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Abstract—This work introduces a Hopfield Neural Network
approach to network selection for multihomed hosts which
considers a range of relevant network parameters including
available radio access technologies and traffic types (VoIP, video
streaming, Web browsing and FTP-based). Also proposed is a
novel utility function that further improves network selection.
Results show that, in terms of QoS, the allocation obtained
using proposed algorithm outperforms other two reference
allocation schemes under a range of different scenarios.

Keywords-Network selection algorithms; Hopfield neural net-
works.

I. INTRODUCTION

The interworking of heterogeneous network technologies
to provide improved coverage and QoS differentiation has
attracted some interest within the community [1]. Within
3GPP, some work has focussed on the interworking between
3G and 2G and also Wireless LAN (WLAN) systems [2].
Within the IEEE, a Layer 2 triggering mechanism for inter-
system handoff, 802.21, is being developed, while within
the IETF, extensions to the Internet Protocols have been
proposed to support mobile devices [3], [4]; the layer 3
nature of these protocols makes them equally applicable
to intersystem handoff. Furthermore, at layer 4, there are
a number of contributions to improve the performance of
TCP and the QoS perceived by either real or non-real time
services for mobile devices [5].

In an ideal world, each service should be supported by the
most appropriate Radio Access Technology (RAT), taking
into account the QoS requirements of the service and the
characteristics of the underlying bearers; thus adhering to
Ericsson’s ”Always Best Connected (ABC)” paradigm [6].
Common Radio Resource Management (CRRM) plays a
major role on assessing each network’s state and managing
the resources in an unified manner across each of the
heterogeneous technologies. This enables efficient service
delivery to the end user for a range of disparate service types
across a range of disparate technologies. Mapping services
to technologies in a dynamic manner is the core of this paper.

Much research in this domain has focussed on devices
with multiple interfaces that select a RAT on a service
per service basis. The underlying assumption in much of

this research is that the terminal will be connected to any
one of the many RATs at any particular time. Advances
in layer 3 technologies within the IETF provides the po-
tential to be simultaneously connected to more than one
network. This approach, known as multihoming, has been
the subject of research in a number of IETF working groups
[7]. Multihoming can be regarded as a significant enabler
towards the ABC paradigm because it supports always-
on connectivity to multiple networks and hence negating
interruption of service due to layer 2 handoff. This paper
focusses on multihomed mobile hosts that are supporting
multiple (dissimilar) services concurrently; the challenge is
therefore is to map each of the individual services to one of
the available RATs.

Network selection (performed at session set-up time)
and network reselection (handoff) can be conducted in a
network-centric or user-centric fashion. With the former,
centralized or hierarchical distributed control can be exer-
cised to optimize resource utilization across the interworked
networks to the network operators’ satisfaction. Network-
centric approaches are limited to scenarios where a single
operator owns and controls multiple RATs (3G, WLAN,
etc.), or where business agreements exists between partner
network operators. User-centric approaches are not bound by
this constraint: indeed the competition between network op-
erators could be exploited by users to increase competition in
the marketplace and hence enable cost efficient connectivity.

In summary, this paper is focussed on a multihomed host
performing user-centric network selection. To the best of the
authors’ knowledge, this problem has not been tackled in the
literature to date. The only work to consider network selec-
tion for multihomed hosts to date focusses on a network-
centric approach [8]. Specifically, this paper presents a
novel multihomed user-centric approach to network selection
based on Hopfield Neural Networks (MUC-HNN). HNNs
are well suited to solving complex optimization problems
within tight time frames in comparison with constrained
optimization algorithms [9].

The rest of this paper is structured as follows. Section
II defines the problem. Section III formulates the problem
from the definition of HNN. Section IV illustrates a user
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case scenario for numerical evaluation of the MUC-HNN
algorithm. The algorithm’s performance is compared with
other three allocation algorithms. Finally, conclusions are
summarized in Section V.

II. PROBLEM DEFINITION

Network selection algorithms must dynamically manage
the allocation and de-allocation of traffic to the available
networks. Their target is to optimize the allocation of the
available networks resources according to the running ap-
plications demands so that every ongoing communication’s
QoS is maximized.

The algorithm should be triggered whenever: (a) a new
session set-up request is made; (b) the user changes his/her
preferences or requirements1; (c) the user’s terminal detects
a new network; (d) an ongoing service can no longer be
supported by a particular radio link, e.g., due to signal
degradation.

