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Abstract—A novel approach to enhance the robustness of
handovers in LTE femtocells is presented. A modified Self
Organizing Map is used to allow femtocells to learn about their
specific indoor environment including the locations that have
prompted handover requests. Optimized handover parameter
values are then used that are specific to these locations. This
approach reduces both the number of handover failures and the
occurrence of ping-pong handovers. It also improves network
efficiency by reducing the signaling overhead. The application of
machine learning to this task complies with the plug-and-play
functionality that is a requirement of Self Organizing Networks
in LTE systems.

I. INTRODUCTION

Due to the rapid proliferation of smartphones and increased

data rates demanded by subscribers, Long Term Evolution

(LTE) will use femtocells and picocells to meet future traffic

requirements. The addition of so many base stations will

require a more efficient network generally and more efficient

handover management specifically. Self Organizing Networks

(SON) will be used to operate and optimize the LTE network

to realize increased network efficiency. Base stations within

the network will be able to automatically configure their

radio parameters with minimal human interaction using 3 key

facets: self-configuration, self-optimization and self-healing.

Self-optimization of handover is the particular focus of this

paper.

Handover ensures that users remain connected to the net-

work with a defined quality-of-service (QoS) as they move

through the coverage area. Handover optimization within LTE

is concerned with managing the conflicting requirements to

minimize the likelihood of dropped calls whilst minimizing the

number of unnecessary handovers. Two tuneable parameters

can be used to govern handover performance. These param-

eters are Time-To-Trigger (TTT) and Handover Hysteresis

value (Hys). Handover to a candidate base station can only be

executed if that candidate provides better signal strength than

the serving base station by an amount equal to, or exceeding,

Hys for a duration equal to the TTT. Making these parameters

specific to the location of the user, rather than adjusted on a

cell-wide basis, would allow significant improvement in both

the number of dropped calls and the number of unnecessary

handovers. Finding the optimal values for TTT and Hys using

an unsupervised neural network is the aim of the research

presented here.

Much work has been completed in the area of handover op-

timization due to Mobility Robustness/Handover Optimization

being one of the use cases of SON defined by Next Generation

Mobile Networks (NGMN). Jansen et al [1] presented a

successful parameter optimization algorithm that involved ad-

justing the parameters based on the resulting key performance

indicators (Handover Failure ratio, Ping-pong handover ratio

and call dropping ratio). Yang et al [2] conducted research

on altering the handover call flow in femtocell to macrocell

handover to improve handover performance. The novelty of

the work presented here is that parameter optimization is

completed on a location specific basis rather than for the entire

base station; demonstrated in a realistic indoor scenario.

The problem under investigation can be best described by

explaining two scenarios involving an active and mobile user

moving around an indoor environment served by a femtocell.

In the first scenario, as the mobile terminal approaches, and

passes through, an external door it is likely to detect an

increase in the Reference Signal Received Power (RSRP)

from an externally located macrocell. As a consequence,

a measurement report will be transmitted from the mobile

terminal to the femtocell base station informing the femtocell

that handover may be required. This geographical location

resides within a Permissive Zone: an illustration of where

handover should be able to take place due to the mobile user

leaving the building. However, failed handovers can occur here

(when a user leaves the serving area of the femtocell) if a

handover mechanism is too conservative (i.e. the TTT and

Hys values are too high). Such failed handovers are likely to

lower the Hys and TTT parameters, making future handover

decisions more aggressive. The second scenario is slightly

different: an active mobile terminal approaches a large window

(with low penetration loss). The increase in RSRP from the

macrocell will cause a measurement report to be transmitted

from the mobile terminal to the femtocell which may invoke

a handover, as in the first scenario. However, as the mobile

terminal continues to move past the window, the relatively

high RSRP from the macrocell is likely to decline rapidly

and thus trigger another measurement report from the mobile

terminal to the macrocell, indicating that a better RSRP can be

obtained from the femtocell. Such actions will invoke a second

handover, in quick succession, from the macrocell back to

the femtocell (ping-pong handover). Clearly, this geographical

location resides within a Prohibition zone: an illustration of



where unnecessary handovers can occur (i.e. the TTT and

Hys values are too low). A handover parameter optimization

algorithm is required to correctly balance the effect of these

scenarios. To this end, a novel XSOM algorithm is used to

optimize the handover parameters.

