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Abstract—Partial discharge (PD) is a well-known indicator 
of the failure of insulators in electrical plant.  Operators are 
pushing toward lower operating cost and higher reliability and 
this stimulates a demand for a diagnostic system capable of 
accurately locating PD sources especially in ageing electricity 
substations. Existing techniques used for PD source 
localisation can be prohibitively expensive. In this paper, a 
cost-effective radio fingerprinting technique is proposed. This 
technique uses the Received Signal Strength (RSS) extracted 
from PD measurements gathered using RF sensors. The 
proposed technique models the complex spatial characteristics 
of the radio environment, and uses this model for accurate PD 
localisation. Two models were developed and compared: k-
nearest neighbour and a feed-forward neural network which 
uses regression as a form of function approximation. The 
results demonstrate that the neural network produced superior 
performance as a result of its robustness against noise.      

Keywords – Partial discharge; localisation; 
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I.  INTRODUCTION  
A significant cause of plant failure in electrical substations is 
attributable to insulation degradation [1], and this impacts both 
availability and operating expenditure. Insulation degradation 
may be due to the presence of bubbles, voids, foreign particles 
and other impurities inside the insulation medium [2]. 
Irrespective of the causal mechanism, insulation degradation 
gives rise to partial discharges (PD), which increase in 
severity as the deterioration progresses [3] [4] and this in turn 
further degrades the quality of the insulation as part of a 
vicious cycle of breakdown. These discharges are therefore 
symptoms of insulation breakdown. In this context, PD is 
defined as a localised dielectric breakdown in a portion of an 
electrical insulation between two conducting terminals. If PD 
can be detected early, preventative maintenance can be 
employed to: minimise the likelihood of outages caused by 
catastrophic failure of equipment, increase plant life, and 
minimise costs. 
 
PD produces impulsive electromagnetic emissions in form of 
radio frequency (RF) energy. It also produces light, heat, 
acoustic emissions in audible or ultrasonic ranges and also 
chemical reactions [5]. Consequently, several methods have 

been developed to detect PD; these methods include acoustic 
detection [6], chemical detection [5], detection by electrical 
contact [7] and radio frequency sensing [8]. Radio frequency 
sensing is attractive in terms of cost and convenience but can 
only be effective for PD monitoring if PD source locations can 
be determined with sufficient accuracy.  
We propose to deploy a matrix of low cost radio sensors in the 
form of a wireless sensor network using commercial off-the-
shelf components. However, a trade-off exists between cost 
and complexity. The low cost of the proposed solution allows 
a monitoring system to be permanently deployed and thus 
continuously monitor the substation in real-time. In the 
proposed approach, sensor nodes emit an emulated PD signal 
in a specific (short) timeslot particular to that node. All other 
nodes monitor these emulated signals allowing a database to 
be constructed of the spatial propagation characteristics across 
the substation environment. It is this propagation database 
which, when suitably interpolated can be used to locate 
sources of PD. 
 
The location of PD can be estimated using its measured 
Location Dependent Parameters (LDPs) [9]. Typical LDPs 
include the Time of Arrival (ToA), Time Difference of Arrival 
(TDoA), Angle of Arrival (AoA) and/or received signal 
strength (RSS) [10].  
 
ToA, TDoA and AoA based techniques have been 
successfully implemented for PD location estimation but 
require significant complexity and hence, cost [9] [11]. 
Specifically, with TDoA, accurate source localisation is only 
possible with tight synchronisation across all receivers, while 
AoA requires an array of antennas at the receiver and relies on 
direct Line Of Sight (LOS) path for accurate location 
estimation [12]. 
 
Conversely, an RSS-based technique presents itself as a cost-
effective and low-complexity solution for the PD localisation 
problem [12] [13]. RSS measurement does not require any 
special hardware and demands only very loose 
synchronisation between the receivers.  Theoretically, a well-
known propagation model can be used to estimate the distance 
between the transmitting source and each receiver node. The 
distance difference could then be employed with 
multilateration techniques to estimate the location of the PD 
source. However, most practical radio environments are 



complex and are not well described by ready-made models in 
literature and hence large localisation errors would result [14]. 
This motivates an investigation into the possibility of 
localisation using RSS-based fingerprinting [14] to improve 
the accuracy of PD source localisation in electrical substation. 
The fingerprinting technique captures and utilises the patterns 
exhibited by the PD signals at different locations within the 
propagation environment to estimate the PD location. The 
experimental results show that the fingerprinting technique 
achieves acceptable accuracy.  
 
