Investigation of GPU-based Pattern Matching
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Abstract—Graphics Processing Units (GPUs) have become the
focus of much interest with the scientific community lately due to
their highly parallel computing capabilities, and cost effectiveness.
They have evolved from simple graphic rendering devices to
extremely complex parallel processors, used in a plethora of
scientific areas. This paper outlines experimental results of a
comparison between GPUs and general purpose CPUs for exact
pattern matching. Specifically, a comparison is conducted for
the Knuth-Morris-Pratt algorithm using different string sizes,
alphabet sizes and introduces different techniques such as loop
unrolling, and shared memory using the Compute Unified Device
Architecture framework. Empirical results demonstrate nearly a
30 fold increase in processing speed where GPUs are used instead
of CPUs.
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I. INTRODUCTION

Pattern Matching is widely used in a plethora of domains,
such as gene sequencing [1], or with critical systems such as
Forensic Examination [2], Intrusion Detection Systems (IDS),
and Deep Packet Inspection (DPI) [3]. In each case the main
principle is the same, matching up to thousand patterns against
a specified input. The ever increasing volumes of data that
systems must process and the increasing level of attacks gives
rise to a requirement for ultra high speed execution of pattern
matching, and that is the motivation for this research.

The parallel capabilities of GPUs have recently been used
to improve existing algorithms in several scientific areas,
such as mechanics [4], applied mathematics [5], physics [6],
image processing [7] and, of course, to accelerate pattern
matching. These applications are known as General Purpose
Computations on Graphics Processor Units (GPGPUs). GPUs
are an attractive solution due to their low cost (commercial off-
the-shelf devices), and their enormous computational power
(by virtue of their highly parallelised architecture).

Previous research into parallel computation has focussed
on a hardware approach, e.g. Field Programmable Arrays
(FPGAs) [8][9][10]. FPGA provide a solution and can offer
significant performance improvements over CPUs at the ex-
pense of high development costs. GPUs also promise signif-
icant performance improvements but with lower development
costs than an FPGA equivalent [11].

The idea of implementing pattern matching algorithms on
GPUs is not entirely new. Both the Boyer-Moore-Horspool
algorithm [12], and a modified version of Aho-Corasick
(Parallel Failureless Aho-Corasick algorithm) [13] have been
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implemented on Nvidia hardware with good results. Jacob et
al created an Intrusion Detection System called PixelSnort by
using the Cg programming language and the Knuth-Morris-
Pratt algorithm to improve the CPU version of the Snort
Intrusion Detection System [14].

In this paper, the performance of the Knuth-Morris-Pratt
(KMP) algorithm [15] is compared for CPU and GPU ar-
chitectures. The performance of pattern matching algorithms
is dependent on pattern lengths, the size of alphabet, etc;
therefore a range of parameters has been examined in order
to permit proper comparison.

The algorithm is executed on a commercial off-the-shelf
workstation running the CUDA 5 framework. The KMP al-
gorithm was chosen specifically because it accesses memory
multiple times when searching for patterns. This is important
since the algorithm requires the pattern and its failure table
to be stored in memory and accessed during matches and
mismatches. This facilitates the measurement of performance
for different versions of the algorithm, and using different
improvement techniques specific to CUDA and / or to GPUs.

The rest of this paper is organised as follows. Section II
provides a background on pattern matching, the existing ap-
proaches and their limits. Section III details the experimental
methodology used to evaluate the KMP algorithm. Section IV
highlights the results obtained by the GPU version of the
algorithm, and aims to demonstrate the potential of pattern
matching and IDS on GPUs. Finally, Section V summarises the
points raised in the previous sections and provides a research
direction for future work.

II. PATTERN MATCHING

Pattern matching is the process of verifying that a specific
pattern is present in a text having the same or a larger length.
The pattern and the text are usually represented as a one
dimensional array. Let n denote the length of the text S, m
the length of the pattern, and P the pattern. Furthermore, we
assume at all time that the length of the pattern is smaller or
equal to the length of the text; that is, m < n.

In order to give an idea of what pattern matching is, the
brute force algorithm, and the KMP algorithm are described
below.