The remainder of this paper is structured as follows. Section

II provides a brief overview of Autonomics and the tuning of

the handover parameters, Section III provides a brief expla-

nation of the advanced kernel Self Organizing Map used to

alter the handover parameters, Section IV describes simulation

results that verifies the utility of the algorithm, and, finally,

Section V summarizes the paper and draws conclusions.

II. SELF ORGANIZING NETWORKS

The term Autonomic Computing refers to computing sys-

tems having the ability to self manage and autonomically

react to unpredictable events while hiding the complexities

of the system to the end user. The inspiration for autonomic

computing is the way in which the nervous system regulates

the operations of biological organisms [3]. The autonomic

paradigm is one in which time-consuming and error-prone

tasks are undertaken by self managing components, leaving

human administrators free to formulate high-level policies.

Autonomic networks use the same paradigms created for

autonomic computing systems but apply these ideas to network

management [4].

The four stages involved in any autonomic system are

Monitor, Analyze, Plan, Execute. The control loop starts by

monitoring its environment and gathering information about

the scenario in question. This information is then analyzed

to determine if actions are required to optimize the perfor-

mance of the system. If actions are required, the planning

stage determines what these actions are. The Execute stage

implements the actions in a technology specific manner. This

is a useful structure for any self optimizing system as the inher-

ent feedback creates an autonomically adjusting management

system. This control loop constitutes the process of autonomic

networks and, by extension, the process of SON.

The SON paradigm [5], developed by NGMN and 3GPP,

applies autonomic networking to the mobile communications

domain. Using SON allows the network to handle the large

dimensions of the network, the large number of base sta-

tions (Femtocells and Macrocells) and the large number of

complex network parameters. The plug-n-play functionality

allows femtocells (HeNodeBs) to be deployed without the

provision (by user or network provider) of information about

the femtocell environment. This complicates the creation of

an autonomous system because all radio environments are

unique. Any algorithm used within femtocells for handover

optimization must, therefore, be able to configure and optimize

itself for the particular environment in which it operates.

Self-optimization is defined as the process whereby eNodeB

and UE measurements are used to autonomically tune the radio

access network to its specific environment to improve perfor-

mance. Self-optimization can be applied to handover in both

femtocells and macrocells as a constant and automated process

with no human interaction. Efficient handover management

is required to constantly support high quality voice and data

traffic. Handover management is one of the use cases of the

SON paradigm defined by the operators alliance NGMN and is

used to optimize handover performance between neighboring

base stations, including femtocells.

The tuning of handover parameters is a complex task due

to the irregular coverage areas of base stations coupled with

the effects of shadowing and multipath propagation which

gives rise to stochastic variation in RSRP and signal quality.

This results in terminals receiving a better RSRP from a

neighboring base station at one instant and a worse RSRP

the next due to movement of environmental scatterers, even

for stationary terminals. Such changes in RSRP can trigger

unnecessary and unwanted handovers adding stress to the

network. The TTT and Hys parameters control the timing

of handover triggers. The permissive TTT and Hys values

are pre-defined in LTE networks [6]. There are 16 valid

TTT values, i.e. 0s, 0.04s, 0.064s, 0.08s, 0.1s, 0.128s, 0.16s,

0.256s, 0.32s, 0.48s, 0.512s, 0.64s, 1.024s,1.280s, 2.560s and

5.120s. The Hys value varies in 0.5dB steps between 0 and

10dB. Handover-too-early and handover-too-late metrics [7]

are defined to capture incorrect handover timing. Handover-

too-early occurs when a triggered handover is unnecessary

and handover-too-late occurs when a call is dropped. When

a handover-too-early is detected, the TTT and Hys are likely

to be increased to reduce the probability of it occurring again.