The rest of this paper is organised as follows. Section 2, 
provides the formulation of the problem. Section 3 describes 
the RSS-based fingerprinting localisation scheme. Section 4 
describes the experimental procedure, data preparation and 
visualisation. The results are presented and discussed in 
section 5 with conclusions in section 6. 

II. PROBLEM FORMULATION 
 

The problem of PD localisation considers sources of unknown 
PD location radiating electromagnetic (EM) signals from 
defective insulation systems. These EM signals propagate 
away from the source and are measured using receivers placed 
in the vicinity of the discharge site as illustrated in Figure 1. 
The area used for the experiment is modelled as a finite 
location space },...,{ 1 nllL   of  discrete locations. The 
location space is taken as a set of physical locations with x  
and y coordinates: 
 )},(.,..),,({ 111 nnn yxlyxlL               (1) 

where ),( ii yx , ni dd1 , represents the location of a PD 
source. 
Suppose there are m reference antennas (sensor nodes) placed 
in the environment, the received signal strength (RSS) vector 
received at a reference antenna  can be denoted as; 
 ),,...,( 1 knkk rrR                             (2) 
where kjr , mk dd1 , nj dd1 , represents the RSS value 

received by the thk  reference antenna from the thj  PD 
source and n is the number of PD sources in the location 
space. The aim is to estimate the location of the PD source 

),( ii yx  in the location space L , given the set of RSS 

vectors kR , mk dd1 received at reference antennas. Both 
the antennas and the PD sources are assumed to be stationary 
during measurement.  
 

 
 

Figure 1 RF measurement of PD signals 

III. RSS-BASED FINGERPRINTING 
 

The fingerprinting technique is one of the most viable methods 
for RSS-based location estimation due to its ability to adapt to 
the variation of indoor and challenging propagation 
environments [15]. It is normally executed in two phases; the 
training phase and the estimation phase [14] [16]. In the 
training phase, the aim is to construct a training database 
(radio map) that stored pre-recorded RSS from receivers at 
reference points. The database is built on the assumption that 
each point within the environment has a unique RF 
characteristic. In the estimation phase, the PD source location 
is estimated by comparing the real-time RSS against the 
records in the radio map through statistical learning methods. 
The basic structure of the fingerprinting system is as shown in  
Figure 2. 
The location fingerprint )],...,(),,[( 21 mii RRRyx  is created using 

the reference points ),( ii yx  and RSS of the PD signals 
obtained from the corresponding reference point.  
Mathematically, the fingerprinting training database can be 
expressed as: 

),(...,),,(),,( 2211 NN XRXRXRD                           (3)  
 
where kR  represent the fingerprint from the thk  antennas and 

nX  represent the position of PD given by ].,[ iin yxX   N  
denotes the size of the fingerprinting database. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Basic structure of fingerprinting system  
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The radio map contains all such vectors for a grid of locations 
within the environment used. There are several techniques that 
can be used to train the database and estimate the location of 
the source; these include distance dependent algorithms, such 
as K nearest neighbour [14] and pattern matching algorithms 
using Neural Networks [17].  

A. K-nearest neighbour localisation algorithm 
 

K-nearest neighbour (K-NN) is one of the simplest supervised 
learning algorithms used for location estimation. It estimates 
the location of a target based on a similarity measure in the 
signal space. In this paper, the Euclidean distance [14] is used 
as a similarity measure to determine the K-nearest neighbours 
of the target. The Euclidean distance is calculated as  
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where ktr  is the  RSS value from PD of interest observed at k

reference antenna and kjr  is the RSS value recorded in the 
radio map. 
In order to estimate the location of PD, the algorithm 
computes the distance in signal space between the PD 
measurement and the recorded data, and returns the K 
neighbours closest to that PD source. The estimated location 
of the PD is the average the K-nearest neighbours. 
The value of the parameter k is determined by the empirical 
rule [18] TNk  , where TN is the number of samples for 
which their locations are to be estimated. 

