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Answers to Questions in Chapter 18
 Discussion questions

1. Is it reasonable for individuals living in Western Europe today to advise others to conserve tropical forests given that the countries in which they live effectively completed the felling of their natural forests centuries ago?

2. Discuss the implications for the harvest rate and possible exhaustion of a renewable resource under circumstances where access to the resource is open, and property rights are not well defined. 

3. Discuss the contention that it is more appropriate to regard natural forests as non-renewable than as renewable resources.

The essential point here is that of irreversibility. A natural (or primary or virgin) forest that has been in existence for a significant period of time will typically consist of a richly varied ecosystem, performing a multiplicity of functions. Once harvested, this rich biodiversity and the multiple functions that this yields will be irretrievably lost. If the forest is replanted, a much less diverse ecosystem will develop; and if the forest is allowed to regenerate naturally, it will take many human generations for the forest to regain its former diversity, or perhaps it never would. In this sense, a natural forest is conceptually similar to a non-renewable resource stock, which once depleted is depleted forever.

4. In what circumstances, and on what criterion, can the conversion of tropical forestry into agricultural land be justified?

One might fruitfully think about this question in a cost-benefit analysis framework. In that framework, one is essentially defining a social welfare function for some relevant community of people, and then asking whether, in a particular set of circumstances, the value of that welfare function is higher if the tropical forest is left undeveloped or if it is developed for agricultural purposes. We discuss some issues related to how such a cost-benefit analysis might be done in Chapters 11-13 and 17.  Note that the “particular circumstances” are likely to be critical in arriving at ones decision. For example, in a very poor country, well-endowed with forest resources but unable to obtain much benefit from those resources, and with the prospect of obtaining major gains in real income from expansion of its agricultural sector, conversion may well be justified. (Although, even here, one might argue that the calculations could change considerably if citizens of that country were able to gain compensation for the (extra-national) external benefits others derive from the existence of the forest as a public or private good.

Finally, one might wish to introduce sustainability concerns into the discussion. The cost-benefit approach just mentioned does not, of itself, pay any attention to this. We might wish to add some additional sustainability constraint into our cost-befit appraisal (so that the development option is only taken if it has a positive net present value and satisfies some agreed sustainability constraint).

5. How will the optimal rotation interval be affected by extensive tree damage arising from atmospheric pollution?

Extensive tree damage from atmospheric pollution will have two kinds of effects. First, it will reduce the net rate and amount of growth of commercially harvestable timber. Secondly, it may affect the value of the other (multiple) services that the forest yields. One would expect these to fall. However, it is not inconceivable that the forest, whilst being damaged itself, nevertheless reduces in some way the amount of pollution that would otherwise have negative effects on human well-being (perhaps by fixing carbon, perhaps by reducing run-off of pollutants into water systems). The problem may thus be exceedingly difficult to model. 

We showed (on pages 612-615) that it is not possible to obtain any simple result about the effect of changes in non-timber values on the optimal rotation length; it all depends on the particular circumstances. As far as the commercial timber benefit is concerned, we can obtain some insight by looking again at Equation (18.10) and the discussion surrounding it. Assume first that an optimal rotation length prior to the onset of pollution has been identified and implemented, so that (18.10) holds. Next, with the onset of pollution, that pollution slows the rate of growth of the forest (its whole growth schedule shifts downwards). Then the rate of growth of the timber at the point of felling at what was previously an optimal rotation length (dS/dT) will be below the discount rate. In order to restore the equality required by the Hotelling efficiency condition, the rotation length will have to be shortened (to increase its rate of growth at felling, dS/dT). However, this result is not robust, depending as it does on a number of implicit assumptions made in this account.

Problems

1. Using a spreadsheet programme, calculate the volume of timber each year after planting for a period of up to 130 years for a single unfelled stand of timber for which the age-volume relationship is given by S = 50t + 2t2 - 0.02t3  (where S and t are defined as in the text of this chapter). Is it meaningful to use this equation to generate stock figures up to this stand age?