In the proposed scheme, individual micro-flows are not
distributed across RATs because many applications utilize
TCP which favors paths that are symmetrical, i.e. data and
acknowledgments will traverse the same RAT. Likewise, the
different latencies that are incurred across the different links
would disrupt the communication timings in real time ap-
plications, largely based on UDP. Therefore, it is considered
that the same type of traffic can only be allocated to one
interface.

The mathematical model developed in this paper is valid
for an arbitrary number of interfaces and available networks.
However, although the host may be provided with several air
interfaces, it is assumed to have only one of each type of
RAT.

Therefore, network selection comes down to a constraint
optimization problem. There are a plethora of constraint
satisfaction algorithms which are candidates for use in
network selection: In this paper, the authors explore a HNN-
based approach. HNNs can efficiently provide solutions for
complex problems: they are more scalable than classical con-
straint satisfaction approaches, reducing both computation
time (processing capability) and spatial complexity (memory
required).

III. MUC-HNN ALGORITHM

A. HNN Dynamics

The HNN is the simplest form of neural network and
consists of a single layer of neurons fully interconnected via
symmetrical weights. Each neuron has a nonlinear output as
described by an activation function (and associated activa-
tion value) [10]. The neurons update their activation values
and weights asynchronously and independently of other
neurons. The HNN iteratively converges from an arbitrary

1In the forthcoming discussion, the authors will differentiate between
user preferences and user requirements. Preferential attributes are those to
be maximized. Requirements are mandatory values for attributes.

input state towards a sub-optimum solution as determined
by an energy function. In an N -neuron HNN, the energy
can be described as shown in (1).

E = −1
2

N∑
i=1

N∑
j=1

ViVjωij −
N∑

i=1

ViIi (1)

where Vi is the ith neuron output, Ii is the bias vector
and ωij is the associated weight to the i − j neurons
interconnection.

The neuron activation function is calculated accordingly
in (2).

V =
1
2

(
1 + tanh

U

U0

)
(2)

where U is the neuron input signal, V is the output signal
and U0 is a constant.

For the network to converge, the activation values are
updated using the Euler method:

U t+Δt
i = U t

i + Δt

⎛
⎝ N∑

j=1

Vjωij + Ii − Ui

τ

⎞
⎠ (3)

where τ is the time constant of the network, Δt is the time
step and U t

i is the input of neuron i at time instant t.
The energy function of a HNN has various minima (basins

of attraction) that represent (sub-optimal) solutions. An
unknown input pattern represents a particular point in the
energy landscape. As the network iterates in its way to a
solution, the point moves through the landscape towards one
of the hollows, i.e., to local solutions [10].

B. Problem Formulation

In this paper, communication network selection is defined
as an optimization problem. The HNN will iteratively con-
verge to a solution where the cost associated with mapping a
particular service to a particular RAT is minimized. For this
purpose, the following cost function (4) has been derived.

The network selection problem has been formulated using
a 2-D HNN. The network has NnetxNtt neurons, where
Nnet is the number of available networks and Ntt is the
number of types of traffic that the application level is
generating. A neuron (Vn,t) will be activated when traffic
t is allocated to network n.

The proposed energy (cost) function, inspired by Calabuig
[8], consists of six terms. The first term forces the neurons
to have a ’0’ or ’1’ output signal, or to be near these
values. The second term guarantees that the same traffic
type is not shared among several radios or networks. The
third term ensures that only one network is chosen from a
particular type: e.g., a mobile device equipped with only one
WLAN interface can only connect to one WLAN network
simultaneously. The fourth term is intended to enhance
the user’s network selection. The fifth term precludes the
user from demanding more than the maximum available
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bandwidth in each system. Finally, the sixth term maximizes
the traffic allocation and hence the total resource utilization.
Thus,

E =
A

2

Nnet∑
n=1

Ntt∑
t=1

Vn,t (1 − Vn,t) +
B

2

Ntt∑
t=1

(
Nnet∑
n=1

Vn,t − 1

)

+
C

2

Nnet∑
n=1

Nnet∑
n′=1
n′ �=n

ηn,n′

(
Ntt∑
t=1

Vn,t

)(
Ntt∑
t=1

Vn′,t

)

+
D

2

Nnet∑
n=1

Ntt∑
t=1

Vn,tf
u
n,t +

E

2

Nnet∑
n=1

Ntt∑
t=1

Vn,tξn,t

+
F

2

Nnet∑
n=1

Ntt∑
t=1

Vn,t
fn,t

fmin,t

(4)

, where

ηn,n′ =

{
1 if n and n′ same RAT,

0 otherwise.