B. Neural network localisation algorithm 
 

Another approach is to use a feed forward neural network [17] 
for location fingerprinting. This approach can be regarded as a 
function approximation problem consisting of a nonlinear 
mapping of the PD received signal strength input onto the dual 
output variables representing the location coordinates of the 
PD source.  
The multi-layered perceptron (MLP) [13] model has been 
used. The network consists of an input layer, a hidden layer 
and an output layer as shown in Figure 3. A sigmoidal 
activation function was used in the hidden layer to provide 
robustness against extreme values and a linear activation 
function in the input and output layers.  
 
 
 
 
 
 
 

 

 

 
Figure 3 Basic model of localisation neural network 

During the learning phase, the neural network is trained to 
form a set of fingerprints (RSS values) as a function of PD 
location. Each sample is presented to the inputs and the error 
between the network outputs and the desired outputs is 
obtained. The neuron weights are then adjusted to minimise 
error. The input values can be regarded as the vector sum of 
the true input value and random noise. As long as the noise 
has zero mean, the weight updates due to the noise component 
will cancel out with a sufficient number of samples. This noise 
immunity makes neural networks attractive for these 
applications.  In the testing phase the unseen RSS values of 
PD collected from other locations are applied to the input of 
the neural network. The output of the neural network gives the 
estimated location of the PD.        
 In this paper, all the fingerprints formed from the PD data 
collected by three antennas have been applied to the input of 
the neural network. During the training process, K-fold cross- 
validation is used to determine the optimal configuration of 
the neural network. In k-fold cross-validation the original 
training data is randomly divided into k equal size sub sets 
(the folds). In each case, one of the k subsets is used as 
validation data and the remaining are used for training. The 
cross-validation process is repeated k times and the average of 
the k results from the folds gives the test accuracy of that 
particular network. In this work, a 10-fold cross validation is 
used. From all the networks tested by cross validation the 
feedforward 3-4-2 structure of the neural network with four 
neurons in the hidden layer has the best accuracy. The 
Bayesian Regularisation (BR) learning algorithm is used to 
train the network which maximises generalisation. The 
training of the network is done off-line using the database 
created by the emulated PD events. The unseen PD data are 
then presented to the network. The neural network uses the 
knowledge acquired during training to provide interpolated 
values for the coordinates of the unseen data. 
 

IV. EXPERIMENTAL PROCEDURE 
In order to assess the viability of deploying a matrix of sensors 
in an electrical substation for PD monitoring, a measurement 
campaign was carried out in a laboratory which is a 19.20 m x 
8.40 m rectangular space at the University of Strathclyde, 
Glasgow. The laboratory contained a great deal of clutter 
including metallic objects which gives rise to a complex 
multipath-rich radio environment. Although the radio 
environment in the lab cannot be expected to approximate that 
within an electrical substation, it is sufficiently complex to 
enable evaluation of the finger printing techniques being 
investigated. Figure 4 shows the measurement space and 
geometry. A 1 m x 1 m grid map of 152 points was 
constructed in the floor of the laboratory. Pulse emulated PDs 
were generated at the predefined grid points (black dots) using 
a picosecond pulse generator.  The pulse duration was 10 ps 
and the pulse repetition frequency was 100 kHz. Three 
omnidirectional antennas (173 MHz) were deployed in the 
laboratory at predefined locations as shown in Figure 4 to 
capture the PD signals.  
 
