
Data Remanence and Digital Forensic Investigation
for CUDA Graphics Processing Units

Xavier Bellekens∗, Greig Paul∗, James M. Irvine∗, Christos Tachtatzis ∗, Robert C. Atkinson ∗

Tony Kirkham †, Craig Renfrew †
∗Strathclyde University

{name.surname}@strath.ac.uk
†Keysight Technologies

{name surname}@keysight.com

Abstract—This paper investigates the practicality of memory
attacks on commercial Graphics Processing Units (GPUs). With
recent advances in the performance and viability of using GPUs
for various highly-parallelised data processing tasks, a number
of security challenges are raised. Unscrupulous software running
subsequently on the same GPU, either by the same user, or
another user, in a multi-user system, may be able to gain access
to the contents of the GPU memory. This contains data from
previous program executions. In certain use-cases, where the GPU
is used to offload intensive parallel processing such as pattern
matching for an intrusion detection system, financial systems, or
cryptographic algorithms, it may be possible for the GPU memory
to contain privileged data, which would ordinarily be inaccessible
to an unprivileged application running on the host computer.
With GPUs potentially yielding access to confidential information,
existing research in the field is built upon, to investigate the
practicality of extracting data from global, shared and texture
memory, and retrieving this data for further analysis. These
techniques are also implemented on various GPUs using three
different Nvidia CUDA versions. A novel methodology for digital
forensic examination of GPU memory for remanent data is
then proposed, along with some suggestions and considerations
towards countermeasures and anti-forensic techniques.

I. INTRODUCTION

Due to the exponential growth of data analytics, data
storage, and network link speeds, Graphics Processing Units
(GPUs) have been used by researchers as cost-effective off-the-
shelf High Performance Computers (HPC). Various works have
shown their efficacy in Intrusion Detection Systems (IDS) [1],
Deep Packet Inspection (DPI), pattern matching [2], as well
as database processing. These applications leverage the highly
parallel processing capabilities offered by General Purpose
Graphic Processing Units (GPGPU) but do not ensure the
confidentiality of the data processed.

Inherently, GPUs are used to offload computationally in-
tensive tasks from the CPU. Some of these tasks may require
the processing or handling of confidential information, such
as cryptographic keys [3], private network traffic [4] or fi-
nancial data [5]. GPUs are also marketed as cloud computing
services (GPU-as-a-service) where infrastructure and resources
are shared between multiple tenants. Finally, personal GPUs
and GPU-as-a-service can also be used by malicious actors for
password cracking [6], network information retrieval, browser
information retrieval [7] and to conceal malware [8][9]. All of
these raise security issues pertaining to data remanence and
digital forensic traces.

With such wide-ranging uses and applications of GPGPU
technologies, there is naturally considerable interest in attempts
to gain access to residual data on GPU memory. This may have
been stored by a previous application running on the same
GPU. In multi-tenant architectures, where one GPU may be
used by multiple users on a time-share basis, this risk is raised
since users will by definition be sharing the same GPU (and
thus GPU memory) with other users, not all of whom may be
respecting the privacy of the other users of the system [10].

Given the multitude of uses for GPU-based processing of
sensitive or otherwise restricted data, this work aims to build
upon the work by Breß [11], Di Pietro [12] and Maurice
[10], and investigate the viability of accessing all types of
GPU memory, on various different GPU platforms, including
consumer, professional and mobile grade products. With more
and more technologies taking advantage of GPU acceleration,
including games and other proprietary data analytics solutions,
the ease with which a rogue application may abuse access to
previous memory contents is significant.

In this paper, data remanence and digital forensics methods,
as would be applied to GPUs, are discussed. Data remanence
is explored on Nvidia server-level, consumer-level and mobile-
level GPUs. The contributions in this paper are three-fold:

• An assessment of different GPUs (and associated
APIs) is provided, including different GPU architec-
tures, Compute Unified Device Architecture (CUDA)
architectures, and CUDA versions.

