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Abstract— This paper presents a kernel-based approach to
indoor-outdoor handover management for 4G femtocells. It is a
necessary but difficult task to perform seamless handover from
indoor femtocells to outdoor macrocells whilst maintaining call
continuity. This paper describes a machine learning algorithm to
operate in conjunction with 4G handover triggering mechanisms
to reduce the rate of unnecessary handovers between femtocells
and macrocells. The results of this algorithm show that handovers
can be reduced by 65% by detecting where unnecessary han-
dovers are likely to occur and minimising them. By reducing the
number of unnecessary handovers, the system resources efficiency
may be improved as a result of the potential reduction in
signalling exchange taking place which in turn reduces bandwidth
usage, the power used by both the femtocell and the mobile
terminal and, the level of signal processing necessary.

I. INTRODUCTION

As a consequence of the rapid uptake of smart phones,
demand for Internet access on mobile handsets continues to
increase towards what has been termed the “data explosion”
[1]. Furthermore, studies have shown that 70% of all voice
and data traffic is attributable to users located indoors [2].
However, due to the high penetration loss of exterior walls,
they often experience relatively poor service quality, limiting
them to low bit-rate connections. Since high-bit rate services
are in greater demand by users located indoors, femtocells
introduce a convenient means of providing high data-rates
to those subscribers by relieving some of the strain on the
macrocell layer. Cellular data provision is an area of increasing
concern for operators due to the rapid uptake of smart phones,
and femtocells represent a significant technology in addressing
these capacity concerns. The addition of femtocells increases
the complexity of the network architecture and increases the
requirement for self management capabilities.

Today’s mobile networks need to be frequently re-
parameterised in order to accommodate upgrades to coverage
and changing traffic loads. Planning, deployment, configura-
tion and optimisation of these network parameters requires
significant expenditure from network operators as a result of
the time and expertise required to maintain the network. The
error prone manual tuning process may also result in non-
optimal performance of the network due to the inherent delays
associated with changing parameters in the entire network.
This has resulted in an industrial pull from operators to lower

both the CAPital EXpenditure (CAPEX) and the OPerational
EXpenditure (OPEX) of their networks by introducing a
degree of self management. Within LTE, the self management
functionality is referred to as a Self Organizing Network
(SON) [3] [4], a multi-faceted term that encompasses self-
configuration, self-healing, self-protection and self optimisa-
tion. SON offers LTE a plug-n-play functionality that allows
both macrocells (eNodeBs) and femtocells (HeNodeBs) to
first be deployed and then autonomically self-configure to
the requirements of the network. A SON allows tuning of a
network to be completed in a timely manner with minimum
human interaction. Moreover, a SON can be deployed to
optimize handover performance between neighbouring base
stations [5] [6] [7], including femtocells.

A key advantage of LTE femtocells over competitor tech-
nologies, such as Wi-Fi, is the ability to support high quality
voice traffic. The ability to support seamless handover (and
hence retain high voice quality) between indoor and outdoor
coverage areas represents a unique selling point of 4G tech-
nologies. In order to exploit the potential advantages offered,
a handover mechanism has to be adopted that provides a
delicate balance between being too timid or too aggressive.
A mechanism that is too timid may result in calls being
dropped due to the signal strength from the femtocell dropping
below the minimum level required sustain the connection
before handover has been completed. A mechanism that is too
aggressive may result in unnecessary handovers. Unnecessary
handovers place additional demands on the network: through
consumption of radio channels (Random Access Channel) and
fixed links; through additional processing load in admission
control, bearer setting and path switching; and have the
potential to degrade the Quality of Service (QoS) of ongoing
connections [8].

