumption do have an unavoidable material basis.

If resource substitutability with other inputs increases, this seems to offer the possibility of social net benefit gains. The greater is the degree of substitutability, the smaller is the required change in relative prices to bring about a resource reallocation. The adjustment process will therefore be smoother, less liable to bring about large price changes that might be difficult to achieve in markets with imperfect wage and price flexibility. Furthermore (although this was not part of the question), sustainability targets are easier to attain in conditions of high resource substitutability.

2. Discuss the possible effects of technical progress on resource substitutability.

This question has been partially answered in our response to the previous question. However, one might now wish to give some attention to renewables too. Technical progress appears to be increasing substitution possibilities between renewable and non-renewable resources. Just think, for example, about the scope that now exists for energy generation using wind, wave, and solar energy. The prices at which these would become adopted backstop technologies, on a relatively large scale, are falling in real terms quite rapidly over time. An important issue concerns the scope for nuclear fusion power. With present knowledge, this is neither yet practical nor even technically possible, but some scientists believe that it will become so not too far from now. 

But when one adopts a broad concept of environmental resources, and the services they provide, our assessment must change. There seems to be little or no prospect that technological progress can provide substitutes for the resource services that we looked at in Chapter 2. 
3. Recycling of exhaustible resources can relax the constraints imposed by finiteness of non-renewable resources. What determines the efficient amount of recycling for any particular economy?

Points to consider in an answer:

Relative shapes and positions of marginal cost and marginal benefits of recycling function. These may be affected by many things, including:

· Willingness of consumers to pay a premium for purchases of goods including recycled materials

· Cultural attitudes

· Density of population

· Relative cost of labour to other inputs (see the huge extent of recycling in Indian cities where relative labour costs are very low)

· Technical possibilities in recycling

· Cost of primary energy 

Hint: Sketch a MC and MB curve for recycling of some product. Try and think about anything which might shift either of these functions (and so change the efficient level of recycling). More complete analyses will consider both the virgin material and the recycled material market simultaneously. For example, if you want to analyse the extent of aluminium recycling, you will need to consider a market for users of aluminium, and how it draws inputs from the virgin material market AND the recycled material market (bearing in mind that the price may need to be the same, or related by some constant of proportionality) in the two ‘supplier’ markets.

Problems

1. Using the relationship




demonstrate that if the utility function is of the special form U(C) = C, the consumption rate of discount (r) and the utility rate of discount are identical.

By definition, the elasticity of marginal utility with respect to consumption, (, is 
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where U = U(C) and MU =dU/dC (where d is used instead of ( as U is a function of only one variable). The expression for (can be rearranged as  
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But for U(C) = C, MU=1 and so dMU/dC = 0. Therefore (=0. Given this we find that the expression
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 collapses to 
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, and so the consumption and utility discount rates are identical.

2. Using Equation 14.15 in the text (that is, the Hotelling efficiency condition), demonstrate the consequences for the efficient extraction of a non-renewable resource of an increase in the social discount rate, (.

Equation 14.15 tells us that 
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, so that the proportionate rate of growth of the resource net price is (, the utility discount rate. Writing Equation 14.15 in the form 
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, we can see that this is a simple first order, linear differential equation. Its solution is given by 
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 where P0 is the initial value of P, the resource net price. This solution gives the path over time of the resource price, for any particular initial price, P0 , and discount rate. The following diagram, drawn using the mathematical package Maple, shows two such price paths. Both start from an initial price P0 = 5, one at a “low” discount rate of 0.04 and another at a “high” discount rate of 0.06. [The Maple code for doing this is contained in the file palch14.mws].

The increase in the discount rate thus causes the resource net price to grow more quickly. As things stand in Figure Ex 14.2, the new price will be always higher than the old price (except for its initial value) and so, assuming that the demand function for the resource stays unchanged, there will be less of the resource demanded in each time period. That would imply that the extraction rate falls at all points in time.