• Prior work [11], [12] has demonstrated the possibility
of data retrieval from GPU global memory, however
the authors found that shared memory was zeroed,
making its contents inaccessible. This work utilises
their approach, extending their experiments by demon-
strating data retrieval for all memory types, including
shared and texture. Additionally, this methodology is
applied to multiple GPU types throughout the Nvidia
range including high-end and mobile devices, indicat-
ing the high threat impact of data remanence.

• A digital forensics investigation methodology is pro-
vided, and anti-forensic countermeasures are investi-
gated, for use on graphics processing units.

Section II of this paper describes the CUDA architecture, and
Section III describes our experimental setups. Section IV de-
scribes and explains the results obtained, and the implications

978-3-901882-76-0 @2015 IFIP 1345

for forensics. Section V is an overview of a novel forensic
methodology for GPU memory, while Section VI describes
potential countermeasures investigators could encounter. The
conclusions and future work are outlined in Section VII.

II. GPU ENVIRONMENT

A. CUDA Programming Layer

CUDA is a parallel computing programming model de-
veloped by Nvidia. It allows the full computational power of
GPUs to be harvested, and enables consumer grade devices to
act as High-Performance Computers (HPCs). The massively
parallel processing capabilities of Nvidia GPUs are present
in off-the-shelf devices such as servers and consumer grade
laptops, as well as mobile devices. CUDA also allows users to
access their GPUs through a flexible abstraction model using
the C/C++ programming languages [13].

To access the GPU, the C/C++ programming languages
have been extended by Nvidia with a new set of instructions,
libraries and directives, exposing the GPU hardware to users.
The source code is split into host (CPU) and device (GPU)
code. When compiled, the device code is translated into
Parallel Thread Execution (PTX) code, which exposes the GPU
as a processor, capable of carrying out the same operation on
different data inputs simultaneously. The PTX code is then
compiled into a CUBIN. The CUBIN code is a device-specific
binary, optimised for the specific GPU architecture in use [14]
[15].

The code running on the GPU is called a kernel, which is
loaded by the host CPU. The execution of the kernel follows
six steps: I) The host allocates memory on the GPU by using
the set of instructions provided; II) The data is copied from
the host memory to the GPU global memory; III) The host
launches the kernel on the GPUs, if the system is composed
of multiple GPUs, one can be specified; IV) The GPU executes
the code in a single instruction multiple-data fashion; V) The
computed results are transferred back from the device to the
host; VI) Device pointers are de-allocated;

Threads launched by the kernel are organised in thread
blocks, and each streaming multiprocessor (SM) can execute
one or more thread blocks concurrently. For more granularity,
threads within a thread block are organised in groups of 32
called a warp. The SM warp scheduler executes warps in a
round robin fashion to maximise the resource utilisation on
the GPU [16].

B. Hardware Memory Hierarchies

To maximise the performance of the GPU, several types of
memory can be used by CUDA software to take advantage of
the high performance of the GPU for data processing.

a) Global Memory: This is the main memory of the
GPU, which can be both read and written to by the CPU and
GPU. This memory is also known as on-board memory and is
shared between all the stream processors, and therefore by all
kernels running on the GPU. Global memory is also by far the
largest memory on the GPU and can be accessed by 32, 64 or
128 byte memory transactions. All access to global memory
should be coalesced, in order to allow warps to perform only
a single memory transaction in a contiguous memory region,
and therefore reduce the access latency [16].

b) Shared Memory: This is a 64 KB area of memory
allocated per stream processor, shared with the L1 cache.
Either 16 KB or 48 KB can be allocated as shared memory,
with the remainder required for the L1 cache. The shared
memory has an access bandwidth approaching 1.5TB/s, as
this is on-chip memory. The shared memory is designed in
a bank-switched fashion, with 16, 32 or 64 bit bank widths
available, depending on the hardware. G200 GPUs use 16-bit
banks, Fermi GPUs use 32-bit banks, and Kepler allows 64 bit
banks (which permits storage of double precisions values) [17].
Shared memory is used by the users to efficiently share data
across thread blocks, however when a warp accesses the same
bank, a broadcast mechanism is triggered within the warp [15].
Shared memory is explicitly managed by the user and can be
read and written by the GPU [14].