Consider an active and mobile user within an indoor en-
vironment. When the mobile terminal approaches, and passes
through, an exterior door it will detect an increase in the Ref-
erence Signal Received Power (RSRP) [9] from an externally
located macrocell. As a consequence, a measurement report
will be transmitted from the mobile terminal to the femtocell
base station, informing the femtocell that another base station
has been detected and is a candidate for handover. The
femtocell will use the measurement report to initiate handover



to the macrocell if required. Now, consider the situation where
an active mobile terminal approaches a large window (with low
penetration loss). The increase in RSRP from the macrocell
will cause a measurement report to be transmitted from the
mobile terminal to the femtocell and subsequently invoke a
handover, as in the previous example. However, as the mobile
terminal continues to move past the window, the relatively high
received signal level from the macrocell is likely to decline
rapidly and thus trigger another measurement report form
the mobile terminal to the macrocell, indicating that a better
signal can be obtained from the femtocell. This will invoke
a second handover, in quick succession, from the macrocell
back to the femtocell. Clearly, the second example represents
a scenario where unnecessary handover has occurred. The aim
of the algorithm presented in this paper is to identify indoor
regions where handover to external base stations should be
permitted and regions where handover should be suppressed.
Three principal regions are defined:

1) Areas of low signal strength from the macrocell. In
these regions a measurement report will not be generated
and therefore the proposed algorithm need not consider
them. For this reason these areas can be regarded as ‘null
zones’.

2) Areas of high signal strength from the macrocell, and
where few unnecessary handovers occur. These regions
are referred to as ‘permissive zones’ since handover to
the external base station will be beneficial. It is believed
that these zones will coincide with architectural features
such as exterior doors.

3) Areas of high signal strength from the macrocell, and
where many unnecessary handovers occur. These regions
are referred to as ‘prohibition zones’ since handover to
the external base station should be suppressed because
it is likely that a second handover (in the opposite direc-
tion) will soon follow. These regions will be consistent
with architectural features such as windows and large
glass exterior walls.

Within LTE, there are a number of parameters that can
be tuned to optimise handover [10], among them Time To
Trigger (TTT) and Handover Hysteresis are of most interest
when optimising the handover process. However, tuning these
parameters can be challenging as changes can incur adverse
effects. Increasing these parameters reduces the likelihood
of unnecessary handovers but also increases the probability
of dropped calls; decreasing the parameters has the opposite
effect. The scenario considered within this paper could result
in the Hysteresis and TTT increasing for every unnecessary
handover to such an extent that an active call will be dropped
when it genuinely requires handover.

The problem under investigation in this paper is how to
facilitate handover to the macrocell layer in a timely fashion
whilst minimising unnecessary handovers. Reducing the num-
ber of unnecessary handovers increases the energy efficiency
of the femtocell resulting from lower signalling within the
network and more efficient use of the network resources.

To facilitate an improved handover algorithm, positional in-
formation is incorporated in order to optimise the handover
decision locally and minimise any adverse effects of parameter
alterations (for an entire cell). For clarity, it should be noted
that the positional information used in this algorithm is the
location of regions within the radio environment in which
handover occurs and not the true physical location of the user.
However, there may be strong correlation between both of
these forms of location.

The remainder of this paper is structured as follows. Section
II provides a brief overview of Autonomics; Section III
provides a brief explanation of the kernel Self Organizing
Map (SOM) and the k-means algorithm used to inhibit han-
dover; Section IV evaluates the performance of the proposed
handover inhibition algorithm; and finally Section V provides
Conclusions and Future Work.

II. AUTONOMIC NETWORKING AND SELF ORGANIZING
NETWORKS

The term Autonomic Computing was coined by IBM to
deliberately invite comparison with the autonomic nature of
biological systems [11]. The concept has been extended be-
yond computing to the domain of computer/communications
networking [12]. The motivation for autonomic approaches is
derived from the need to manage complexity in large systems.
The autonomic paradigm is one in which time-consuming and
error-prone tasks are undertaken by self managing compo-
nents, leaving human administrators free to concentrate on
high-level policies. The policies specify desired system outputs
or behaviour but not how these are to be achieved; that is the
role of the autonomic element. In many cases, the high-level
policy will specify utility functions, for example, minimising
dropped calls during handover.

The basic building block of an autonomic system is a control
loop consisting of the following phases: Monitor, Analyse,
Plan, and Execute.

