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ABSTRACT 

Measurements of noise in an electricity substation are re-

ported. The measurements are made in four contiguous fre-

quency bands covering the range 100 MHz to 6 GHz. The 

range includes those bands relevant to modern wireless LAN 

and wireless PAN technologies such as IEEE 802.11a/b/g 

and IEEE802.15.1/4). Impulsive events are extracted from 

the measured data and a statistical analysis these events is 

presented. 

1. INTRODUCTION 

Impulsive noise has the potential to degrade the perform-
ance and reliability of wireless communications systems [1]. 
Such noise, which is especially prevalent in high-voltage 
electricity substations, has discouraged electricity utility 
companies from deploying wireless technologies for opera-
tional purposes. If the rise-time of the noise pulses is suffi-
ciently short the frequency spectrum will extend into the 
gigahertz region [2]. This paper reports the characterisation 
of impulsive noise from a 400/275/132 kV substation with 
special attention to noise energy in those microwave fre-
quency bands not previously reported but relevant to new, 
short-range, technologies (in particular IEEE 802.11a/b/g, 
Bluetooth, ZigBee). A model of impulsive noise specific to 
electricity substations is needed to assess the risk associated 
with the operational deployment of wireless communication 
technologies for monitoring and control functions in the 
electricity supply industry (ESI). 
An impulsive noise process, common in substations and 
which has received much recent attention, occurs due to 
partial discharge (PD). This is the result of partial break-
down in a dielectric resulting in an impulsive (and random) 
component of current. The emphasis, here, however, is on 
the aggregate impulsive noise background irrespective of its 
physical origin. 
Whilst impulsive noise is strong close to its source it decays 
rapidly with distance [3]. To characterise it properly, there-
fore, may require its extraction from a mixture of other un-
wanted signal and noise processes including coherent inter-
ference (e.g. broadcast and other radio communications and 
radar signals). This makes practical site-characterisation 
difficult since PD sources may be significant distances from 
buildings where measurement equipment can be protected 

against environmental effects (in particular humidity and the 
ingress of water). An effective method of extracting PD 
from a background of higher-power noise and interference 
processes is therefore desirable. 
Several methods of extracting impulsive noise from other 
noise processes have been investigated [4] and the wavelet 
transformation has been identified as being particularly use-
ful [5]. Wavelet packet transformation (WPT) represents a 
generalisation of the wavelet transform [6]. 
An application of WPT for online PD detection in 11 kV 
cables has been reported [7]. The parent wavelet used was 
symlet-6 (Figure 1) with 8-level decomposition. This 
method was shown to have a recovery probability of 60% 
for 1 ns impulses buried in white noise with a standard de-
viation 1.25 times greater than the peak pulse voltage. 
Whilst this work suggests that the performance of the WPT 
depends on wavelet selection as well as on SNR (the opti-
mum wavelet being related to the duration of the impulses 
of interest), PD noise originating from cables has been suc-
cessfully recovered from a noisy background (comprising 
both random and coherent processes) without any priori 
knowledge of the PD characteristics. 
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Figure 1 – Symlet-6 wavelet. 

WPT has been used in conjunction with neural networks to 
separate corona from PD in a gas-insulated substation [8]. In 
this application 5-level wavelet packet decomposition 
(WPD) using the symlet-8 wavelet was used. Energy, kurto-
sis and skew values were computed for each node in the 
WPD tree. Using large between-class and small within-class 
scatter criteria, feature data were selected from these values. 
With the feature data as inputs, a three-layer feed-forward 
neural network with a back-propagation learning rule was 
used to classify PD, corona and mixed signal (PD plus co-
rona) events. The method successfully removed corona from 
a mixed signal data set. 
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2. MEASUREMNTS 