c) Local Memory: This is on-chip cached memory that
can be read and written by all threads in a block. The memory
is an abstraction of global memory and therefore has the same
access time. Local memory is used to hold automatic variables,
and is only used to spill data out of the registers. At kernel
launch, if more memory is required, the CUDA driver will
allocate memory on the fly, requiring extra time. Access to
local memory must be fully coalesced allowing warps to access
contiguous memory. Each access is cached through the L1 and
L2 cache however only the L1 cache size can be increased or
decreased based on the kernel requirements [14] [18].

d) Constant Memory: This is a read-only memory used
for broadcasting data to all threads in a warp run by the GPU.
The broadcasting take place in a single cycle. The memory is
limited to 64 KB, however more can explicitly be requested
by the user. Constant memory can only be written by the host.
Data declared constant will reside in global memory, but is
accessed via a specific set of instructions allowing an 8:1 ratio
of cached data. As with global memory, Constant memory is
off-chip unless the data accessed is cached [15].

e) Texture Memory: Texture memory is bound to global
memory, however texture memory can only be accessed
through specific hardware on the GPU. The memory is read-
only and is optimised for 2D spatial locality. Texture memory
also possesses a 8 KB cache per stream processor, allowing
a considerable number of fetch operations to be saved. It can
only contain fixed types such as integer, float and char, making
texture memory the least flexible memory on the GPU. By
default the textures are only accessible using floating point
coordinates, and can only be accessed through a specific set of
instructions, or an array bound to the texture memory [15] [16].

C. GPU Bidirectional Attacks

Graphics Processing Units are also subject to vulnerabili-
ties that can be used to harm the end users of a system such
as GPU-as-a-service.

Vasiliadis et al. demonstrate how to enhance the robustness
of malware by taking advantage of the different GPU memory
and by hiding the malware in global memory. The paper also
describes a methodology to unpack polymorphic malware and
techniques to recover and analyse data [8].

Ladakis et al. describe a key-logger software hosted on the
GPU. The software takes advantage of the GPU by reading

IFIP/IEEE IM 2015 Workshop: 1st International Workshop on Security for Emerging Distributed Network Technologies (DISSECT)1346

the DMA channel, allowing the key-logger to analyse recorded
keystrokes by storing them in GPU memory [9].

Breß et al. characterised a forensic methodology to retrieve
data from GPUs used for database co-processing. The method-
ology depicts how a malicious user can bypass access controls
and access data stored in the database. The study advises to
clear the contents of memory after use [11].

Data leakage from GPUs in virtualised environments has
been described by Maurice et al. in [10] where they detail how
to bypass isolation mechanisms when using virtual machines.
The paper reproduces the data leakage described in [11] and
extends it with a detailed analysis of GPUs data leakage in the
cloud.

Di Pietro et al. demonstrate the vulnerabilities of GPU
architectures by reproducing the work of [11] and extending
it to shared memory, and registers. They also demonstrate
an attack against current cryptographic applications taking
advantage of the power of the GPU [12].

These works demonstrate that GPUs can be used against
the user, but also demonstrate the vulnerabilities related to
specific parts of the graphics processing units used in the cloud
or against one type of GPU. In our work, the experiments
of [11] and [12] against global memory and shared memory
are reproduced on consumer, mobile and professional grade
GPUs. The work is then extended by using different versions
of CUDA, by extending the technique to texture memory
on the three devices, and by establishing a digital forensic
methodology adapted to GPU that can be used in forensic
investigations without requiring the long process of analysis,
and reverse engineering of the drivers, as proposed in [10].