• The Monitor phase is concerned with the acquisition,
collation and filtering of data concerning the managed
element or its environment. Within the context of this
paper, the Monitor phase collects user location and mea-
surement reports.

• The Analyse phase examines the data and makes a
decision on potential actions to be taken to optimise the
performance of the system or take corrective action. In
this work the kernel SOM, as explained in Section III,
performs this task.

• The Plan phase uses the conclusions of the Analyse
phase to determine which specific actions should be taken
to reconfigure or optimise the managed element. In the
example of handover optimisation, the Plan phase would
specify which parameters to adjust and the degree to
which they should be adjusted as well as determining
if handover should take place.

• The Execute phase translates the planned actions into a
sequence of technology-specific commands.



Autonomic computing identifies four key facets where
complexity management is necessary: self-configuration, self-
optimisation, self-healing, and self-protection. This Autonomic
paradigm has been embraced by the 3GPP where its principles
provide the foundation for SON. When translated into auto-
nomic networking, these facets are subtly different but have
broadly similar objectives. The work described in this paper
is concerned with the self-optimisation of handover.

Specifically, the autonomic system will monitor when un-
necessary handovers between the femtocell and macrocell
occur and seek to reduce their number over time. However,
the system should not inhibit seamless handover from the
femtocell to the macrocell when genuinely required. The 3GPP
have defined two metrics that capture ineffective handover
timing: handover-too-late (an indicator for call dropping)
and handover-too-early (an indicator of unnecessary han-
dover) [13]. A system that is too timid will lead to an increase
by handover-too-late occurrences due to lack of responsiveness
and a system that is too aggressive will lead to an increase in
handover-too-early occurrences.

The problem is complicated by the fact that every building
has a unique radio environment which is a function of:
the femtocell base station placement, the architecture of the
building (including building materials), and the number and
location of external macrocell base stations. Therefore, each
building will have a unique topography of permissive and
prohibition zones. Given the economic drivers for autonomic
approaches, the femtocell base station cannot be assumed to
be pre-programmed with this information in advance. Rather,
the femtocell should be able to configure and optimise its
performance with experience. In terms of the types of machine
learning approaches that can be applied to this problem,
supervised learning strategies are therefore not applicable.

The LTE handover parameters Handover Hysteresis and
Time-To-Trigger are central to the SON concept of self-
optimisation. They can be tuned to realise the optimum
crossover point for a particular geographical region. Inherent
in the design philosophy is the notion that the mobile user
follows a consistent trajectory moving from one external cell
site to another. In reality, this is a simplification since the user
will have a somewhat more random motion. Furthermore, the
fading characteristics of the wireless link gives rise to a non-
monotonic decay of signal strength. Nonetheless, it is believed
that these parameters should be sufficient to optimise handover
between two neighbouring macrocells. However, in the case of
indoor-outdoor handover such parameters will not be sufficient
for optimisation since they cannot capture whether handover is
actually required, i.e. whenever the mobile terminal is located
within a permissive or prohibition zone it may not be possible
to infer a user’s intent to leave the building or not. The
parameters must be augmented by positional information that
can be used to infer such intent. After all, it would be counter-
productive to successively increase these parameters whenever
an unnecessary handover occurred (a user being close to a
window) because this would lead to an increase in handover
failure probability when the user attempts to exit the building.

For a building of arbitrary shape and construction, an
algorithm is required that can optimise handover performance.
To realise such an objective, the direction finding capability of
MIMO systems is exploited to provide a profile of locations
(or more correctly regions in the radio environment) where
handover is genuinely required (permissive zones) and those
where unnecessary handovers are likely to occur (prohibition
zones). The kernel Self Organizing Map is particularly useful
in this context by continually mapping regions where either
successful or unnecessary handover has occurred and using
this information to identify the periphery of the permissive
and prohibition zones as explained in Section III.