, and

ξn,t = u

(
Ba

Bn
− 1
)

(5)

being

Ba = Bt +
Nnet∑
n=1

Ntt∑
t=1
t�=t′

Vn,tBt (6)

where Bt refers to the bandwidth required for traffic t,
Bn to the available bandwidth at network n, fn,t to the
cost associated to selecting network n for traffic t and fu

n,t

represents the cost from the user’s perspective, as explained
in the next section. Thus, by comparison with (1) and (4)
the parameters ω and I are

ωn,t,n′,t′ = Aδn,n′δt,t′ − Bδt,t′ − C (1 − δn,n′) ηn,n′ (7a)

In,t = −A

2
+ B − D

2
fu

n,t −
E

2
ξn,t (7b)

The HNN will tend to stabilize at the state that entails a min-
imum energy, i.e., the best network according to the user’s
perspective cost function fu

n,t. However, the definition of
this function is nontrivial: This function merges the network
attributes and the user requirements and preferences.

C. Cost Function Definition

The cost associated to selecting network n for traffic t is
computed as:

fn,t =
Bt

Bn
(8)

Thus, the network resources are allocated proportionally to
the traffic demands. However, this effect is subordinated to
the perceived benefit from the ongoing applications.
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Figure 1. Costs associated with RT and non-RT traffic

In this work, a novel user’s perspective cost function,
fu

n,t, is proposed. The cost value decreases as the network
exceeds the user’s QoS requirements (in terms of available
bandwidth), while any network failure to fulfil the user’s
requirements is highly penalized. Therefore, the term that
refers to the user’s perspective of costs (fourth term) of (4)
will have a minimum value when only those networks that
have the lowest cost values are activated.

For real-time (RT) services, the associated cost of al-
locating traffic to networks with available capacity higher
than that required is zero since packet dropping as result of
congestion does not occur. For non-RT services, the function
definition assumes a best effort cost characterization: The
cost increases exponentially until it reaches a saturation
level. The scale parameter of the cost functions has been
arbitrarily set by considering the same perceived cost at 50%
of the user requirements ( Bt

Bn
= 2).

fNRT
n,t = 1 − e

−0.49
Bt

Bn (9a)

fRT
n,t = 1.25

Bt − Bn

Bt
u

(
Bt

Bn
− 1
)

(9b)

Fig. 1 shows the cost characterization for both types of
traffic. Thus, the allocation costs at the application level
are a direct consequence of the available bandwidth for
each traffic taking into account of the application demands,
and the consistency of the application performance when
resources are scarce.

IV. NUMERICAL EVALUATION

A. Simulation Scenario

A network simulation has been implemented to conduct
numerical evaluation of the MUC-HNN solution. In this
model, a multihomed device is provided with three interfaces
(UMTS, IEEE 802.11b and Ethernet) that can connect
to three access points (and hence RATs) simultaneously.
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The assumed available bandwidth at the UMTS link is 60
kb/s [11]. For the other two links, a maximum capacity
of 2 Mb/s and 10 Mb/s respectively is assumed, while a
congestion level is uniformly distributed between 0% and
80%. The device supports three concurrent sessions: VoIP,
video streaming and file transfer. All three services have the
same preference level. The algorithm is able to allocate zero
or more services to an interface.

The traffic models for the VoIP and video streaming have
been extracted from [12], [13] respectively: the terminal
is assumed to generate a constant bit rate of 64 kb/s for
the former, and 5 Mb/s (download) for the latter. FTP file
download traffic runs over TCP Reno.

The parameters of the proposed HNN have been calcu-
lated and are shown in the Appendix:

A = 10 B = 20000 C = 20000
D = 1000 E = 15000 F = 500

τ = 1 U0 = 0.1 Δt = 10−4

To evaluate MUC-HNN’s performance, it is compared
with two other algorithms; following the same approach as
taken by Calabuig [8].

1) Round Robin (RR): This technique allocates the re-
sources from the available networks to each traffic cyclically.
The maximum available bandwidth is allocated for each type
of traffic, permitting no traffic sharing between two or more
interfaces.

2) Optimum Bit Rate (OBR): This technique allocates to
each type of traffic the network whose available bandwidth
is the lowest, above the traffic bandwidth requirements.

B. Numerical Results

From the bandwidth allocated to each type of traffic, the
following QoS metrics have been calculated: VoIP packet
dropping probability; video stream buffering time (as a
percentage over the visualization time); and FTP service
latency (for a 1MB file download).

Results are based on an average outcome after 1000
simulation runs.