TABLE I. ARCHITECTURES USED FOR THE EXPERIMENTS

GPUs GTX 295 Tesla K20m Tegra K1
Number of GPUs 2 1 1

CUDA Version 5.5, 6.0, 6.5 5.5, 6.0, 6.5 6.0
CUDA Capabilities 1.3 3.5 3.2
GPU Architecture GT200B Kepler GK110 Kepler GK20a

Warp Size 32 32 32
CUDA Cores 8 192 192

Multiprocessors 30 13 1
Global Memory 896 MB 5 GB 2 GB

III. EXPERIMENTAL ENVIRONMENT

The experiments described in this paper were performed
on three different Nvidia architectures as shown in Table I,
covering the three main ranges of Nvidia GPU products, with
default ECC settings. The GTX 295 is a consumer device
containing two discrete GPUs - each GPU has 896 MB of
global memory. The Tesla K20m is a high-end GPU used in
HPC, with a single GPU and 5 GB of global memory. Finally
the Jetson TK1 card contains Nvidia’s next generation mobile
GPU based on the Kepler architecture, which can be found
in mobiles, laptops and cars. The TK1 GPU shares 2 GB of
RAM with the Jetson development board’s ARM-based CPU.

The experiments were carried out with network traces
specifically generated for the purpose, which were stored on
the GPU memory. The traces contained easily identifiable
strings allowing the identification of data remanence in the
different types of memory. This emulated the use of a pattern
matching algorithm running on the GPU, storing confidential

Global Memory

Network Traces

Legitimate User

Memory Allocation

Global Memory

Malicious User

cudaMemcpy cudaMemcpy

Memory Allocation

A B

Fig. 1. Global Memory Data Remanence

network traffic data during processing. Each experiment was
repeated 100 times. In between each experiment, the memory
under test was fully cleared.

IV. RESULTS AND EVALUATION

In this section, data remanence is evaluated on Global
Memory, Shared Memory and Texture Memory, and analysed
on the three different architectures described previously.

A. Global Memory

For testing Global memory data remanence, consider the
scenario where the primary user utilises the GPU to analyse
network traces through pattern matching algorithms. The user
sends the network traces from the host to the GPU using
cudaMalloc and cudaMemcpy as shown in Figure 1A. A
second independent and malicious user then runs a secondary
piece of software, requiring allocation of the same or a larger
amount, of memory as that used by the primary user using
cudaMalloc and dumps the remanent data stored from the GPU
RAM to the host.

The memory allocation requested by the malicious user
will allow partial or full recovery of the data stored within the
GPU memory as shown in Figure 1B. The experimental results
demonstrate that the choice of GPU, architecture or CUDA
version does not affect the outcome, and that 100 percent of
data remained in RAM, and was accessible for further use
by other software running on the GPU. This vulnerability is
due to the lack of secure software practices on the GPUs, as
discussed in [10] [11].

Global Memory

Legitimate User

Global Memory

Malicious User

Shared Memory

Network Traces

Shared Memory
Memory

Allocation

cudaMemcpycudaMemcpy

A B

Fig. 2. Shared Memory Data Remanence

IFIP/IEEE IM 2015 Workshop: 1st International Workshop on Security for Emerging Distributed Network Technologies (DISSECT) 1347

B. Shared Memory

In this experiment, synthetic network traces were sent to
global memory, then stored in shared memory to be analysed as
shown in Figure 2A. The legitimate user would run the network
traces through the pattern matching algorithm until the results
are sent back to the user-land. The size of the network traces
corresponded to the size of the shared memory minus the size
of the L1 cache (as memory is shared for both purposes).

A malicious user would then run a second process on
the GPU requiring a maximum-capacity uninitialised array of
shared memory. By using CUDA version 5.5, 6.0 or 6.5, the
malicious user can use standard I/O to obtain the content of
shared memory, or simply dump the content back to global
memoryin Figure 2B. Di Pietro et al. state that shared memory
is zeroed after execution [12], however in our experiments, the
data remained on the GPUs after execution of the first user.
These behaviours were observed on the consumer, server and
mobile grade devices, and with the three different CUDA ver-
sions.