This increases the probability of a call being dropped. If a

handover-too-late is detected then the TTT and Hys are likely

to be decreased to reduce the probability of future calls being

dropped. This increases the likelihood of handover-too-early.

An optimization algorithm must find the best statistical balance

between these undesirable events.

In the work described here, the autonomic system will

monitor when, and where, unnecessary handovers and dropped

calls occur between the femtocell and macrocell and seek

to reduce their numbers over time by adapting the handover

parameters. The direction finding capability of MIMO systems

is exploited to provide a profile of locations (i.e. regions in

the radio environment) where handover is likely to occur. The

kernel Self Organizing Map is used to continually map the

locations where handovers have occurred and use this infor-

mation to identify the permissive and prohibition zones. This

work assumes that the femtocell layer is largely unaffected

by macrocellular interference, i.e. some form of interference

management is in operation [8], [9].

III. IMPROVED KERNEL SELF ORGANIZING FEATURE MAP

USING X-MEANS

The purpose of the autonomic managed element, to be

included within SON, is to optimize the handover process

based on the application of a modified version of the Self

Organizing (Feature) Map (SOM) [10], called XSOM. This

novel approach uses a SOM with kernel methods and X-means

[11] to learn the environment and optimize the parameters.

The Monitor phase of the SON algorithm is location detection



of the user when a handover measurement report has been

triggered. The Analyze phase is based on a kernel SOM and

allows the femtocell to learn the locations of the propagation

environment that correspond to both permissive and prohibi-

tion zones. Next, the Plan phase takes this information and

decides on an appropriate response; i.e. to increase or decrease

the handover parameters. Finally, the Execute phase translates

the decision from the Plan phase into LTE specific commands.

The Kernel SOM algorithm is used within the Analyze and

Plan phases.

A SOM is an unsupervised neural network that uses group

learning to produce a low-dimensional output space from a

high-dimensional, discretized, input space. The kernel SOM

algorithm [12] non-linearly transforms the data into a feature

space which results in additional detail (accuracy) at the point

of interest and reduces the vector quantization error that is

inherent to SOM. This transformation allows for the distances

between the weights and the inputs to be calculated nonlin-

early. The kernel SOM is particularly useful for detecting

clusters within data and in this work it is used to perform

location fingerprinting based on RSRP and angle of arrival.

There are four phases which describe the learning process of

the kernel SOM: initialization, competition, cooperation, and

synaptic adaptation. This algorithm has been augmented with

a fifth stage, X-means. X-means allows for the area of the

SOM to be handled as a series of Voronoi cells.

A. Kernel SOM: Initialization

Initialization of the kernel SOM network presets the indi-

vidual weight values of each neuron in the lattice to values

drawn from a uniform distribution. The initial weight values

in this work are distributed across the propagation region of

the femtocell.

B. Kernel SOM: Competition

In kernel SOMs, all neurons are connected to all inputs and

(unlike other neural networks) the neurons have no activation

function. In the competition phase, inputs are applied to the

system. This will occur every time a mobile terminal generates

a measurement report (triggered by detection of a base station

other than the serving base station). The representation for an

a-dimensional input is defined in Equation (1) and the weight

vector associated with each neuron in the lattice (wj where j

is the neuron index) has the same structure and dimensions as

the input.

x = [x1, x2, ..., xa]
T , x ∈ R

a (1)

Given that there is no activation function, the output of each

neuron will be a combination of both the input and weight

vectors. From a geometrical perspective, the winning neuron in

the kernel SOM is calculated based on Euclidean distance after

implicitly transferring the map into a non-linear feature space

using the kernel trick [13]. The kernel trick is used because

the non-linear mapping of the input and weights allows for

more detail at the point of interest which reduces the vector

quantization error of the system. The mapping of x to φ(x)

can be implicitly accomplished with no knowledge of φ. The

mapping to the feature space is completed using a kernel such

that K(xi,xj) = φ(xi)
Tφ(xj) where φ(x) is the function that

maps the data onto the feature space, as shown in Equation

(2). The selected (i.e. winning) neuron is that whose weight

vector provides the best match to the input vector. This is the

competitive aspect of the algorithm. The index of the winning

neuron, i(x) within the lattice L (denoting the grid of neurons

in the weight space) is given by Equation (3).

