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ABSTRACT
Pattern Matching is a computationally intensive task used
in many research fields and real world applications. Due to
the ever-growing volume of data to be processed, and in-
creasing link speeds, the number of patterns to be matched
has risen significantly. In this paper we explore the paral-
lel capabilities of modern General Purpose Graphics Pro-
cessing Units (GPGPU) applications for high speed pattern
matching. A highly compressed failure-less Aho-Corasick
algorithm is presented for Intrusion Detection Systems on
off-the-shelf hardware. This approach maximises the band-
width for data transfers between the host and the Graphics
Processing Unit (GPU). Experiments are performed on mul-
tiple alphabet sizes, demonstrating the capabilities of the li-
brary to be used in different research fields, while sustaining
an adequate throughput for intrusion detection systems or
DNA sequencing. The work also explores the performance
impact of adequate prefix matching for alphabet sizes and
varying pattern numbers achieving speeds up to 8Gbps and
low memory consumption for intrusion detection systems.

Categories and Subject Descriptors
D.4.6 [Security and protection ]: [Information flow con-
trols]; K.6.5 [Management of Computing and Infor-
mation Systems]: Security and Protection
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1. INTRODUCTION
With the exponential growth of networks, data storage, and
network intrusions, the requirement for pattern matching,
virus detection, and data categorisation poses a colossal
challenge for internet service providers (ISP), and informa-
tion technology (IT) administrators. Network Intrusion De-
tection Systems (NIDS) are one of the central pillars of an
effective network defence system. As such, Intrusion Detec-
tion Systems (IDS) perform intensive pattern matching at
strategic network points, or act as Host Intrusion Detection
Systems (HIDS), scanning the incoming traffic for a par-
ticular host such as servers or end-host clients. The ever
increasing prevalence of malware poses a significant threat
to privacy and security, and the constant expansion of the
link speed requires gigabit network scanning devices.

In essence, the challenge of an intrusion detection system, or
a malware scanner, is similar to the problem of efficient pat-
tern matching. Pattern matching is the most common task
that requires most of time of the IDS, and therefore requires
an efficient algorithm both in throughput and memory re-
quirements [12] [11].

Typically, an IDS compare a large set of known-malicious
signatures against the potentially malicious data. Differ-
ent approaches are used to cope with the large data sets,
such as the one based on specialised hardware, like field-
programmable gate arrays (FPGA) and application-specific
integrated circuits (ASIC) [2] [14]. These hardware solu-
tions achieve good performance, however,they are complex
to customise, and are usually tied to a definitive application,
making it difficult to update the design.
On the other hand, commodity GPUs have shown their ef-
fectiveness at accelerating pattern matching operations for
virus detection systems[16] [4], and network intrusion detec-
tion system [3] [8], while using off-the-shelf hardware and be-
ing easily customisable to the tasks required[6][15]. Pushed
forward by the video game industry, modern GPUs are con-
stantly maturing, allowing flexible hardware capabilities, and
powerful computational capabilities required by intrusion
detection systems. The massive number of threads offered
by the parallel capabilities of GPUs, allows them to over-



come the problems induced by their CPU counterparts and
simultaneously demonstrate better performance.

This paper addresses the problems of dealing with large
signature data sets by proposing a highly-efficient memory
compression scheme, applied to a highly parallelised multi-
pattern matching algorithm, minimising the storage memory
requirements and maximising the data transfers between the
host and the GPU.

The contributions of this work are fourth fold:

• An efficient multi-pattern matching algorithm library
is implemented and evaluated on GPUs. The algo-
rithm can be transposed on any other multi-threaded
system.

• A highly efficient memory-compression scheme is pre-
sented, by using bitmapping and a reduction algorithm
on the trie.

• An Experimentation and analysis of the algorithm over
multiple alphabets is realised, allowing the library to
be used in different research fields.

• An implementation and thorough analysis of prefix
pattern matching over different alphabet sizes is re-
alised demonstrating significant speed increase in pat-
tern matching.

The remainder of this paper is organised as follows Section 2
presents the background on general purpose GPU program-
ming, and introduces multi-pattern matching, while in Sec-
tion 3 the storage model, the trie compression and the prefix
matching are presented as well as the general approach and
implementation. Furthermore Section 4 shows the exper-
imental results obtained with different scenarios, alphabet
sizes, and prefix matching, and a comparison of the CPU
and GPU throughput is realised. The paper ends with the
conclusions and future work in Section 5.