C. Texture Memory

For the texture memory experiment, the network traces
are transferred from the CPU and bound into texture memory
using cudaBindTextureToArray as shown in Figure 3A. The
process for analysis of the data is the same as for the previous
experiment.

The malicious user would then allocate the same size of
array as defined by the legitimate user, or a significantly larger
array, to be able to dump the memory contents, as shown in
Figure 3B. When using CUDA 6.0 and 6.5, the data could be
obtained via standard I/O 100 percent of the time, but could
only be dumped to the host memory 20 percent of the time.
When CUDA 5.5 was used, the data could be dumped to
the host memory in 100 percent of the tests. This uncertain
behaviour with CUDA versions 6.0 and 6.5 leads us to agree
that this is not a security mechanism in place, rather a quirk
due to the CUDA driver, as described in [12], [19].

D. Detailed Digital Forensics Testing

The extensive experiments carried out here demonstrate
data remanence in the off-the-shelf graphic cards under various
realistic situations, on different devices, using different kinds
of memory. The results are organised into tables, “Y” meaning

Global Memory

Legitimate User

Global Memory

Malicious User

Shared Memory Shared Memory

Texture Texture

Traces Empty
Array

cudaBindTexture
toArray

cudaBindTexture
toArray

A B

Fig. 3. Texture Memory Data Remanence

data remanence on the GPU was proven through recovery
of the data, “N” means the attempt to recover data was
unsuccessful and “N/A” stands for not applicable, where it
was not possible to carry out a given test.

TABLE II. USER SWITCH

GPUs GTX 295 Tesla K20m Tegra K1
Global Memory Y Y Y
Shared Memory Y Y Y
Texture Memory Y Y Y

Table II demonstrates and compares the behaviour of the
three GPUs when a process is run by a malicious user after
the legitimate user has run their software. These results also
demonstrate the potential for digital forensics investigation on
GPU when there are multiple users accounts on the computer
and only one is accessible to the forensic investigator. The
inherent sharing of memory at GPU-level, regardless of user-
level separation on the host system allows access to remanent
data.

TABLE III. GPU RESET

GPUs GTX 295 Tesla K20m Tegra K1
Global Memory Y Y N/A
Shared Memory Y Y N/A
Texture Memory Y Y N/A

Table III shows the results of a GPU reset. This is carried
out using the nvidia smi tool available in the CUDA frame-
work [10] [20]. This demonstrates that a reset of the GPU will
not affect the memory contents on the consumer and server
grade devices. The mobile device, however, does not have the
ability to reset the GPU alone. These results demonstrate the
possibility of data recovery in a forensic investigation when
a suspect has attempted to wipe traces of previous activities
through resetting the GPU using the built-in commands. These
results also demonstrate that legitimate users should not rely
on this function to avoid data leaks, or to prevent other users
from accessing their data following processing on a shared
GPU.

TABLE IV. HARD REBOOT OF THE HOST MACHINE

GPUs GTX 295 Tesla K20m Tegra K1
Global Memory N N N
Shared Memory N N N
Texture Memory N N N

Table IV demonstrates that the GPU memory suffers from
the same effect as Random Access Memory (RAM), where
when a hard reboot is carried out, all data in RAM is lost.
This occurs as data retention in the RAM requires power
to be constantly applied to the device. As long as the GPU
is powered, data can be recovered from the all three of the
memory types on the GPU.

V. DIGITAL FORENSICS METHODOLOGY

Digital forensic investigators require a protocol and a
methodology to follow, proceeding from the most volatile
memory to the least volatile, allowing them to present signifi-
cant evidence in court cases, in a reliable and verifiable fashion
[21]; however, extracting shared memory occurs through global
memory. In order to avoid overwriting any remanent content,
global memory retrieval is prioritised.