Figure 5 shows a sample of the recorded signal trace. The PD 
source was attached to a 70 ~ 1000 MHz omnidirectional 
antenna which was made movable from one grid point to 
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another. It is assumed there were no changes in the 
experimentation environment between measurements. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Layout Grid for Measurement Campaign 

 
 

Figure 5 Pulse signal 

During the calibration phase, 20 PD measurements were 
collected at each of the 152 grid points bringing the total 
calibration data collected from the three receive antennas to 
9120. For test dataset, PD data was collected at 36 spatially 
uniform inter-grid locations (red crosses). These signals were 
captured and recorded using a multichannel 40 GS/s digital 
oscilloscope. The oscilloscope analogue bandwidth is 9 GHz. 
The PD data acquired from measurement were sampled at 2 
GS/s. This sampling rate allows the signals to be captured with 
high resolution.  

 

A. Data preparation and visualisation 
 

The PD parameter used in this work is received signal energy 
(RSE). The calculated average values of energies of the 20 
received PD pulses at each grid point and inter-grid point 
forms the training and testing data set respectively. This brings 
the total number of training and test data to 456 and 108 
respectively. Figure 6 shows the RSE pattern at various points 
in the radio environment for each of the three antennas. The 
figures reveal the complexity of the radio environment, which 
does not fit any well-known propagation model. The 
complexity of the signal attenuation with distance is a result of 
noise and multipath distortions/shadowing.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 

 

 

 

 

 

 

 
 

Figure 6  Variation of RSS in propagation environment for antenna1, 2 & 3 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS 
 

This section provides an empirical evaluation of the 
performance of the fingerprinting based localisation 
techniques described in Section 3. The average RSE used here 
is the test data taken from 36 spatially uniform locations 
(Figure 4). The performance of the localisation techniques is 
evaluated based on statistical error metrics. The localisation 
error is taken to be the Euclidean distance between the 
estimated location and the true location of the PD source. The 
cumulative density function (CDF) of the distance error is 
used to describe the performance of the algorithms. This is 
chosen because it shows how consistent the algorithms work 
or perform and it captures both the accuracy and precision of 
the algorithms.  
 
Figure 7 shows the CDF of the localisation error for the K-
nearest neighbour and neural network fingerprinting 
techniques. The k-NN algorithm achieves a precision of 80 %  
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of locations with an error less than 3 m. The maximum error 
for k-NN is 6.37 m for 3 % of the cases.  
On the other hand, the neural network algorithm achieves 
more than 85 % of locations with an error less than 3 m. The 
maximum localisation error is 4.18 m for 3 % of the cases. 
 
Table 1 gives a summary of the error measures for both k-NN 
and neural network fingerprinting algorithms.  The 95 % 
confidence interval (CI) is computed assuming a normal 
distribution of the errors. 95 % CI indicates the probability 
that the true value of the parameter (mean or standard 
deviation) of the localisation error lies in the confidence range. 
From the result shown in Table 1, we are 95 % confident that 
the value of the mean error for k-NN and neural network 
algorithms lie in the range 1.16 to 2.28 m and 1.31 to 2.04 m 
respectively. It can be seen that both algorithms are practically 
feasible with mean localisation error of less than 2 m. 
However, the neural network is more robust due to its lower 
error standard deviation. 

 
Figure 7 CDF of localisation error for fingerprinting techniques 

 
Table 1 Summary of error measures for the models 

Parameter Model 95% Confidence Interval 
Lower 
boundary 
(m) 

Upper 
boundary 
(m) 

Mean & 
Standard 
deviation 
values (m) 

Mean K-NN 1.16 2.28 1.72 
Neural 
Network 

1.33 2.04 1.68 

Standard 
Deviation 

K-NN 1.35 2.16 1.66 
Neural 
Network 

0.85 1.36 1.05 

 

VI. CONCLUSIONS 
 

An implementation of an RSS-based fingerprinting technique 
for PD source localization has been described. The proposed 
technique is based on the construction of a fingerprinting 
database of RSS extracted from PD measurement. The k-
nearest neighbour and neural network algorithms are used to 
construct the database and locate the PD sources. The 
performance of the fingerprinting technique based on k-
nearest neighbour and neural network has been evaluated 
using empirical test data. The results (average localisation 
error less than 2 m) demonstrate that fingerprinting 
localisation is practical for a PD detection and localisation 

systems. Neural networks can yield superior performance as a 
result of their robustness in the presence of noise. 
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