Also calculate:

(a) The year after planting at which the amount of biological growth, G(S), is maximised.

(b) The present-value-maximising age for clear felling (assuming the stand is not to be replanted) for the costs and prices used in Table 18.3 and a discount rate of 5%.

(We suggest that you attempt to construct your own spreadsheet programme to answer this question. If you find that this is not possible, you can obtain the answers by adapting Sheet 4 in Chapter 18.xls.)

A spreadsheet with the answers to this question is found in the Excel file palch18p1.xls. Chart 1 shows the timber volume plotted against age of stand (in years). Before moving on any further with this question, it is worth observing that restrictions must be placed on the range of the cubic equation for it to be a meaningful representation of the volume-age relationship. The equation for timber volume predicts negative quantities of timber beyond t = 121, clearly a meaningless result. At most, therefore, the cubic equation could only be appropriate in the time range t = 0 to t = 120. But even some part of this range is invalid. To see why, look at Chart 3 which plots the relationship between the instantaneous rate of change of timber volume and the timber stock, S. (The instantaneous rate of change of timber volume, dS/dt - the first derivative of the S(t) function-  can be thought of as a “true” measure of G(S) for the continuous timber growth function used in this example.) Beyond a stock volume of 6577 cubic feet, growth is negative. But that is not feasible in our case, as the timber volume is becoming larger over time from an initial value of zero. That is, we are approaching S = 6577 from the left in Chart3. So the negative portion of the chart is inapplicable, as any growth less than zero would cause the stock to fall not rise! 

In fact, in our example stock volumes in the neighbourhood of 6577 are irrelevant for a commercial forest. The timber will be cut well before that volume is reached. We may, therefore, justify the cubic relationship as a being a reasonable approximation of the true growth function over the (commercially) relevant range. Indeed, when empirical estimates are made of the parameters of stock-age relationships, they will be based on data that corresponds to limited spans of time. In this case, we might wish to regard the cubic equation as being valid only up to the point where maximum biomass is achieved (at about t = 77 years). 

Now to finish the question. Two other calculations were asked for.

(a) By inspection of the data in Sheet1, we can see that the annual amount of biological growth G(S) is maximised at 116.67 cubic feet approximately 33 years after planting. Our sheet gives two slightly different answers depending on how G(S) is calculated. Data in the column labeled G(S) obtain a discrete-time approximation to the annual increment (using the difference between volumes achieved at time t and t-1). Data in the column labeled G(S) True evaluate dG/dt = 50 + 4t + 0.06t2. You could also obtain the answer analytically in the following way. Differentiate the S(t) function to obtain dS/dt, and then differentiating again and setting the result equal to zero to find a maximum value of the dS/dt = G(S) function; this will yield an exact value of t = 100/3. (See Maple file palch18p1.mws.)

(b) The age of the stand at which clear felling will maximise present value is between 25 and 26 years (in fact, the precise age is 25.67 years to 2 decimal places). This can also be verified by inspection of the spreadsheet. One feature of the spreadsheet warrants mention. Columns E through to H inclusive use a discrete version of discounting formula to put values into present value terms. This is what is conventionally done in using spreadsheets. However, the final column computes present values using a continuous compounding method of obtaining present values. More precisely, column I uses a an Excel formula which corresponds exactly to equation (18.1) in the text, as you can verify by looking at the formula bar on the spreadsheet when you highlight any cell in column I. 

Note that there are differences in the size of present value using the discrete and continuous discounting rules, with the latter being smaller in value. However, the choice of discounting method does not make any significant difference in this case to our decision about the timing of the optimal forest stand age (or to any of the calculations we have made in this answer, other than the magnitude of present value itself).