2. BACKGROUND
In this section basic concepts of GPUs, multi-pattern match-
ing and related works are reviewed.

2.1 GPU Programming Model
In this work the Nvidia Tesla K20m graphic card was se-
lected, offering a rich Software Development Kit (SDK) also
known as Computer Unified Device Architecture (CUDA)
[10]. The CUDA programming model allows researchers to
harvest the massively parallel capabilities of generic con-
sumer hardware using a flexible abstraction model through
the Nvidia SDK. To communicate with the GPU, the C pro-
gramming language has been extended with new libraries
and directives, exposing the hardware features to the re-
searchers. The major difference between CPUs and GPUs
is based on the hardware layout. CPUs uses a single thread
based on cache hierarchy focusing on reducing the latency
for serial tasks, whereas GPUs focuses on increasing the raw
processing power by dedicating the majority of its die sur-
face to arrays of Arithmetic Logic Units (ALUs). The GPU

is composed of several Streaming Multiprocessors (SM) op-
erating in a Single Instruction Multiple Thread (SIMT) fash-
ion and are composed of multiple Streaming Processors (SP)
or CUDA cores. The number of SM and CUDA cores are
architecture dependent.

The code issued by the CPU to run on the GPU is called a
kernel, and is executed in five steps: (I) The host allocates
space on the GPU to transfer the data; (II) The data is
transferred from the host memory to the GPU memory via
the DMA controller; (III) The host executes the kernel, in-
structing the GPU to execute the GPU code; (IV) The GPU
executes the code in a massively parallel fashion; (V) The
results are transferred back from the GPU memory to the
CPU memory via the DMA controller. Kernels are executed
in parallel with a finite number of threads. Threads are or-
ganised in thread blocks and each streaming multiprocessor
executes one or more thread blocks. Within a block, threads
are organised in warps. Warps are a group of 32 threads, and
are executed in a round robin fashion. A thread scheduler
regularly switches from one warp to another, allowing the
multiprocessor to maximise the resources of the GPU [13].

Each SP within an SM shares an instruction unit, dedicated
to the management of the instruction flow of the threads.
When threads follow a different execution path, the overall
throughput of the the SM is reduced, due to the serialisa-
tion of the instruction path. The divergent threads will be
executed first until a common instruction is found, and the
remaining threads will then converge to the same execution
path [7].

Streaming multiprocessors share an off-chip L2 cache and
possess their own set of registers. Each thread in a block
can also share information via the shared memory, while all
threads launched can access data using the off-chip DRAM
also called global memory. Global memory requires numer-
ous clock cycles to be accessed and is therefore expensive
to use. Texture memory is a part of global memory, but
is read only during the execution of the kernel and only
allows defined types to be stored, however, the memory is
accessed via a specific hardware, and data pulled are cached,
allowing important speed-up when data requires numerous
accesses [5].

The Tesla K20m used in this work consists of 192 CUDA
cores distributed over 19 multiprocessors, in addition to each
SM the L1 cache 16-48KB of memory, and a shared mem-
ory of 16 to 48KB, both the L1 cache and shared mem-
ory must add up to 68KB in total as they are physically
the same on-chip memory. The card is also composed of
5GB DRAM memory and consists of a single Printed Cir-
cuit Board (PCB).

2.2 Multi-Pattern Matching
Pattern matching consists of searching for one or more fixed
patterns P in a body of text T . Multi-string matching is
widely used in intrusion detection systems, and virus detec-
tion engines.
The Aho-Corasick (AC) Deterministic Finite state Automa-
ton (DFA) is the most popular multi-pattern matching algo-
rithm [1]. The concept of the AC algorithm is to maintain
failure pointers that are invoked in the event of a mismatch



at the current state. Failure pointers at the first level of
the trie are always pointing back to the root node, however
for the next levels the failure nodes are computed based
on the longest prefix of the pattern currently matched. If
no such prefix exists, the failure pointers point back to the
root node. Each success pointer is associated with a label,
corresponding to a character of the string and each states
contains a boolean indicator expressing the status of the pre-
vious matched node.
The matching process starts at the root node and follows
the transition states Q, as long as the pattern searched for
is present in the text T . When no corresponding valid tran-
sition state is found the pointer invokes a failure transition,
allowing to match every single pattern of the trie present in
the text T in only one pass.