‖x − wj‖
2 = ‖φ(x)− φ(wj)‖

2

= K(x,x) +K(wj ,wj)− 2K(x,wj) (2)

K(x,wj) = exp

(

−‖x−wj‖

2σ2

)

(3)

C. X-means

X-means [11] is an advanced method of cluster analysis

that allows for a Voronoi cell diagram to be automatically

generated based on the locations of the weights within the

system. This algorithm is based on the k-means algorithm

but is supplemented by autonomically calculating how many

clusters are required for the set of weights within the SOM (in

this case the number of doors and windows). Within X-means,

there is a requirement to know the range, kmin ≤ k ≤ kmax,

that the number of clusters, k, will fall within. This range

can have a default set of values for every femtocell. The

inclusion of X-means within the kernel SOM results in faster

convergence times as a consequence of a reduction in the level

of false learning within the system due to only updating the

weights within the network that are within the region of the

input. The algorithm is structured as follows:

1) The partitioning is completed by, initially, allocating

kmin centroids randomly within the area of the network.

2) Each weight can then be allocated to its nearest centroid

using Equation (4) where m denotes the centroid, c the index

and q(w) the index of the winning centroid. This results in

the generation of Voronoi cells.

q(w) = argmax
c

‖wj − mc‖, j ∈ L, c ∈ [0, k] (4)

3) After each weight has been allocated to its corresponding

centroid, the centroid must be updated using Equation (5).

Each new centroid location (mc) is the mean value of all the

allocated weights. n is the number of weights allocated to

mean c.

mc =
1

n

n
∑

j=1

wj (5)

4) Steps 2 and 3 are repeated until convergence of the

centroid and allocated weights have been achieved.

5) The number of centroids can now be updated. The

algorithm works by initially using kmin centroids, splits each

of the centroids into two when required and finishes using any

value within the range, that best fits the data. Determining



whether this split is valid is facilitated by the Bayesian

Information Criterion (BIC). BIC scoring operates by using

a posteriori probabilities to score the models. To approximate

these probabilities Equation (6) is used.

BIC(Ms) = l̂s(D)−
ps

2
· logR (6)

Here, l̂s(D) is the log-likelihood of the data taken at the

maximum likelihood point, ps is the number of parameters

in Ms and R is the number of weights in data set D. The

maximum likelihood estimate for the variance is calculated

using Equation (7).

σ̂2 =
1

R− k

∑

i

(xi − mq(w))
2 (7)

where k is the current number of centroids being used in the

X-means algorithm and i is the input index. The log-likelihood

of the data points that belong to centroid mc (l̂s(Dc)) and

including the maximum likelihood estimates, yields Equation

(8).

l̂s(Dc) = −
Rc

2
log (2π)−

Rc ·M

2
log (σ̂2) (8)

−
Rc − k

2
+Rc logRc −Rc logR

Within this equation, Rc is the number of weights allocated

to mc. The number of parameters ps is shown in Equation (9).

ps = (k − 1) + (M · k) + k (9)

The number of clusters, k, is increased based on the

resultant BIC score until either the solution has converged or

the condition kmin ≤ k ≤ kmax no longer holds. Convergence

is checked by comparing the BIC score of the final network

to the BIC score of the initial solution.

D. Kernel SOM: Cooperation

Once the winner for a given input vector has been selected

and the weight has been assigned to its closest centroid, the

weights of the neurons within the winner’s sphere of influence

are updated if they are linked to the same centroid as the

winner.