USING MAPLE TO ANSWER PART (b) OF THIS QUESTION

Using a symbolic mathematical package such as Maple or Mathematica gives us a more powerful method of dealing with questions such as this, and gives us the option of working in continuous rather than discrete time should we wish to do so. To give one example, we use Maple to obtain the present value maximising stand age. To do so, we use equation (18.2/) in the text:




Noting that, for our parameter values, we have




and so




our answer can be obtained by solving the following equation for t:




Two lines of Maple code will accomplish this (see again the Maple file palch18p1.mws.):

> eqn1:=0.05*(50*t + 2*t^2 - 0.02*t^3)=50 +4*t - 0.06*t^2;

> solve(eqn1, t);

which yields three roots of the cubic equation

- 13.203,
25.667,

147.536

The first of these is meaningless for our problem (as t=T must be positive). The last is also not meaningful (as at t = 147 years timber volume is negative; this actually corresponds to a local PV minimum). The solution t = T = 25.667 is a local maximum, and the one we are after, as could be verified by checking second order conditions. 

2. Demonstrate that a tax imposed on each unit of timber felled will increase the optimal period of any rotation (that is, the age of trees at harvesting) in an infinite rotation model of forestry. What effect would there be on the optimal rotation length if the expected demand for timber were to rise?

If a tax is imposed on each unit of timber felled, this is equivalent (in the perspective of the commercial forester to an increase in harvesting costs (c) or a decrease in after tax gross price (P). In other words, the net price or rent, p, falls. Similarly, if expected demand were to rise, the market price would shift to a higher level, and so the effect is equivalent to a rise in net price, p. So the question is really asking us to identify the effects on the optimal rotation length of a change in the resource net price. 

To answer questions of this type - where we are asked to do comparative static analysis - there are two types of approach that could be used. First, one might simulate the model in question, comparing the difference between the base run and the shocked run to see the effect of changing some parameter of interest. We shall show in a moment how this can be done in Excel. Second, one could try and deduce the answer analytically from the optimising equations of the model in question. We also use this below. 

The simulation approach is undertaken in the Excel file palc182.xls. The spreadsheet there uses Equation 18.7 to calculate the present value of profits in an infinite rotation model for a set of possible rotation lengths from 1 to 80 years.  We use a discount rate of 3% in each case, and the equation for the age-volume relationship given in Problem 1. Planting costs remain at $5000, as before. The two columns D and E carry out these calculations for two different values of the net price P-c = p , the two values being 8 and 5. We can interpret p=8 as the net price before the tax imposition, and p=5 as the net price after tax imposition. (Alternatively, p=5 corresponds to a low level of expected timber demand and p=8 to a high level of expected demand).

Inspection of the spreadsheet shows that the lower net price increases the optimum rotation length (from 32 to 37 years). This can also be seen in Chart 2, which shows the profile of PVs for the two net price assumptions over a range of alternative rotations. 

While the simulation approach is relatively quick and can aid our understanding considerably, it does have one major weakness. It is difficult or impossible to know how dependent the results are upon the particular model and parameter assumptions we have adopted. Would the answers have been qualitatively similar under different circumstances? 

An analytical approach can help us answer the question rather more generally. To do this, we begin from Equation 18.9, the Hotelling efficiency condition which governs optimal solutions to the infinite rotation forest model. This condition is





(1)

This can be simplified and rearranged to give





(2)

Our first step is to establish what happens to the term (/p as P changes. We must take account of the fact that ( depends on p, as can be seen from Equation 18.7 in the text. Using that expression for ( and dividing it by p we have




It is clear from this expression that, other things remaining equal, (/p falls as p falls. 

Now return to Equation 2. With other things remaining unchanged, if p falls (and so (/p falls), the term on the left-hand side must fall too for the equation to remain valid. But, under our assumptions about the form of the age-volume relationship for the forest, this requires that the rotation length be increased, so that at the time of cutting the proportionate growth rate of the forest has fallen to a lower value). 

Hence our conclusion is that the tax will increase the optimal period of any rotation (and that an increase in the state of timber demand will reduce it). Note that this result is robust for any positive value of discount rate, and for any value of p=P-c. The only qualification we need make is that our result depends upon the age-volume relationship being such that, in the neighbourhood of an optimal rotation, the proportionate growth rate of timber volume slows down as the rotation length increases. This seems to be a generally plausible assumption.