The noise measurement campaign was undertaken at Strath-
aven 400/275/132 kV air-insulated electricity substation in 
central Scotland, Figure 2. The substation is owned and op-
erated by Scottish Power Ltd., a UK electricity utility. A 
detection system was deployed in the control room of the 
substation. 
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The measurement system [9], shown in Figure 3, comprises a 
low-band TEM horn (LBH, 716 MHz - 1.98 GHz), a high-
band TEM horn (HBH, 1.905 – 5.1 GHz ), a disk-cone an-
tenna (0 - 800 MHz), a dual-band (2.4/5.2 GHz) WLAN an-
tenna, a four-channel digital storage oscilloscope (DSO) 
(bandwidth 0 - 6 GHz) and an external hard disk drive 
(HDD). The antennas are connected directly to the DSO. The 
signals are simultaneously sampled at 20 GS/s. Each data 
record comprises 50 M samples corresponding to a 2.5 ms 
time-series. The records are saved to the HDD via a USB 
interface. It takes approximately 15 minutes for the system to 
complete one measurement/save cycle. An example of a raw 
(unprocessed) measurement is shown in Figure 4. 

3. PROCESSING 

Two stages of processing are employed to extract impulsive 
events. The first separates impulsive from non-impulsive 
‘noise’ processes. We refer to this as ‘de-noising’. The sec-
ond identifies the important features (e.g. rate, amplitude, 
duration, rising time, pulse incident times within 2.5 ms time 
window and pulse spacing) of the de-noised impulses.  

 
3.1 De-noising impulses   

Wavelet packet transformation is central to the extraction of 
impulses from the Strathaven measurement records [10]. 
The signal processing involves four steps:  

• Decomposition of both approximation and detail. 
Wavelet packet decomposition of the signal is com-
puted up to level 12 using the symlet-6 wavelet 

• Computation of best tree. The optimal wavelet packet 
tree with Stein's unbiased risk estimate (SURE) en-
tropy function is computed 

• Wavelet-packet coefficient thresholding. Hard thresh-
olding is applied to the coefficients of each packet 
(except for the approximation) 

• Reconstruction. The required signal is reconstructed 
based on the original approximation coefficients at 
each level and the modified detail coefficients. 

An example of de-noised impulses, from the original meas-
urement shown in Figure 4, is given in Figure 5. 

 
3.2 Extraction of impulse features   

The volume of data measured is large (12 TB) and the vol-
ume processed to date is 250 GB. The feature extraction 
algorithm is therefore required to be as simple as possible to 
keep processing costs manageable. A basic feature extraction 
algorithm developed in this study comprises the following 
seven steps:  

• Calculation of threshold value. Threshold value, T, is 
the lesser of T1 and T2 given by: 
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 where X is the de-noised data time series, N is the 
number of samples and k = 4 and l =6. The values of 
k and l are experimental results chosen for extracting 
relatively accurate number of impulses from de-
noised results. 

• Formation of time index clusters. Transition data, Mj, 
is defined by: 
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A cluster is identified as a set of contiguous data 
points satisfying |Mj| > T. The values of Xj corre-
sponding to one time index cluster represent one im-
pulse, 

• Extraction of impulse amplitude. Impulse amplitude 
is the maximum value found from Xj within a time 
index cluster, 

• Extraction of occurrence time of impulse. The occur-
rence time of an impulse is the time index (measured 
from the start of the data segment) corresponding to 
the maximum value of the time cluster, 

• Calculation of impulse duration.  The impulse dura-
tion is the difference of time indices corresponding to 
locations on either side of the maximum value that 
are 1/√2 of the maximum value, 

• Calculation of impulse rise-time. The rise-time of the 
pulse is the difference of time indexes corresponding 
to 10% and 90% of the pulse’s maximum amplitude, 

• Calculation of inter-arrival time between impulses. 
The inter-arrival time is the difference of occurrence 
times of 2 successive impulses. 
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Figure 2 – Strathaven substa-
tion 400 kV compound. 

Figure 3 – Measurement system 
deployed in substation. 
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Figure 4 – Raw measurement. 

 
Figure 5 – De-noised impulses. 
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Figure 6 – Illustration of impulse features. 

The impulse features are illustrated in Figure 6, which is a 
time-dilated segment Figure 5. 

4. RESULTS 

The probability distributions (PDFs) of (a) impulse rate, (b) 
impulse amplitude, (c) impulse duration, (d) impulse rise-
time, (e) impulse occurrence time and (f) impulse spacing 
have been calculated for the feature data extracted from 197 
instances of data measured via the disk-cone, LBH and 
HBH antennas respectively. The distributions along with the 
best fit analytical curves are shown in Figures 7 – 9. 