The sphere of influence is governed by a neighborhood

function which determines how many of the winner’s neigh-

bors can undergo learning, and also the degree to which

they will learn. The neighborhood function should decay

monotonically with distance from the winner. Furthermore,

it should be maximum at the winner (df,e = 0) and tend

to zero as df,e → ∞ where e and f are neurons in the

lattice. A popular choice for the neighborhood function which

satisfies these requirements is the Gaussian function, as shown

in Equation (10). This is the function adopted in this work.

hf,e(n) = exp

(

−
d2f,e

2σ2(n)

)

, j ∈ L (10)

The parameter σ defines the width of the Gaussian function

and in essence σ determines the size of the sphere of influence

around the winning neuron.

E. Kernel SOM: Synaptic Adaptation

The adaption process is concerned with the execution of

the weight update procedure for all neurons within the sphere

of influence of the winner (governed by the neighborhood

function). This involves utilizing not only the sphere of in-

fluence but a learning rate too. Parameter η is the learning

rate. In practice, the learning rate also decays with time

(or iterations) and is an exponentially decreasing function as

shown in Equation (11):

η(n) = η0 exp

(

−
n

τ2

)

(11)

η0 is the initial value and τ2 is a second time constant. The

augmented Hebbian weight update equation can be written as

shown in Equation (12).

∆wj(n) = η(n)hj,i(x) (x(n)− wj(n)) (12)

Thus, the weights for neuron j within the sphere of influence

of the winner are updated iteratively according to the rule

given by Equation (13).

wj(n+ 1) = wj(n) + η(n)hj,i(x)(n) (x(n)− wj(n)) (13)

As the neurons are updated their locations will eventually

converge; the learning rate having become low and the neigh-

borhood no longer updating nodes other than the winning

node. The locations of both permissive and prohibition zones

have then been identified.

IV. SIMULATION MODEL AND RESULTS

The proposed algorithm has been implemented using Net-

work Simulator 3 (NS3). When a handover trigger has been

detected (Monitor phase), the XSOM algorithm allows the

femtocell to learn where handover can be triggered in the

environment (Analyze phase). A decision on how to tune the

parameters can then take place in the Plan phase and the

action implemented in the Execute phase of the autonomous

system. The scenario described here consists of one permissive

region and one prohibitive region but the algorithm is also

effective in more complex environments. The parameters of

the simulation used to demonstrate the effectiveness of the

parameter optimization algorithm are summarized in Table I.

A random walk mobility model allows for a random change

of direction of the user after a prescribed period of time (or

distance travelled). Within the proposed scenario, the mobility

of the user is modeled by a random walk that has been

modified to ensure that (i) the user leaves the room when

a prohibition zone is entered (i.e. the user walks through the

door) and that (ii) the users velocity remains constant whilst

in a permissive zone. A single-slope propagation model has

been used to determine RSRP. The RSRP of a femtocell



TABLE I
SIMULATION DETAILS

Parameter Value

Simulation dimensions 7m × 9m
Room dimensions 7m × 7m
Exit area 2m × 7m
No. of mobile terminals 1
Direction change time 1.0s
Movement speed 1 - 3m/s
Initial position center
Mobility model random walk
Propagation model single-slope
Error 0m
Initial TTT 320ms
Initial Hysteresis 5dB

and a macrocell are used to determine whether there is a

requirement for handover. As the modeled system operates

using an event-based paradigm focusing on handover instances

and takes a generic approach, the choice of propagation and

mobility models has only a secondary effect upon the results.

The choice of such models does not affect the generality of

the results. Since indoor radio environments are inherently

complex (due to scatter from clutter) the effect of a position

estimation error (of up to 3m) has been investigated. This

error does not significantly affect the accuracy of the system.

The error incurred for the neuron due to incorrect position

detection, in effect, is nullified due to the uniform distribution

of the error, i.e. zero mean.