Figure 2 illustrates the cumulative distribution function
(CDF) of the packet dropping probability for the VoIP traffic.
MUC-HNN offers a 0% blocking probability in any scenario,
while OBR achieves it in 90% of the cases and RR only in
25%.

Figures 3 and 4 show the CDF of the percentage of video
stream buffering time and the 1MB-file download latency
respectively. The proposed algorithm achieves better perfor-
mance overall. It is noted, however, that in approximately
7% of the user case scenarios its video stream performance
is slightly lower than the RR and OBR allocation. This
is a consequence of the algorithm enhanced allocation of
resources to both the VoIP and the FTP traffic. MUC-HNN
reduces FTP service latency by 50% in 25% of the cases
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Figure 2. CDF for packet dropping probability of the VoIP service
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Figure 4. CDF for 1 MB file download latency (FTP service)

considered in comparison with RR and OBR algorithms. In
the remaining cases, MUC-HNN also attains better perfor-
mance (approximately 20% latency reduction).
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V. CONCLUSION

A novel network selection algorithm for multihomed
users is proposed. This algorithm is based on HNNs and
a newly defined cost function that describes, from a user’s
perspective, the cost associated to the user’s traffic-network
allocation. It is applicable in heterogeneous networks and
can deal with any number of available interfaces.

Simulation results show that it offers better performance
than other reference resource allocation algorithms in a
heterogeneous (UMTS, IEEE 802.11b and Ethernet) envi-
ronment under different congestion levels.

APPENDIX A.
ENERGY FUNCTION WEIGHTING COEFFICIENTS

CALCULATION

The weighting coefficients have been calculated as in [8].
The worst case scenarios are considered so that the choice
of weights permits increased convergence rates. Choices that
imply a benefit from the user perspective, not necessarily
reduce the value of (4). Favorable choices are denoted by
+, while negative choices are denoted by −.

A. First term

The first term of the energy function permits faster con-
vergence of the HNN.

∂E

∂Vn,t+

=
A

2
(
1 − 2Vn,t+

)
+

D

2
fu

n,t+ +
F

2
fn,t+

fmin,t

∂E

∂Vn,t−
=

A

2
(
1 − 2Vn,t−

)
+

D

2
fu

n,t− +
F

2
fn,t−

fmin,t

The condition for converge towards the minimum is:

∂E

∂Vn,t+

<
∂E

∂Vn,t−

In worst case scenario, Vn,t− = 1, Vn,t− = 0, fu
n,t− = fu

n,t+ .

A

2
(
1 − 2Vn,t+

)
+

F

2
fn,t+

fmin,t
<

A

2
(
1 − 2Vn,t−

)
+

F

2
fn,t−

fmin,t

A >
F
2 min(fn,t− − fn,t+)

fmin,t

B. Fifth term

This term avoids network capacity overloading.

∂E

∂Vn,t+

=
A

2
(
1 − 2Vn,t+

)
+

D

2
fu

n,t+ +
F

2
fn,t+

fmin,t

∂E

∂Vn,t−
=

A

2
(
1 − 2Vn,t−

)
+

D

2
fu

n,t− +
F

2
fn,t−

fmin,t

In worst case scenario, Vn,t− = 1, Vn,t− = 0, fu
n,t− = fu

n,t+ ,
fn,t− = fn,t+

E > A

C. Second term

Users must not allocate the same type of traffic to different
interfaces simultaneously. The rationale behind this is that
users are not enabled to handle connections at transport level
seamlessly across several interfaces.

The fourth and sixth terms decrease neuron outputs. Con-
sidering δ the maximum desired distance to the desired sum
value, equilibrium is achieved when |∑Nnet

n=1 Vn,t − 1 |< δ.
Considering the worst case scenario:∣∣∣∣D2 +

F

2

∣∣∣∣ < δB,B >
D + F

2δ

D. Third term

This term must decrease neuron output if ηn,n′ = 1.

∂E

∂Vn,t
=

A

2
(1 − 2Vn,t) + B

(
Nnet∑
n′=1

Vn′,t − 1

)

+
C

2
ηn,n′

(
Ntt∑
t′=1

Vn′,t′

)
(1 − δn,n′)

+
D

2
fu

n,t +
E

2
+

F

2
fn,t

fmin,t

∂E

∂Vn,t
> 0

Since B > A, worst case scenario is Vn,t = 0, Vn′,t = 0.(
Ntt∑
t′=1

Vn′,t′

)
C > A + 2B − Dfu

n,t − E − F
fn,t

fmin,t

Therefore C >> 0.
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