The brute force algorithm is one of the simplest approaches
that works as follows. It compares the first element of the
pattern P with the first element of the text S and tries to match
the successive position until the entire pattern is matched.
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Only after complete match or a mismatch does the algorithm
move to the next position. This algorithm does not require
any pre-processing, but it exhibits slow performance due to its
computational inefficiency.

The KMP algorithm has been designed to reduce unneces-
sary comparisons, such as those performed in the brute force
algorithm. The KMP uses a failure table to avoid comparing
the text and the pattern at superfluous positions and skip the
characters that have already been matched. This allows the
algorithm to be significantly more efficient and hence faster
than the brute force algorithm described previously.

The algorithm operates as follows. Firstly, it initialises a
failure table for the pattern being searched. A failure function
is built by analysing the pattern of interest and the repetition
of its own first characters as shown in Table I. This enables
the search function to calculate the number of characters
that should be skipped during the searching phase. Figure 1
depicts how the algorithm works and how the shifting phase
achieves to match patterns in a minimum amount of steps. The
complexity of the algorithm is calculated as follows [15]:

O(m+n)

The algorithm can also be represented as a state machine, as
illustrated in Figure 2. The state machine provides a better
overview of how the algorithm behaves in relation to its
associated failure table (skips are performed in the case of
a mismatch).

Despite the greater efficiency of the KMP algorithm over
a brute force approach, it does not scale well when matching
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Fig. 2: Knuth-Morris-Pratt State Machine

multiple patterns: execution time increases linearly with num-
ber of patterns as a consequence of each pattern requiring one
iteration through the text.

A. Intrusion Detection Systems

Intrusion Detection Systems are complex systems protect-
ing critical infrastructures. Two types of IDS can be identified:

e  Signature Detection

e  Anomaly Detection

Signature detection, uses a pattern database to match the
incoming and outgoing traffic [16] of a network, while the
anomaly detection analyses the traffic behavior and flags all the
anomalies [16][17]. This paper is focused on signature based
systems, but these systems have flaws.

It is difficult and expensive to upgrade Intrusion Detection
Systems, whereas the system presented in this paper uses off-
the-shelve technologies, as well as public sources algorithms,
and software allowing for a greater flexibility in the extensions
and upgrades of the system; e.g., from more NICs to more
powerful GPUs or to a new version of the CUDA framework.
Current standard (un-parallelised) intrusion detection systems
are not designed to support high bandwidth loads and an ever
increasing number of patterns. Whereas off-the-shelve systems
with GPUs offers the possibility to parallelise the resources
intensive process of pattern matching and offload the CPUs,
allowing them to focus on other important tasks.

III. EXPERIMENTAL METHODOLOGY

The experiments were performed on a high end Supermicro
Superwork Station 7047GT-TPRF with two six-core Xeon
processors (Intel E5-2620) running at 2.0Ghz, and supported
by 64 GB of RAM. The machine also features an Nvidia Tesla
K20m GPU (with 13 multiprocessors and 192 CUDA cores and
5Gb of DDR3 global memory); this permits up to 26624 active
threads. Ubuntu Server 11.10 (kernel version 3.0.0-12-server)
was the chosen operating system. This off-the-shelve high end
hardware allows the achievement of outstanding performance
with the algorithm running on the CPUs and on the GPUs.

In evaluating the execution time of algorithms some
sources of error may be introduced: other processes may be
running in the background and competing for resources, or
lack of precision from the clock. In order to mitigate these
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errors and also to provide confidence in the estimated execution
times, each algorithm was averaged over 500 runs.

The KMP algorithm evaluated in this paper was imple-
mented using C99 programming language and was compiled
for the CPUs by gcc 4.6.1 and for the GPUs using Nvidia’s
nvee version 0.2.1221 without using any optimisation flags.