IFIP/IEEE IM 2015 Workshop: 1st International Workshop on Security for Emerging Distributed Network Technologies (DISSECT)1348

Here we propose a novel methodology that shortens the
investigation, allowing higher confidence in data integrity. The
methodology presented in [10] requires investigators to reverse
engineer the proprietary driver, which is a time consuming and
a complex task, leading to uncertainty in the data integrity.
In contrast, this novel methodology does not require reverse
engineering of the CUDA driver, and follows the United
States’ Department of Justice recommendations that consists
of “Preparation and Extraction” and “Identification” steps [22].
The novel methodology requires the controlled modification of
program code running on the GPU while aiming to preserve
the content of memory, this is not unlike mobile phone digital
forensics where the requirements are similar [23]. In GPU
and mobile scenarios, non-invasive approaches are not always
possible due to technical limitations and requirements, and for
this reason, there are a large number of variables in the process
which need to be evaluated by an investigator.

Figure 4 depicts the appropriate steps a forensic investi-
gator should follow before and during their investigation. As
described in Section IV, the GPU must remain powered in
order to be able to recover data. The first step should therefore
always include physically securing access to the device in
question, and ensuring the security of power supply to the
device, as appropriate.

Preparation : This phase will require the forensic inves-

Computer is
Turned on

Data
Collection

Process
Running on

GPU

Identify
GPU Model

Seize
and

Analyse

Identify
Process

Stop
Process

Ability to
identify
sources

Analyse log
files and

process names

Copy
Executables

for
Investigation

Copy Sources
for

Investigation

Compile
dump

executable

Dump
Global

Memory

Dump
Shared
Memory

Dump
Texture
Memory

yes

yes

yes

no

no

no

Verify
Data

Integrity

Preparation

Extraction

Identification

Fig. 4. Digital Forensics Methodology

tigator to identify clearly the model of GPU, allowing them
to understand the underlying architecture of the graphics card.
This allows them to understand the types of memory in place,
the amount of memory allocated to global, shared and texture
memory respectively, and to uniquely identify the GPU in a
multi-GPU, virtualised or mobile system.

Extraction : In the case where a process is running on
the GPU, the process in question needs to be identified from
the host operating system. Once clearly identified, the process
can be stopped, such that its memory is free for further
investigation. At this stage the investigator should identify the
executable and the source code if available, and make copies
of them for the analysis phase satisfying any other evidential
requirements, such as retaining and comparing file checksums.

Based on the identification of the GPU and associated
architecture in the “Preparation” phase, the investigator can
now compile an appropriate “dump” executable, allowing
them to access one or more GPUs on the system to recover
Global, Shared and Texture memory. This compilation must
take place on another computer, to prevent unintentional inter-
ference with potential forensic evidence on the computer under
investigation.

Identification : The data retrieved from the running of the
executable can be analysed by using standard forensic tools as
well as freely available CUDA tools. In order to analyse the
process sources for investigation, the full featured Nsight editor
provided by Nvidia can be used, where simulations, profiling
and in depth analysis can be performed [13]. Furthermore, the
executables retrieved can be analysed and tested on sample
GPUs to generate a behavioural analysis of the software. The
executable can be further analysed through decompilation by
using nvdisasm, nvidia-debugdump tools or cuobjdump [13].
Analysis of the data dumped from global, shared or texture
can be analysed using standard memory analysis tools such as
the sleuth-kit [24].

VI. COUNTERMEASURES AND
ANTI-FORENSICS

As with any forensic analysis of volatile device memory,
it should be noted that forensic analysis is constrained by
whether or not the data in question remains to be retrieved,
and that this is out-with the control of investigators in most
circumstances. In this section, three potential technical coun-
termeasures against forensics are considered.

A. Memory Overwriting

The most obvious means of mitigating threats revolving
around recovery of data from GPU memory is to overwrite
the memory contents, thus preventing techniques such as those
discussed from recovering data successfully. By considering
the performance implications of erasing GPU memory at time
of initialisation, it is clear that for performance-optimised
software, there remains motivation to avoid overwriting GPU
memory, to reduce the performance overhead of erasing previ-
ous data from memory. These methods were proposed in [11]
and [12].