 

 

Figure 7(a) – PDF of (disk-cone) mean impulse rate (/s). 

 

Figure 7(b) – PDF of (disk-cone) impulse amplitude. 

 

Figure 7(c) – PDF of (disk-cone) impulse duration. 

Figure 7(d) – PDF of (disk-cone) impulse rise-time. 

   Figure 7(e) – PDF of (disk-cone) impulse occurrence time within 
2.5 ms time series segment. 

 

Figure 7(f) – PDF of (disk-cone) inter-pulses arrival time. 

 

Figure 8(a) – PDF of (LBH) PDF of mean impulse rate (/s). 

 

Figure 8(b) – PDF of (LBH) amplitude of impulses for. 

 

Figure 8(c) – PDF of (LBH) the duration of impulses. 

 

Figure 8(d) – PDF of (LBH) impulse rise time. 
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Figure 8(e)– PDF of (LBH) incident time of impulses within 2.5 ms. 

 

Figure 8(f) – PDF of (LBH) inter-pulses arrival time. 

 

 Figure 9(a) – PDF of (HBH) mean impulse rate (/s). 

 

Figure 9(b) – PDF of (HBH) amplitude of impulses. 

 

Figure 9(c) – PDF of (HBH) duration of impulses. 

 

Figure 9(d) – PDF of (HBH) impulse rise-time. 

Table 1 shows the best-fit parameters of the distributions for 
each set of measured data. The distributions selected for each 

data set have been determined subjectively from the follow-
ing distribution types: Beta, Binomial, Birnbaum-Saunders, 
Exponential, Extreme Value, Gamma, Generalized Extreme 
Value, Generalized Pareto, Inverse Gaussian, Log-Logistic, 
Logistic, Lognormal, Nakagami, Negative Binomial, Nor-
mal, Poisson, Rayleigh, Rician, t Location-Scale and 
Weibull. 

 

Figure 9(e)–PDF of (HBH) incident time of impulses within 2.5 ms. 

Figure 9(f) – PDF of (HBH) inter-pulses arrival time. 

4. DISCUSSION 

Impulse rate (r) follows a generalised extreme value distribu-
tion, i.e.: 
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where l, s and ν are location, scale and shape parameters, 
respectively. This distribution is often used to model the 
smallest or largest values in a large set of independent, iden-
tically distributed, random variables. The mean value (around 
105 pulse/s, see Table 1) is similar for all antennas. The vari-
ance, however, appears to be sensitively dependent on an-
tenna type; factors of 10 and 1000 relating, respectively, the 
variance for HBH and LBH antennas to the disk-cone an-
tenna. Location, scale and shape parameters are similar for 
all three antennas. 
Impulse amplitude is Gaussianly distributed with a mean 
value close to zero for all antennas. (This is a consequence of 
the similarity between statistics of positive and negative im-
pulses.) The variance is also similar for all antenna types. 
Impulse duration is exponentially distributed with a similar 
mean for all antennas of around 90 ns. 
Impulse rise-time (τ) is t location-scale distributed, i.e.: 
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The location parameter in (5) is of the order of 100 ns, the 
scale parameter is around 30 ns and the shape parameter is 
close to unity. The differences between antenna types appear 
to be relatively small. 

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0
0

0 . 0 0 2

0 . 0 0 4

0 . 0 0 6

0 . 0 0 8

0 . 0 1

0 . 0 1 2

0 . 0 1 4

0 . 0 1 6

R is in g  T im e  (n s )

D
e
n
s
it
y

 

 

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0 1 2 0 0 0 1 4 0 0 0 1 6 0 0 0
0

0 . 0 0 2

0 . 0 0 4

0 . 0 0 6

0 . 0 0 8

0 . 0 1

0 . 0 1 2

D u ra t io n  ( n s )

D
e
n
s
it
y

 

 

- 1 6 - 1 4 - 1 2 - 1 0 - 8 - 6 - 4 - 2 0 2 4
0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