III. KERNEL SELF ORGANIZING FEATURE MAP USING
k-MEANS

Within this work, a kernel Self Organizing (Feature) Map
(SOM) with k-means is used to provide the femtocell with a
profile of locations in which handover may take place. The lo-
cation of the user when a handover trigger is transmitted (The
Monitor phase of the autonomic system) is used as the input
to the SOM (The Analysis phase of the autonomic system) to
allow the femtocell to learn which locations within the radio
environment correspond to permissive and prohibition zones
(The Plan phase of the autonomic system). Handover can then
be prohibited or allowed within the LTE network (The Execute
phase of the autonomic system). This learning is completed
in a group based manner to allow faster convergence of the
neurons within the network. The convergence of the neurons
into accurate locations minimises the error inherent in the
vector quantisation based algorithm, SOM.

The Kohonen SOM [14] is a form of artificial neural
network where neurons are arranged in either a one or two
dimensional lattice. Generally, a two dimensional lattice is
preferred; the case in this work. The lattice can be regarded
as a special case of a feed forward neural network with a
single computation layer that is arranged into logical rows
and columns. Within the SOM, all neurons are connected to
all inputs and, unlike other neural networks, the neurons have
no activation function. Each input to the system is compared to
all neurons and the closest neuron is then used as the basis for
the neurons to learn. These neurons can also hold information
about previous handovers within the radio environment. The
kernel SOM algorithm is a version of the SOM algorithm that
non-linearly transforms the data into a feature space. Once
transformed the distances between the weights and the inputs
can be calculated non-linearly.

Kernel methods are a class of algorithms that are used
for pattern/cluster analysis. These methods perform non-linear
mappings of input data into a higher dimensional feature
space and then perform linear operations on the data. Each
coordinate from the input space maps to an element within
the feature space; transforming the data into a set of points in
a Euclidean space. Once the data has been converted into the
feature space, the inner product used within clustering methods
can be replaced with the kernel trick [15].



The kernel trick allows for the computation of a dot product
in a high dimensional feature space using simple functions
defined on pairs of input patterns. This allows for a non-linear
mapping to the feature space which gives more detail at the
points of interest (this lowers the vector quantisation error).
The mapping of x to φ((x)) can be implicitly carried out
with no knowledge of φ. This means that only knowledge
of the inputs, the weights and the kernel function (K(·, ·))
is required. By using the kernel trick rather than Euclidean
distance, the resulting reduction in the vector quantisation error
increases the convergence rate of the network. The kernel
Self Organizing Map can be regarded as a kernel methods
modification of Kohonen’s equivalent.

The kernel SOM [16] [17] [18] is particularly useful for
detecting clusters within data. Here, we use it to determine
the areas of the permissive and prohibition zones based on
an estimate of distance (received signal strength) and angle of
arrival at the femtocell base station. The kernel SOM algorithm
has an input space that is highly multidimensional, a weight
space of the same dimension as the input and an output space
of smaller dimension than the input. The kernel SOM used
follows closely to that described by MacDonald [16].

The kernel SOM utilised in this study incorporates k-
Means as a method of cluster analysis: k-Means partitions
a set of data into a predefined number of clusters, k. Each
cluster is allocated a centroid that is the mean value of the
data in the cluster, resulting in the data being partitioned
into Voronoi cells. Such a process can be used within the
kernel Self Organizing (feature) Maps algorithm to improve, in
comparison with the Kohonen SOM, the convergence time and
the system’s accuracy by only updating the relevant weights
within the neural network.

The kernel SOM algorithm consists of four phases describ-
ing the learning process: initialisation, competition, coopera-
tion, and synaptic adaptation. There is, however, an additional
step added to this algorithm in order to complete k-means.

A. Initialisation

Initialisation of the SOM network presets the individual
weight values of each neuron in the lattice to values drawn
from a uniform distribution. The initial weight values for
this work will be distributed within the propagation region
of the femtocell. Each input will be associated with a weight
within the high dimensional feature space. This represents the
geographical location obtained using the RSRP and angle of
arrival from the mobile terminal at the time the measurement
report was generated.