IFIP/IEEE IM 2015 Workshop: 1st International Workshop on Security for Emerging Distributed Network Technologies (DISSECT) 1349

B. Dynamic Parallelism

To extend this technique, dynamic parallelism can be used,
requiring a kernel composed of one or more threads, which
itself contains another kernel, responsible for the erasure of
sensitive data following its access. This technique would re-
duce the required zeroing time, and can be easily implemented
by programmers, or added in CUDA libraries, due to running
within a second kernel separate from the original code.

Another potential technique is to plant misleading data
within GPU memory, using a second kernel, running in parallel
with the first, through dynamic parallelism. With two kernels
writing, calculating, and modifying data in GPU memory,
forensic examination would be made significantly more com-
plex, due to the ease with which decoy data may be placed in
memory, for the forensic examiner to deal with.

C. Dead Man’s Handle Monitoring

The dead man’s handle technique can also be used to run
two processes on the GPU, which simultaneously monitor each
other. In the event of one process being disturbed or terminated
such as by someone attempting to terminate the process to
begin dumping memory, the remaining process would initiate a
memory-erasing routine, using the massively parallel hardware
to wipe the entire GPU memory in a matter of seconds.

VII. CONCLUSIONS

In this work the data remanence on GPUs was examined
for three different types of memory, three different CUDA
versions and described for off-the-shelf server, consumer and
mobile grade devices. It was demonstrated that users should
consider data remanence when writing software on GPUs in
un-trusted environments, such as shared servers and GPU-
as-a-service. The experiments carried out demonstrated the
retrievability of data within all three main types of GPU
memory. A novel digital forensics methodology for GPU was
presented, describing a guideline for forensic investigators
to follow, shortening the investigation time while aiming at
preserving the data stored on the GPU.

Finally, countermeasures and anti-forensics methods were
described, providing a means for users to preserve the con-
fidentiality of data they process on GPUs. Future works
may include investigations of GPUs running on the Windows
operating system, as well as investigation of the new Maxwell
GPU architecture by Nvidia.

ACKNOWLEDGMENT

The authors would like to thank Keysight Technologies for
their comments and feedback as well as their support.

REFERENCES

[1] X. Bellekens, I. Andonovic, R. Atkinson, C. Renfrew, and T. Kirkham,
“Investigation of GPU-based pattern matching,” in The 14th Annual
Post Graduate Symposium on the Convergence of Telecommunications,
Networking and Broadcasting (PGNet2013), 2013.

[2] C.-H. Lin, C.-H. Liu, L.-S. Chien, and S.-C. Chang, “Accelerating
pattern matching using a novel parallel algorithm on GPUs,” Computers,
IEEE Transactions on, vol. 62, pp. 1906–1916, Oct 2013.

[3] M. Alomari and K. Samsudin, “A framework for GPU-accelerated AES-
XTS encryption in mobile devices,” in TENCON 2011 - 2011 IEEE
Region 10 Conference, pp. 144–148, Nov 2011.

[4] N.-F. Huang, H.-W. Hung, S.-H. Lai, Y.-M. Chu, and W.-Y. Tsai, “A
GPU-based multiple-pattern matching algorithm for network intrusion
detection systems,” in Advanced Information Networking and Applica-
tions - Workshops, 2008. AINAW 2008. 22nd International Conference
on, pp. 62–67, March 2008.

[5] M. Lee, J. hong Jeon, J. Kim, and J. Song, “Scalable and parallel
implementation of a financial application on a GPU: With focus on
out-of-core case,” in Computer and Information Technology (CIT), 2010
IEEE 10th International Conference on, pp. 1323–1327, June 2010.

[6] D. Apostal, K. Foerster, A. Chatterjee, and T. Desell, “Password
recovery using MPI and CUDA,” in High Performance Computing
(HiPC), 2012 19th International Conference on, pp. 1–9, Dec 2012.