In order to permit fair comparison of pattern matching
algorithms a number of well known evaluation cases are used.
Let X denote the alphabet, and P,, be the number of patterns.
The cases can thus be described as follows:

e searching genome sequence of the Yersinia Pestis
bacteria (4.6 Mb) [18] which represents an alphabet
of size ¥ = 4;

e  searching a password file leaked from the internet (4.0
Mb) which has an alphabet size of ¥ = 26, i.e. the
length of the English alphabet;

Although these evaluation cases are well known, they lack
flexibility due to their fixed size alphabets; therefore, two
additional evaluation cases were defined based on a 4.6 Mb file
of uniformly randomised characters: one with an alphabet size
3 = 10 and one with size ¥ = 20. The searched patterns were
randomly chosen sequences with varying predefined length of
m = 20, m = 50, m = 100 and m = 500 characters. A
varying number T,, of threads was also used over a varying
number of patterns P, = 10, P, = 100 and P, = 1000 of
m = 20 and compared with the CPUs.

To measure the improvement achieved by the GPU version
of the Knuth-Morris-Pratt algorithm, the execution time was
used. This metric is the total time needed for the algorithm
to find all patterns searched for in the input text, and includes
the transfer time between the host and the GPU (excluding
the pre-processing time). The transmission and processing time
was measured using standard C APIs and the timer function
included in the CUDA toolkit allowing a precision of laus.
Only the performances of the searching phases were evaluated,
allowing to transpose the algorithm later on to other systems
and offload the pre-processing to other devices.
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Fig. 4: Split Pattern over 2 Threads

The text, the pre-processed look-up table, and the patterns
array were transferred in a single batched operation to the
global memory to avoid multiple transfers between the host
and the device. In order to permit multiple pattern searches,
the algorithm was modified to support 2D arrays: each pattern
requires one iteration through the input text. At each iteration
one pattern and its corresponding look-up table were loaded
into shared memory to allow the algorithm to access them in
as few clock cycles as possible[19].

Each thread was then assigned to a specific part of the
input text and processed a set of N, of letters calculated as
follows

N

TotalrhreadNumber

+(M—1)=N,

to avoid missing a pattern split over two parts of text as
illustrated in Figure 4. Following the previous statements
the complexity of the CPUs and GPUs based KMP can be
evaluated as follows:

Sequential Version Let P, be the number of patterns, m
be the pattern length, and n be the text string length (e.g.
Yersinia Pestis). The complexity is evaluated as follows :

P, *O(m+n)

Parallelised Version Let B,, be the number of blocks and
T, the number of threads active in a block. The complexity
of the GPUs version of the KMP algorithm can be calculated

as follows :
n

P,x0O —_—
* (m+Bn*Tn

)

The throughput performance of the algorithm can be cal-
culated as follow :

8+ N
— = Throughput
Timegp,
where Timegy,, is the time elapsed during which the
algorithm is running on the device, and 8 % IV is the input
length of the text in which the patterns are searched (bytes).

IV. EXPERIMENTAL RESULTS

The experiments consisted of first modifying the KMP
algorithm from a sequential version to a highly parallelised
version, modifying its core and allowing it to search multiple
patterns. Once modified the algorithm was then assessed by



Knuth Morris Pratt

0.1 L

Time (sec)

001 |-

GPU

CPU
|0Patterns 100Patterns 1000Patterns
Pattern Number
Fig. 5: Simulation Results
Knuth Morris Pratt
200 ~ . /No of Patterns.

50 B~ )
10 L

Time (sec)

01} 97\@\\:

0.01 |
1000 patterns GPU ——
1000 patterns CPU — g
100 patterns GPU ¢
100 patterns CPU —¢—
10 patterns GPU 5

10 patterns CPU

!

0.001 |

0.0001 i i i
10 100 1000 10000

Thread Number

Fig. 6: Simulation Results over Multiple Pattern Sizes and
Thread Number

measuring the overall execution time by searching for mul-
tiple patterns with varying pattern length and varying thread
numbers. Multiple data files have also been used, with different
(2) sizes.

The results indicate that GPUs have the potential to provide
a performance improvement over CPUs by a factor of 29
for the KMP algorithm when using shared memory and loop
unrolling. The loop unrolling permitted to optimise the overall
kernel execution time by modifying the different for loops
in the kernel. This also helped with the compiler’s branch
prediction while compiling the software. Also in accordance
with the CUDA programming guide [19], the shared memory
was used to store the patterns and the pre-processed look-up
tables allowing access to each element with a minimum num-
ber at clock cycles and with a higher bandwidth than storing
the patterns in global memory. This process is illustrated in
Figure 3.