Both the weights and the inputs must be converted from
the input space to a feature space. This conversion takes place
using a kernel function that allows more detail at the points
of interest (this reduces the vector quantisation error). The
distance between the input and the weights can be determined
by many methods; in this case, using the kernel trick. The
weights will converge to the areas that the inputs occur, i.e.,
the locations of the handover triggers.

B. Competition

The next step of the process is for inputs to be applied
to the system. Under operational conditions this would occur
every time a mobile terminal generates a measurement report
(triggered by detection of a base station other than the serving
base station). Since each input is connected to each neuron,
the input and weight vectors have the same dimensions. The
representation for an a-dimensional input is defined in Equa-
tion (1) and the weight vector associated with each neuron in
the lattice is defined in Equation (2).

x = [x1, x2, ..., xa]T , x ∈ Ra (1)

wj = [wj1, wj2, ..., wja]T , j = 1, 2, ..., l, wj ∈ Ra (2)

Here, l is the total number of weights in the network. Given
that there is no activation function, the output of each neuron
will be a combination of both the input and weight vectors.
From a geometrical perspective, the winning neuron in SOM is
calculated based on Euclidean distance using the dot product,
therefore, the lower the value, the closer the weight vector is to
the input vector. Within the kernel SOM, Euclidean distance is
replaced with the kernel trick. There is a competitive aspect of
this algorithm in that the neuron whose weight vector provides
the best match to the input vector will be selected as being the
winning neuron. If the index of the winning neuron is denoted
by i(x) within the lattice L (denoting the grid of neurons in
the weight space) then the winner is given by Equation (3).

i(x) = arg min
j
‖x− wj‖, j ∈ L (3)

The distance can also be written in terms of the kernel
function, as is shown in Equation (4). The mapping to the fea-
ture space is completed using a kernel such that K(xi,xj) =
φ(xi)

Tφ(xj) where φ(x) is the function that maps the data
onto the feature space.

‖x− wj‖2 = ‖φ(x)− φ(wj)‖2
= K(x,x) +K(wj ,wj)− 2K(x,wj) (4)

A Gaussian Kernel function is used as shown in Equation
(5).

K(x,wj) = exp

(−‖x−wj‖
2σ2

)
(5)

Once the winner, the closest match to the input, has been
selected as it can be utilised by the cooperation stage of the
algorithm.

C. k-means

Once the weights within the network have been initialised
they can be partitioned into k clusters and the k-means
algorithm can be completed. The number of clusters k, in this
case, is the combined number of both permissive and prohi-
bition zones as dictated by the architecture of the building.



If this number of clusters is incorrect, the algorithm may lose
accuracy but the weights within the network will still converge
towards a suboptimal solution that is an improvement over the
standard SOM algorithm. This is illustrated in Figure 4. The
k-means algorithm is executed using the following steps:

1) The partitioning is commenced by allocating k centroids
randomly within the area of the area of the network.

2) Each weight can then be allocated to its nearest cen-
troid location using Equation (6) where m denotes the
centroid, c the index and q(w) the index of the winning
centroid.

q(w) = arg max
c
‖wj −mc‖, j ∈ L, c ∈ [0, k] (6)

This results in the generation of Voronoi cells.
3) After each weight has been allocated to its correspond-

ing centroid, the centroid can be updated using Equation
(7).

mc =
1

N

N∑
j=1

wj (7)

Each centroid location (mc) is the mean value of all
the weights allocated to it. N is the number of weights
allocated to mean c.

4) Steps 2 and 3 are repeated until convergence of the
centroid and it’s allocated weights have been achieved.

D. Cooperation

Once the winner for a given input vector has been selected
and the weight has been assigned to its closest centroid, the
weights of the neurons within the winner’s sphere of influence
are updated if they are linked to the same centroid as the
winner. This constitutes a cooperative learning process since,
unlike other competitive learning strategies, it is not just the
winning neuron that has its weight values modified. This group
learning strategy permits the network to converge more rapidly
and accurately compared to the case where only the winner
would modify its weights. Adding k-means into this algorithm
allows only the weights that are in the same cluster as the
winner to be updated which improves the accuracy of the
weight locations.