[7] S. Lee, Y. Kim, J. Kim, and J. Kim, “Stealing webpages rendered
on your browser by exploiting gpu vulnerabilities,” in 35th IEEE
Symposium on Security & Privacy (S&P), 2014.

[8] G. Vasiliadis, M. Polychronakis, and S. Ioannidis, “GPU-assisted mal-
ware,” in Malicious and Unwanted Software (MALWARE), 2010 5th
International Conference on, pp. 1–6, Oct 2010.

[9] E. Ladakis, G. Vasiliadis, M. Polychronakis, and S. Ioannidis, “You
can type, but you can’t hide: A stealthy GPU-based keylogger,” in
Proceedings of the Fourth European Workshop on System Security,
2013.

[10] C. Maurice, C. Neumann, O. Heen, and A. Francillon, “Confidentiality
issues on a GPU in a virtualized environment,” in FC 2014, 18th
International Conference on Financial Cryptography and Data Security,
3-7 March 2014, Barbados, (Barbados, BARBADOS), 03 2014.

[11] S. Breß, S. Kiltz, and M. Schäler, “Forensics on GPU coprocessing
in databases - research challenges, first experiments, and countermea-
sures,” in Datenbanksysteme für Business, Technologie und Web (BTW),
- Workshopband, 15. Fachtagung des GI-Fachbereichs ”Datenbanken
und Informationssysteme” (DBIS), 11.-15.3.2013 in Magdeburg, Ger-
many. Proceedings, pp. 115–129, 2013.

[12] R. Di Pietro, F. Lombardi, and A. Villani, “CUDA leaks: Information
leakage in GPU architectures,” arXiv:1305.7383v2 [cs.CR], 2013.

[13] Nvidia, “Cuda C programming guide,” 2013.
http://docs.nvidia.com/cuda/.

[14] N. Wilt, The CUDA Handbook: A Comprehensive Guide to GPU
Programming. Pearson Education, 2013.

[15] S. Cook, CUDA Programming: A Developer’s Guide to Parallel Com-
puting with GPUs. Applications of GPU Computing Series, Morgan
Kaufmann, 2013.

[16] R. Farber, CUDA Application Design and Development. Applications
of GPU computing, Morgan Kaufmann, 2011.

[17] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to
General-Purpose GPU Programming. Pearson Education, 2010.

[18] D. Kirk and W. Hwu, Programming Massively Parallel Processors: A
Hands-on Approach. Elsevier Science, 2012.

[19] F. Lombardi and R. Di Pietro, “Towards a gpu cloud: Benefits and
security issues,” in Continued Rise of the Cloud (Z. Mahmood, ed.),
Computer Communications and Networks, pp. 3–22, Springer London,
2014.

[20] Nvidia, “Nvidia SMI,” 2011. https://developer.nvidia.com/sites/NVML
cuda5/nvidia-smi.4.304.pdf.

[21] B. D and K. T, “Guidelines for evidence collection and archiving,” 2002.
https://www.ietf.org/rfc/rfc3227.txt.

[22] Department of Justice, “Digital forensics analysis methodology,”
Aug. 2007. http://www.justice.gov/criminal/cybercrime/docs /foren-
sics chart.pdf.

[23] N. Son, Y. Lee, D. Kim, J. I. James, S. Lee, and K. Lee, “A study
of user data integrity during acquisition of android devices,” Digital
Investigation, vol. 10, Supplement, no. 0, pp. S3 – S11, 2013. The
Proceedings of the Thirteenth Annual {DFRWS} Conference 13th
Annual Digital Forensics Research Conference.

[24] K. Jones, R. Bejtlich, and C. Rose, Real Digital Forensics: Computer
Security and Incident Response. Addison-Wesley, 2006.

IFIP/IEEE IM 2015 Workshop: 1st International Workshop on Security for Emerging Distributed Network Technologies (DISSECT)1350