When a handover trigger is detected (i.e. when the mobile

terminal has detected another base station with a stronger

RSRP (by a Hys value) for a prescribed period of time (TTT)),

the location of the user (as perceived by the femtocell) is input

to the algorithm. In this modified LTE system, the TTT and

Hys values used are specific to the location of the user and

are optimized as the system learns the success or failure of

handover in this region. The values for the Hys and TTT will

be different for permissive and prohibition zones. Specifically,

the system detects the regions within the radio environment

where unnecessary handovers or failed handovers occur and

seeks to reduce these to an optimum level over time.

Fig. 1. Handover Locations

The location of the user at the point of a handover trigger

is detected by the Monitor stage of the autonomic system. A

snapshot of the locations of 100 handover triggers is shown

in Figure 1. As can be seen there are 2 clusters of neurons:

a single prohibition zone on the right and a single permissive

zone on the left. Once the location of the mobile user has been

detected, the Analysis phase examines the data and decides on

possible actions that can be taken: increase the TTT and Hys

parameters; decrease the TTT and Hys parameters; or leave

the parameters unchanged. The Plan phase uses the data and

the possible actions to decide on an appropriate process that

will be used to optimize the handover scenario.

At initialization, the handover parameters for all the nodes

within the neural network are set to default values. Han-

dover then operates as normal, detecting where handover is

unnecessary or where handover has failed. This information

is used to optimize the TTT and Hys values for each weight

within the network. The permitted values for TTT and Hys are

defined by 3GPP (Section II). When an unnecessary handover

is detected TTT and Hys are both increased to their next higher

permitted values. When a handover failure has been detected,

TTT and Hys are both decreased to their next lower permitted

values. The handover triggers (either macrocell to femtocell

or femtocell to macrocell) occur in the regions where the

macrocell RSRP is greater than the femtocell RSRP. Figures

2 and 3 show the values of TTT and Hys, respectively, for the

weights within the network after 500 handovers. The weights

with values above the dashed line are located in a prohibition

zone and the weights with values below the dashed line are

located in a permissive zone. Due to the tuning of parameters

the number of handovers that take place have been optimized.

In order to demonstrate that the algorithm is an improve-

ment on the basic LTE network, the Handover Performance

Indicators (HPIs) are evaluated. In this case, the HPIs are the

ping-pong handover ratio (HPIpp) and the handover failure

ratio (HPIfail) are of prime importance and are calculated by

dividing the number of handover ping-pong/failed handovers

by the total number of handovers.

Ideally, the number of failed handovers and handover ping-

pong occurrences would be zero (and hence so would HPIpp
and HPIfail). Unfortunately, practical systems are not ideal

and do not operate optimally. In a practical system handover

ping-pong and handover failure will occur within the network

but the number of such occurrences can be reduced to min-

imize their effect. HPIpp and NHfail with and without the

proposed optimization algorithm are shown in Figures 4 and 5

for the simulated scenario. These figures have been generated

using 30 parallel simulation runs to provide an ensemble mean.

The number of handover ping-pongs and failed handovers are

both lower for the optimized system showing that the proposed

algorithm is successful in optimizing the handover parameters.

The algorithm requires no prior information regarding the

location of the windows or doors, etc. This knowledge (or, at

least, the equivalent radio environment knowledge) is gained

via unsupervised learning.



Fig. 2. TTT for each weight Fig. 3. Hys for each weight

Fig. 4. Handover Performance Indicator: Ping-pong Handover Fig. 5. Handover Performance Indicator: Failed Handovers

V. SUMMARY AND CONCLUSIONS

In this paper, a novel kernel SOM algorithm has been

used to improve the efficiency of handover within an indoor

environment. The algorithm has been shown to effectively

optimize both TTT and Hys values to reduce the number

of handover-too-early and handover-too-late events. The han-

dover parameters are optimized on the basis of radio envi-

ronment location (related closely to physical location). The

use of the kernel SOM allows the parameters being used

in a handover-permissive zone to be different from those

being used in a handover-prohibition zone. One of the main

advantages of using this algorithm within SON is that it

becomes more flexible with regards to the femtocell being able

to autonomically adapt to its environment and thus improve

handover efficiency in a fast and efficient manner.
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