The sphere of influence is governed by a neighbourhood
function which determines how many of the winner’s neigh-
bours can undergo learning, and also the degree to which they
will learn. Within the sphere of influence, neighbours closer
to the winning neuron will have their weights updated by a
greater amount than those located further away. In order to
achieve this a distance metric between neurons in the lattice
is required, where the distance between two neurons e and f
is given by Equation (8).

df,e = ‖φ(rf )− φ(re)‖ (8)

re and rf represent the locations of neurons e and f in the
lattice respectively.

The neighbourhood function should decay monotonically
with distance from the winner. Furthermore, the function
should be maximum at the winner (df,e = 0) and decay to
zero as df,e → ∞. A popular choice for the neighbourhood
function which satisfies these requirements is the Gaussian
function as shown in Equation (9), and this is the function
adopted in this work.

hf,e = exp

(
−
d2f,e
2σ2

)
, f ∈ L (9)

The parameter σ defines the width of the Gaussian function
and, in essence, σ determines the size of the sphere of
influence around the winning neuron. When using a kernel
SOM, the size of the sphere of influence (i.e. σ) is reduced
over time; in practice this translates to number of iterations,
n. The width of the neighbourhood function can be made to
decay with time by making σ decay with time. In this work an
exponential decay is assigned to σ as described in Equation
(10):

σ(n) = σ0 exp

(
− n
τ1

)
(10)

Here, n is the iteration number, σ0 is the initial value and
τ1 is a temporal decay time constant chosen by the designer.
By incorporating temporal decay, Equation (9) can now be
re-written in the form in Equation (11).

hf,e(n) = exp

(
−

d2f,e
2σ2(n)

)
, j ∈ L (11)

E. Synaptic Adaptation

The adaption process is concerned with the execution of
the weight update procedure for all neurons within the sphere
of influence of the winner. Unfortunately, standard Hebbian
learning is not suitable for this type of network because
repeated reinforcement (positive increase) of weights within a
particular sphere of influence will cause the neurons contained
therein to be driven to a state of saturation. Thus a so-called
forgetting term is used to augment the update algorithm such
that it progressively decreases the strength of the weights; the
forgetting term is given by Equation (12):

u(yj) = g(yj)wj (12)

Generally g(yj) is a positive scalar function of neuron j’s
output. An appropriate choice for this function is given by
Equation (13):

g(yj) = ηyj (13)

Parameter η is the learning rate. In practice the learning
rate also decays with time (or iterations); therefore, it is an
exponentially decreasing function as shown in Equation (14):

η(n) = η0 exp

(
− n
τ2

)
(14)
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Fig. 2. Handover Locations: requests 301 to 400

η0 is the initial value and τ2 is a second time constant. The
augmented Hebbian weight update equation can be written as
shown in Equation (15):

∆wj = ηyjx− ηyjwj (15)

By setting yj = hj,i(x) the weight update equation can be
written as shown in Equation (16).

∆wj = ηhj,i(x) (x− wj) (16)

Thus, the weights for neuron j within the sphere of influence
of the winner are updated iteratively according to the rule
given by Equation (17).

wj(n+ 1) = wj(n) + η(n)hj,i(x)(n) (x(n)− wj(n)) (17)

When the neurons have been continuously updated over a
period of time the locations of the neurons will converge to
optimal location due to the learning rate becoming very low
and the neighbourhood no longer updating any nodes other
than the winner. Once this happens, the locations of both
permissive and prohibition zones have been identified.