Figure 6 shows the linear improvement of the algorithm
by modifying the number of patterns from P, = 10 to P, =
1000 and by modifying the number of threads from T, =
100 to T}, = 10000 over the Yersinia Pestis genome file. The
figure also demonstrates the importance of using a consequent
amount of threads to significantly improve the performances
over the serial version. It is also visible that, as the number
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Fig. 7: Speedup over Multiple File Sizes and X Sizes.

of patterns increases, and the number of threads increases the
improvements are linear. This occurs because the algorithm
requires an iteration per pattern.

Figure 7 demonstrates the performance sensitivity of the
KMP algorithm to different (3) and (m). Figure 7 reveals the
algorithm’s performance varies with pattern size from m =
20 to m = 100 but counter-intuitively, once the pattern size
increases to m = 500 the performances are decreasing. This
is a result of thread divergence, which occurs when multiple
threads in the same warp (in this case a group of 32 threads)
are executing different instructions simultaneously [18].

The loop unrolling technique allowed the multiple versions
of the algorithm to gain an average improvement of 0.2 mil-
liseconds over 500 hundred runs, using an alphabet of m = 20
and 10,000 threads. Although this performance improvement
may seem insignificant, it might be important under a heavy
network load or if a significant number of patterns need to be
searched for.

Figure 5 illustrates GPUs and CPUs performance for
various numbers of patterns (with fixed pattern size of m = 20
and 10,000 threads).

Table II shows that the algorithm performs sub-optimally
compared to the algorithm Parallel Failureless Aho-Corasick
(PFAC) proposed by C-H. Lin et al. [13] and the Aho-Corasick
algorithm from G. Vasiliadis et al. [3] for Intrusion Detection
Systems. The throughput achieved for a Alphabet ¥ = 4,
T, = 10000 and P,, = 1000 nearly achieves 18.6 Mb/s and 20
Mb/s for an alphabet of ¥ = 26. The performance of the KMP
algorithm regarding the throughput is modest and therefore
only appropriate for low bandwidth deep packet inspection
systems or for digital forensic investigation tools. High speed
network deep packet inspection will require further research.

V. CONCLUSION AND FUTURE WORK

This paper presented a detailed discussion of Deep Packet
Inspection and Intrusion Detection Systems on CPUs and
GPUs. Their role and current limitations were also examined.
In addition it was demonstrated that the current solutions are
not adequate to exponentially growing network and provided
a new approach for the protection of critical infrastructures.



TABLE II: Throughput Comparison

File Threads Pattern Number (m = 20) Throughput (Gb/s) GPU Throughput (Gb/s) CPU

DNA 10 000 1 19.827875 0.47744

DNA 10 000 10 1.98144 0.06703

DNA 10 000 100 0.18429 0.00618

DNA 10 000 1000 0.01824 0.000624
Password 10 000 1 18.5337 0.62786
Password 10 000 10 1.8932 0.08896
Password 10 000 100 0.19854 0.008957
Password 10 000 1000 0.019975 0.0007941

This paper presented a detailed parallel implementation of
Knuth-Morris-Pratt and using loop unrolling, and shared mem-
ory using the CUDA 5 framework. The experimental results
showed that the proposed algorithm improves data processing
performance by a factor of 29 compared to the sequential
version. The two different algorithms were also compared in
terms of alphabet sizes, threads numbers and pattern sizes
against time. This allowed an objective comparison of their
performance [18] [3] [12]. It was also demonstrated that GPUs
perform better as the number of threads is increased as this
fully harnesses their processing power. Furthermore, large data
batches are essential in avoiding transfer costs between the host
and the device.

Future work will focus on the development of a more
appropriate algorithm for a signature based DPI system using,
dynamic parallelism, regular expressions, and state machines,
allowing a greater flexibility and avoiding a linear time in-
crease as shown in Figure 6. Different attack vectors will
be analysed to allow the IDS to be as flexible as possible
following the type of threat, as well as how to establish a strong
and flexible way to transfer data from the Network Interface
Card (NIC) operating in the kernel land to the user land where
CUDA operates. Further research could also explore other
interesting concepts such as cloud based DPI, Heuristic IDS
and so forth but are for now out of the scope of this research.
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