3. How would the optimal rotation interval be changed as a result of

(a) an increase in planting costs;

(b) an increase in harvesting costs;

(c) an increase in the gross price of timber;

(d) an increase in the discount rate;

(e) an increase in the productivity of agricultural land?

We can exploit much of the analysis in our answer to Problem 2 to deal with these comparative static questions.  So we will just give the results of that analysis to this question.

(a) An increase in planting costs k will decrease (/p and so increase T.

(b) An increase in harvesting costs reduces p, will decrease (/p and so increase T.

(c) An increase in gross price increases p, increases (/p, and so decreases T.

(d) We showed in Chapter 18 that an increase in the discount rate will decrease T.

(e) An increase in the productivity of agricultural land increases the rate of return that could be obtained by alternative uses of the land. It therefore increases the discount rate which should be used in the PV calculations. As in (d) a higher discount rate will decrease T. 

The Excel file palc183.xls exemplifies these results for our particular model assumptions. Our base case has k = 5000, c = 2, P = 10 (and so p = P-c = 8),  i = 3. For (a) we increase k to 8000. For (b) we increase c to 5. For (c) we increase P to 20 (and so p = P-c = 18). And for (d) we increase i to 5%.

4. The following three exercises require that you use the Excel file Palc18.xls
(a) Calculate the optimal rotation lengths for a single rotation forest for the interest rates 1, 2, 4, 5 and 6%. They should match those shown in Table 18.4.

(b) Calculate the interest rate above which the PV of the forest becomes negative for ANY rotation length in a single rotation forest.  Do the same for an infinite rotation forest. 

(c) Identify what happens to the gap between the optimal rotation lengths in single and infinite rotation models as the interest rate becomes increasingly large (beginning from 0%). Explain the convergence that you should observe. What happens to the PV of the forest at this convergence?

The question implicitly suggests that we should use the growth function and parameter values assumed in Chapter 18 (so that the results of Table 18.4 can be replicated. 

The answer to (b) is that the interest rate in question lies between 5% and 6%. This can be seen from inspection of Sheet 2a.  The answer to (c) is found – at least partially – in Table 18.4. For low interest rates, the optimal single rotation is substantially longer than the optimal infinite rotation. As the interest rate rises, this ranking remains the same but the difference becomes smaller. At some interest rate (between 5% and 6% with our illustrative data), the difference disappears altogether; the optimal rotation becomes identical in single and infinite rotations. For higher interest rates, the best NPV obtainable will always be negative, but infinite rotations will require a longer (not shorter) rotation interval to attain that loss-minimising outcome.  

The explanation for these relationships can be found by inspection of Equation 18.9 on page 610. An increase in i will increase the value of the right-hand side, and so require that the value of the left-hand side (the proportionate growth rate of timber volume) rises too. This implies a shorter rotation. But with an infinite rotation model, the added presence of the site value of land on the right-hand side means that a change in I will have a smaller proportionate effect on the value of the right-hand side as a whole (than with a single rotation). Hence the required adjustment of the age at which the forest is felled will be smaller. 

5. The Excel workbook Non Timber.xls (see Additional Materials) models the consequences of including non-timber values in a single rotation forest model. The first sheet – Parameter values – defines various parameter values, and gives three alternative sets of non-timber present values. Results of the computations are shown in Sheet 1, and charted in Chart 1. Examine how the inclusion of non-timber benefits alters the optimal stand age at which felling takes place.  Does the change vary from one set of non-timber values to another? Do your conclusions differ between the cases where the discount rate is 2% and 4%?

The first sheet of the workbook Non Timber.xls is called ‘Guide’. This explains how to use the worksheet and should be read first. What we observe here is that the optimum rotation period is always increased by the inclusion of any of the three alternative sets of non-timber benefits. Reasons were given on page 613 of the textbook. Note that for interest rates of 5% or higher, timber net present values are always negative. But in each of our examples, non-timber benefits are sufficiently high to warrant maintaining the forest. 
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