IV. SIMULATION MODEL AND RESULTS

The performance of the algorithm described in Section
III has been evaluated using a model developed within the
network simulator, NS3. To demonstrate the effectiveness of
the kernel SOM and k-means algorithms, a scenario has been
modelled that incorporates a single prohibition zone (window)
and one permissive zone (external door); the simulation was
used to determine the effectiveness of the proposed algorithm
in identifying both types of zone. The dimensions of the area
being modelled is 40m by 40m. The simulation area consists
of a large room (40m by 32m) and a space to allow the user
to leave the room (8m by 40m); the user must leave through
the door. A random walk mobility model is used to simulate
the movement of a single user (with an active mobile device),
this model allows a random change of direction after a defined
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Fig. 3. Handover Locations with Error: requests 301 to 400

period of time, in this case every second, with the user moving
at speeds of 2 to 4m/s. The initial position of the mobile
user is the centre of the simulation area. When the mobile
user moves around the radio environment the propagation
characteristics, perceived by the mobile device, change and the
signal strengths are updated accordingly using a distance based
propagation model. Within the propagation model, both the
signal strengths of a single femtocell and a single macrocell are
used to determine whether there is a requirement for handover.
Once the system has detected that another base station has
offered a stronger signal by a fixed Hysteresis value for a
prescribed period of time (TTT), handover is requested; a
decision whether or not to allow or prohibit this handover
then takes place using the mechanism described within this
paper. As the modelled system operates using an event-based
paradigm focusing on handover instances and takes a generic
approach, the choice of propagation and mobility models has
only a secondary effect upon the results. The choice of such
models does not affect the generality of the results.
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In an unmodified LTE system, if a mobile terminal detects
a base station with a higher RSRP than the serving base
station a measurement report is triggered that may initialise
handover execution. Within any LTE system utilising the
proposed algorithm, handover may be permitted or suppressed
depending on previous experience of handovers in that area,
as perceived by the femtocell, i.e. whether the mobile terminal
is located in a permissive or prohibition zone. The initial setup
of the femtocell allows convergence of the neurons within the
SOM to the locations of the radio environment where handover
may take place by using the location of the handover triggers
as the input to the neural network. Each neuron within the
SOM has the ability to retain knowledge of past experience
with regards to handover. A decision as to whether or not the
mobile user is within a permissive or prohibition zone is then
made based on the neuron’s experience of its area of the radio
environment; the decision to permit or prohibit the handover
request is then made.

Examples of handover locations are depicted in Figures
1 to 3. In these figures: the (black) lines denote the walls
that are the lower bound of the room; a permitted handover
is depicted by a (red) ’X’, and a suppressed handover by a
(blue) ’O’. It should be noted that the handover triggers occur
around the regions where the macrocell RSRP is greater than
the femtocell RSRP; this can be either macrocell to femtocell
handover or femtocell to macrocell handover. These figures
show that the neurons have quickly clustered to the areas that
represent a permissive zone and a prohibition zone. Permissive
zones are detected by successful handovers and prohibition
zones are detected by handover ping-pong occurences being
detected. Figures 1 and 3 depict that the system detects where
handovers occur; these handover triggers can occur anywhere
within the region of permissive and prohibition zones, not
just at the periphery. The location of the neurons constitutes
the analysis phase of the autonomous system but the decision
whether this is a permissive or prohibition zone is determined

in the Plan phase and implemented in the Execute phase.
The ability of the algorithm to learn from experience within

a perfect system is depicted in Figures 1 and 2, which provide
two snapshots of performance during two time intervals.
Figure 1 shows the first 100 handover requests; it is evident
that all handovers are permitted (red ’X’) in the permissive
zone, but within the prohibition zone there is a mixture of
permitted handovers (red ’X’) and suppressed handovers (blue
’O’); this is consistent with the nonrestrictive nature of the
algorithm at initialisation. However, as the system progresses
and the algorithm has the opportunity to gain more experience
it becomes more restrictive; Figure 2 demonstrates that han-
dovers are executed successfully only within the permissive
zone and suppressed only within the prohibition zone.

However, indoor locations are inherently complex radio
environments due to clutter and other obstacles. This gives rise
to position estimation error. Figure 3 shows that including a
location estimation error of up to 3m within the simulation,
the area of the permissive and inhibition zones can still be
determined. The learning rate and the accuracy of the system
are unaffected by the addition of error due to both the x and
y elements of the error being of uniform distribution. The
movement of the neurons (due to error), during learning will,
in effect, cancel each other out.