In a multi-threaded environment the Aho-Corasick algorithm
requires the text T to be split across multiple chunks, requir-
ing each thread to analyse multiple chunks. This method
has significant drawbacks, as a pattern may be span two
chunks of data and the algorithm would not be able to match
the pattern. Therefore overlapping is required, where each
thread must scan the entire chunk of data and overlap the
next chunk by the length of the longest pattern minus 1
[8][3]. This method also reduces the number of threads al-
lowed, as the number of threads launched is bound to the
length of the input text and the maximum length of the pat-
tern. This might create bottlenecks considering the massive
number of threads able to be launched on a GPU.
Another drawback of the AC algorithm in a multi-threaded
environment, is the divergence created by the failure links,
occurring when threads of the same warps execute different
portions of the code, forcing the GPU to run several por-
tions of the code in a serial fashion, and therefore reducing
the overall throughput of the application [8].

2.3 Parallel Failure-less Trie
A substitute method to parallelise the Aho-Corasick algo-
rithm has been designed and described by Lin et al.[8].
The Parallel Failureless Aho-Corasick (PFAC) overcomes
the problem of split patterns over two chunks of data, and
reduces the divergence by removing the failure transitions
pointers from the state machine and assigning each thread
to a specific character of the text T .

The parallel failure-less method harvests the full potential
of the GPU by maximising the number of threads assigned
to the text T , and allows the first memory transfer of the
text string to happen in a coalesced manner. Afterwards
the threads will transition to separate execution paths lead-
ing to un-coalesced memory accesses and thread divergence,
however, most of them will terminate at an early stage, as
the assigned letter do not match the signatures.
However, as the threads progresses deeper in the trie, more
threads will be discarded due to mismatches. The remain-
ing threads matching the patterns, leaving only a minority
of threads matching, and therefore avoiding more thread di-
vergence.

2.4 Prefix Matching
To reduce the thread divergence occurring after the first
level of the trie, and speed up the matching process, the
trie can be truncated to a depth of 5 for alphabets over 52
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Figure 1: Breadth-first constructed trie, and the
bitmap corresponding to the first node of the trie.

characters. This approach is known as prefix matching and
assumes that a secondary process fully matches the patterns
after the first matching stage [17].

This approach is effective due to the length of the malicious
pattern and therefore has a low probability of being a false
positive. Vasiliadis et al. [16] demonstrated that a prefix of
length 8 is sufficient to produce a false positive rate below
0.0001%.

Reducing the length of the pattern also reduces the thread
divergence occurring at deeper levels of the trie, and reduces
the memory footprint due to the number of states truncated.

3. DESIGN AND IMPLEMENTATION
The library presented in this paper significantly reduces
the memory footprint of the trie, while achieving high per-
formances throughput. To accomplish this performance a
failure-less Aho-Corasick algorithm has been implemented,
along with a reduced data structure, a highly-efficient stor-
age model, a trie compression algorithm and a prefix match-
ing algorithm.

3.1 Storage Model
The construction of the trie is stack based, and relies on an
array of structures, allowing the trie to be stored in a contin-
uous memory block. The construction of the trie occurs in a
breadth-first (BF) fashion, and each pattern is added to the
trie after being sorted alphabetically. The final structure of
the array has been stripped of unnecessary data and is com-
posed of an offset pointing to first child of the current node,
or to 0 if final. The children of each node are represented
in a 256 bitmap, each bit corresponding to one letter of the
ASCII alphabet. A population count on the bitmap is made
to obtain the position of the child required.

Figure 1 shows how the nodes are organised in contiguous
memory. The bitmap of the node at cell 1 represents an
array of 8 cells of 32 bits, representing the 256 ASCII alpha-
bet. The first node ‘A’ has two children ‘B’ and ‘D’ (based
on the two first patterns). The offset of node[1] only points
to its first child (node[3]) corresponding to the letter ‘B’,



however, to access the second node ‘D’ at position node[4],
a population count is required. The population count, sums
the number of bits set to 1 in the bitmap, before the ASCII
value of the letter required. E.g. The letter ‘B’ corresponds
to the ASCII value 66, and letter ‘D’ corresponds to 68,
meaning that the bits at position 66 and 68 are set to 1.
When an access to the node corresponding to the letter ‘D’
is required, a population count, look up the number of bits
set to one before the corresponding ASCII value of the letter
‘D’ (68) . In this case only one bit is set, corresponding to
the letter ‘B’ at position 66. The transition is then calcu-
lated as follows : let i be the value of the population count,
and offset be the value of the first child.

curNode = curNode→ offset + i (1)

As i is equal to 1 and the offset of the first node ‘A’ cor-
responds to 3, the second child can be found at position
3+1 =4, corresponding in Figure 1 to node node[4].