A m p l i t u d e ( m V )

D
e
n
s
it
y

 

 

0 . 9 1 1 . 1 1 . 2 1 . 3 1 . 4 1 . 5 1 . 6 1 . 7 1 . 8 1 . 9

x  1 0
5

0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5
x  1 0

- 5

I m p u l s e  R a t e (  / s )

D
e
n
s
it
y

 

 

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0
0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

A r r iv a l T im e  (u s )

D
e
n
s
it
y

 

 

0 5 0 1 0 0 1 50 2 0 0 2 5 0
0

0 .0 5

0 .1

0 .1 5

0 .2

0 .2 5

0 .3

0 .3 5

A rr iv a l T im e  (us )

D
e
n
s
it
y

 

 

0 0 . 5 1 1 . 5 2 2 . 5
0

0 . 05

0 . 1

0 . 15

0 . 2

0 . 25

0 . 3

0 . 35

0 . 4

0 . 45

Inc id ent T im e  (m s )

D
e
n
s
it
y

 

 

0 0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Incident T ime (m s)

D
e
n
s
it
y

 

 

2139



The time of occurrence distribution (measured from the start 
of each 2.5 ms time-series data-segment) is approximately 
uniform. 
 

Table 1 – The parameters of fitted distributions 
 Process Antenna Distribution Parameter 

µ 1.13×105 s-1 

σ2 3.48 ×107 s-1 
l    1.05×105 s-1 
s 8.12×103 s-1 

Diskcone Generalized     
Extreme 
Value 

ν    2.76×10-1 
µ 1.24×105 s-1 
σ2 1.04 ×1010 s-1 
l 8.90×104 s-1   
s 3.02×104 s-1    

LBH Generalized     
Extreme 
Value 

ν 3.77×10-1   
µ 1.18×105 s-1 
σ2 5.34 ×108 s-1 
l 1.08×105 s-1   
s 1.16×104 s-1    

 
 
 
 
 
Impulse 
rate 

HBH Generalized     
Extreme 
Value 

ν 2.34×10-1   
µ 2.11×10-1 mV Diskcone Gaussian 

(Normal) σ2 3.19×10-1 mV 

µ -7.57×10-2 mV LBH Gaussian 
(Normal) σ2 5.19×10-1 mV 

µ -1.48×10-1 mV 

 
 
Impulse 
amplitude 

HBH Gaussian 
(Normal) σ2 1.94×10-1 mV 

µ 7.77×101 ns Diskcone Exponential 
σ2 6.04×103 ns 
µ 1.15×102 ns LBH Exponential 
σ2 1.33×104 ns 
µ 8.50×101 ns 

 
Impulse 
duration 

HBH Exponential 
σ2 7.22×103 ns 
l 9.57×101 ns 
s 2.08×101 ns 

Diskcone t location-
scale 

ν 8.69×10-1  
l 1.13×102 ns 
s 3.51×101 ns 

LBH t location-
scale 

ν 1.95×100  
l 9.67×101 ns 
s 2.68×101 ns 

 
 
 
Impulse 
rise time 

HBH t location-
scale 

ν 9.05×10-1  
µ - mean value; σ2 - variance; l - location; s - scale; ν – shape 
 
The inter-pulse spacing distribution has a quasi-discrete 
character with approximately constant spacing between pdf 
peaks. This suggests a single dominant source of impulsive 
noise with an underlying (approximate) periodicity, and ap-
pears to preclude partial discharge as the dominant process. 
The physical origin of this process is, as yet, obscure and is 
currently under investigation. 

5. CONCLUSION 

Measurements of the electromagnetic noise environment in 
an electricity substation have been reported using microwave 
antennas covering a contiguous band of frequencies from 100 
MHz to 6 GHz. Algorithms for extracting impulsive events 
have been describe and used to construct a database of im-
pulsive noise. A statistical analysis of impulse rate, ampli-

tude, duration, rise-time, occurrence time and spacing has 
been presented. 
 A model of impulsive noise based on the statistical and spec-
tral characteristics measured for the assessment of risk asso-
ciated with wireless equipment deployment in substations is 
under construction. 
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