Since the machine learning algorithm proposed in this paper
makes decisions based on experience, there is a learning curve
involved. The system is initially nonrestrictive: it does not
attempt to suppress any handovers. As the mobile terminal
continues to move around the indoor area the algorithm learns
the locations that generate unnecessary handovers. Once many
unnecessary handovers occur within any area, handover is
prohibited.

The total number of handovers can then be reduced over
time by suppressing handover in prohibition zones. It should
be noted that the algorithm is not given any prior information
regarding the location of the prohibition or permissive zones.
This knowledge is gained through an unsupervised learning ap-



proach. Once a handover trigger has been paired to its closest
neuron, learning can occur to optimise handover performance.
k-means (described in Section III) is used to aid the process of
the kernel SOM algorithm (described in Section III) to increase
the rate of convergence which reduces the learning time of the
system. It should be noted that the system starts to reduce the
number of handovers quickly and that any reduction in the
number of handovers represents an improvement in system
performance quality.

Figure 4 shows the rate at which handovers are suppressed
using both a (Kohonen) SOM algorithm and the kernel SOM
algorithm proposed within this paper. The graphs within this
figure illustrate the nature of the learning curves inherent in
both algorithms. The graphs were generated using 30 parallel
simulation runs to provide a statistical time average.

As can be seen by comparing both the SOM algorithm and
the kernel SOM algorithm in Figure 4, the kernel SOM pro-
vides an improved performance because its convergence time
is faster than the original SOM. The improved performance
of the algorithm is due to the change in distance metric (now
kernel trick and not Euclidean distance) and the addition of
k-means into the weight updating process.

When using k-means, the value of k must be provided in
order for the system to split the neurons into the appropriate
number of Voronoi cells; in this case k should be 2. However,
when using a non-ideal value for k, the proposed system will
still represent an overall improvement over the unmodified
LTE system but the convergence rate may be sub-optimum.
Figure 5 shows different values of k at different numbers
of handover suppressions and offers a comparison of these
k values. It shows that with k as 2, 3, 4 or 5, the overall
performance is not significantly different and the percentage
of suppressed handovers converges to close to a common
value. Thus, the use of k-means is valid within plug-n-play
functionality of SON within the indoor environment.

The system is improved by reducing the overall number of
handovers that occur which, in effect, increases the effective
overall capacity of the system by reducing the level of network
resources required. By modifying the LTE system using the
proposed mechanism, the number of unnecessary handovers is
significantly reduced and, when using the kernel SOM rather
than the (Kohonen) SOM algorithm, there is an increase in the
learning rate making the system reduce unnecessary handovers
more proficiently. Figure 4 shows that the proposed algorithm
offers a reduction in handovers of nearly 65%.

V. CONCLUSIONS AND FUTURE WORK

In this paper, an effective algorithm to reduce unnecessary
handovers in an indoor-outdoor scenario has been proposed.
This self-optimising algorithm uses kernel methods and neu-
ral networks in order to improve handover efficiency while
retaining the required plug-n-play functionality of SON in
LTE systems. By monitoring the location of the user when
a handover trigger is made, the Kernel SOM algorithm can be
used to analyse the situation and decide whether the mobile
user is within a zone that handover should be permitted or pro-
hibited. By implementing the proposed algorithm, the system

can reduce the number of handovers that occur by about 65%
by minimising the number of unnecessary handovers. Within
this work, the assumption is made that a mobile user generally
will walk past a window and through a door but the femtocell
is given no prior knowledge as to where these locations are
within the environment. In a situation where the system has
incomplete knowledge about the number of permissive and
prohibition zones, the algorithm is still an improvement over
a typical LTE system. It may be possible to propose values for
k by a cursory survey of the indoor area by noting the number
of doors and windows. Future work will be to improve the k-
means algorithm. Currently, the system works more efficiently
when the correct value of k is known. A system will be
devised that autonomically determines the best value for k
and therefore, the number of permissive and prohibition zones
within the area of the femtocell.
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