This approach, shows that the trie only requires 4 + 32 =
36 bytes per nodes, as the structure only needs 32 bytes for
the bitmap and 4 bytes for the offset.

The bitmap can be adapted to the size of the alphabet and
occupy |Σ| bits. Given an alphabet of Σ = 32, and a cor-
responding bitmap size, it is possible to compare these re-
sults against PFAC, their structure requires 15 bytes per
node for a total of 24.18 MB over 1,703,023 nodes in total.
The approach described by Pungila et al. [11] using Aho-
Corasick and the Commentz-Walter (AC-CW) algorithm re-
quires 10 bytes per node for a total of 15.02 MB, while our
approach only requires 32 bits of bitmap, and 32 bits of offset
only allowing the trie to be stored in 12.9 MB requiring 1.16
times less memory than the AC-CW trie, and 1.87 times less
memory than PFAC to store the complete trie in memory.
Comparing our method to GrAVity [16] with an alphabet
Σ = 256 and a bitmap of 256 bits our storage model for a
total of 352,921 nodes only requires 12.1MB while GrAVity
requires 345MB, which is 28.5 times more memory than our
storage model.

3.2 Trie Compression
To further minimise the size of the trie, a compression al-
gorithm has been designed, allowing similar pattern suffixes
to be merged, and improving the algorithm flexibility. The
reduction process consists of two major steps. The first step
consists of merging the last nodes of every pattern into a
single one and can be calculated as follows, let Q be the
number of states and P the number of patterns :

Qfinal = Q− (| P | −1) (2)

Equation 2 allows the final number of nodes after the first
step of the reduction to be calculated. This reduction is pos-
sible as the final node of every pattern does not possess any
children, and therefore only one global final node is required
as shown in Figure 2.
The second step occurs on the last three levels of the trie,
as these levels show less divergence in the suffixes of the
patterns. Merging the last levels, allows the algorithm to
significantly reduce the number of nodes.

Figure 2 shows how the reduction occurs, where the last
three levels of each pattern are compared against each other

Patterns :
ABCDEF
ACDDDD
CCDDEF
FFFFFF

$

1

C F

2 3

5 6 7

9 10 11

13 14

16 17

4

8

12

15

18

F

F

F

F

F

CC

D

E

F

D

D

D

D

A

B

C

D

$

1

C F

2 3

5 6 7

9 10 11

13 14 15

17 18 19

4

8

12

16

20

F

F

F

F

F

CC

D

D

F

EE

F

D

D

D

D

A

B

C

D

Figure 2: Trie node compression.

and merged when a match occurs.

The average reduction of the trie can also be calculated,
considering that the trie contains n patterns and of alpha-
bet Σ, and that all letters are equiprobable and independent
of each other. All the possible combination to construct a
chain of 2 characters is therefore calculated as follows :

r = Σ2 (3)

The average reduction can then be calculated as follows, let
r be the number of chains, n, the number of patterns P the
probability of a trie having exactly i unique suffixes, and L
the average trie length after reduction :

L =

r∑
i=1

P (g = i) · 2i =

min(r,n)∑
i=1

(
r
i

) ((
n−i
i

))((
n
r

)) · 2i (4)

Equation 4 can be used to quantify the average reduction ob-
tained by the reduction algorithm and evaluate the memory
requirements of the trie on the GPU.

4. PERFORMANCE EVALUATION
The series of tests conducted to evaluate the performances
of this approach have been realised using synthetic data sets
randomly generated using Python and the Mersenne Twister
(MT) uniform pseudo-random numbers generator [9].

The evaluation of the algorithms is performed against 5 dif-
ferent data sets of exactly 100 MB each. The uniqueness of
each file is ensured by computing the SHA256 hash of the
files. Each algorithm is then run 100 times against each data
set and the results presented are the average of the total run
time. This technique permits to mitigate the sources of er-
ror, such as background processes requesting resources.



Figure 3: Prefix matching over different alphabets.