However, we show in more detail in the following chapter, that a further effect is likely to happen. If the resource exists in fixed quantity and there is a backstop technology available (so that demand will switch from the resource to the backstop when some choke price is reached), the whole price path for the new price will be shifted downwards (as if starting from a lower initial value). The outcome will then resemble that shown in Figure Ex 14.2b. The ‘new’ price path (for ( = 0.06) does have a higher rate of increase (as we showed above) but the price path is for some time below the original path, and rises above it only at some point in the future. As a result of this, extraction will be higher in early years and lower in later years. The logic behind this will be explained at length on pages 520-521. 

Figure Ex 14.2
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Figure Ex 14.2b



3.  The simplest model of optimal resource depletion is the so-called ‘cake-eating’ problem in which welfare is a discounted integral of utility, utility is a function of consumption, and consumption is equal to the amount of the (non-renewable) resource extracted. (This model is analysed further in Heal (1981); Solow (1974) examines the intuition lying  behind the results). The model is: 




Ct = Rt     and 




S0 a given constant.

St ( 0 for all t ( (0, ()

We assume that U(C) is strictly concave.

(a) Obtain the Hamiltonian, and the necessary first-order conditions for a welfare maximum.

(b) Interpret the first order conditions.

(c) What happens to consumption along the optimal path?

(d) What is the effect of an increase in the discount rate?

(a) We begin by noting from the condition Ct = Rt that consumption and resource extraction are, in effect identical. The amount of resource that is extracted is immediately consumed. Therefore C can be replaced by R in the welfare function. 

The problem involves a single instrument variable, R, and a single state variable S. Letting P denote the shadow price attached to the resource stock (state) variable, the current value Hamiltonian may be written as
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The necessary first-order conditions for a welfare maximum include 
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(1)

where 
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(2)

as, with S not entering the Hamiltonian, the derivative of H with respect to S is zero. The maximum principle also requires that the state equation be satisfied,
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an initial condition S(t0) = S0 , and transversality conditions, which in this case are H(() = 0 and P(() = 0, the latter implying that all of the resource stock is used up at the end of the infinite planning period and so has no value. 

(b) Looking at the first order conditions (1) and (2), we note that equation (2) is the familiar Hotelling efficiency condition. The resource net price (the shadow price of the resource constraint) must grow through time at the utility discount rate, (. An alternative interpretation is that the present value of the resource will be the same at all dates. [Obtain this interpretation by solving the differential equation (1), giving, 
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, and then multiplying both sides by  
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 to express in terms of present values].

Condition (1) requires that the marginal utility of resource use (or consumption) is equal to the shadow price of the resource. So as the resource cake becomes increasingly depleted and the resource shadow price rises, consumption will fall at just the rate required for the marginal utility of consumption to rise commensurately with that shadow price. An alternative interpretation is that consumption levels are chosen so that the present value of the marginal utility of consumption is the same at all dates. [From (1) we have 
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(c) Differentiating (1) with respect to time, we obtain (ignoring time subscripts for simplicity):
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where 

.

Then combining (3) and (2) we obtain




Replacing R by C, using (1) , dividing both sides by C, and then rearranging, we obtain successively:










Then we obtain




(4)

where ( is the elasticity of the marginal utility of consumption. Both ( and ( are positive, so the growth rate of consumption is negative. This confirms our previous intuition. Consumption falls over time (to zero asymptotically).

ADDITIONAL QUESTION:

Assume that ( is constant. Solve the differential equation (4) given an initial value of C = C0, and obtain an expression which shows how the consumption level varies with the size of the initial resource stock, and with the other parameters. 

(d) The Hotelling condition tells us that the resource price must increase more quickly if the discount rate rises; the amount of resource depletion in the ‘near’ future will increase (but will be lower in the ‘later’ future). Note also from the previous equation that, assuming (is constant, if ( rises so must the growth rate of consumption.
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