4.1 Memory Hierarchies
The trie and reduction algorithms are evaluated against dif-
ferent numbers of patterns and alphabet sizes. Figure 4
demonstrates the performance improvements of the bitmapped
reduced trie over the size of a simple bitmapped trie, a bi-
nary trie and an array trie with an alphabet Σ = 4 and
patterns of 20 characters. The reduction achieved by the
bitmapped reduced trie demonstrates an impressive aver-
age size reduction improvement of 38% compared to the
bitmapped trie.

Figure 5 depicts the performance of the different types of

trie against an alphabet Σ = 52 and patterns of 20 chars.
The increase of the alphabets size shows that the reduction
algorithm is more effective when using smaller alphabets
with synthetic files. This phenomenon is due to the lack
of similar suffixes in the randomly generated patterns over
larger alphabets.

4.2 Prefix Marching Evaluation
The technique of prefix matching is alphabet dependent as
the probability of a prefix being unique is smaller when
smaller alphabets are used. Figure 3 demonstrates this state-



Figure 4: Trie size over a Σ of 4.

ment. In this evaluation 10,000 threads are launched and the
data set contains 100 patterns to be found. The patterns and
the alphabets are composed of different alphabet sizes from
Σ = 4 to Σ = 52.

Figure 3 shows that an alphabets of size Σ = 4 will require
an average prefix of over 12 characters, before being able to
match the 100 patterns successfully. However, as the alpha-
bet sizes rises up to Σ = 52, the prefix length dramatically
decreases. The prefix matching stabilises from Σ = 44 up to
larger alphabets and requires an average of 5 characters to
be matched before the validation of the prefix matching can
occur. These results verify the results of Vasiliadis et al. [16]
which required prefixes of 8 characters to successfully match
the set of signature used in their study.

Figure 6 shows the gain obtained by using a bitmapped re-
duced trie with prefix matching over an alphabet of Σ = 52,
for 10 and 100 patterns.

Figure 5: Trie size over a Σ of 52.

Figure 6: Prefix trie size comparison.

4.3 Throughput Scaling Evaluation
In the next experiment the throughput of the algorithm is
evaluated against different alphabet sizes, and number of
patterns matched. Figure 7 shows the performance achieved
by the algorithm against smaller alphabets, with a prefix
matching according to the size of the alphabet Σ. As the al-
phabet size rises the throughput sustained by the matching
process rises. This is due to the number of threads being can-
celled at the first matched letter. Larger alphabets increases
the number of cancelled threads, and reduce the divergence
occurring during the matching process. When matching a
thousand patterns, the throughput rises to 1 Gbps over an
alphabet of 52, and when matching only one pattern, the
throughput rises to 4.6 Gbps, demonstrating an impressive
throughput for small alphabet sizes.

Figure 8 demonstrates the behaviour of the algorithm over
larger alphabet sizes over synthetic files. For one pattern
matched the algorithm nearly reaches 8 Gbps and for a thou-

Figure 7: Throughput sustained for small alphabets.



Figure 8: Throughput sustained for large alphabets.

sand patterns, the speeds stabilises after reaching an alpha-
bet of Σ = 52 to 1 Gbps. The number of patterns matched
are influencing the throughput of the algorithm, as the diver-
gence created by the higher number of patterns slows down
the matching process, requiring the GPU to perform more
sequential operations.

Figure 9 shows a comparison of the throughput of CPUs and
GPUs searching for 100 patterns, over an alphabet Σ = 52
and files of 100 MB and 200 MB. The size of the file do not
affect the overall throughput of the algorithm, and demon-
strates a throughput of 1.3 Gbps for the GPU implementa-
tion of the bitmapped reduced failure less trie.

5. CONCLUSION
In this work we have presented an efficient bitmapped re-
duced failure-less trie library for intrusion detection systems
on GPUs and for applications requiring the use of smaller

Figure 9: Comparison between the throughput of
the CPU and the GPU.

alphabets such as DNA sequencing.

The experimental results presented have shown that the
memory-compression scheme in this work is ideal for GPU
intrusion detection systems, using 1.87 times less memory
than PFAC, over 1.16 times less memory than the AC-CW
approach, and over 28.5 times less memory than what is re-
quired in the implementation of GrAVity. Our approach also
achieved up to 8 Gbps and demonstrated a thorough analy-
sis of prefix matching applied to off-the-shelf technology for
varying alphabets.

Future work include real time network packet scanner on
off-the-shelf technology such as SNORT, taking advantage
of multi-GPU hardware, and improvements to the library.
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