
ar
X

iv
:q

ua
nt

-p
h/

05
12

11
4

v1

15
 D

ec
 2

00
5

A Categorical Quantum Logic

Samson Abramsky Ross Duncan

Oxford University Computing Laboratory

15 December 2005

Abstract

We define a strongly normalising proof-net calculus corresponding to

the logic of strongly compact closed categories with biproducts. The cal-

culus is a full and faithful representation of the free strongly compact

closed category with biproducts on a given category with an involution.

This syntax can be used to represent and reason about quantum processes.

1 Introduction

Recent work by Abramsky and Coecke [AC04] develops a complete axiomatiza-
tion of finite dimensional quantum mechanics in the abstract setting of strongly
compact closed categories with biproducts. This is used to formalize and ver-
ify a number of key quantum information protocols. In this setting, classical
information flow is explicitly represented by the biproduct structure, while the
compact closed structure models quantum behaviour: preparation, unitary evo-
lution and projection, including powerful algebraic methods for representing
and reasoning about entangled states. Mediating between the two levels is a
semiring of scalars, which is an intrinsic part of the structure, and represents
the probability amplitudes in the abstract.

Compact closed categories can be seen as degenerate models of multiplicative
linear logic in which the connectives, tensor and par, are identified. Similarly, the
biproduct is a connective in which the additives of linear logic are combined. The
system resulting from these identifications has a very different flavour to linear
logic, indeed to any familiar system of logic. Cyclic structures abound, and
every sequent is provable. These apparent perversities are, however, no cause
for alarm: the resulting equations faithfully mirror calculations in quantum
mechanics as shown in [AC04]. Moreover, the cyclic proof structures give rise
to scalars, and allow quantitative aspects to be expressed.

Beginning with a category A of basic types and maps between them we
develop a logical presentation of the free strongly compact closed category with
biproducts FA. By varying the choice of A it is possible to explore what are the
minimal requirements to achieve various “quantum” effects. For example, let A

1

be the category with the single object C2, and the Pauli maps as the non-identity
arrows. In this case the only possible preparations are the elements of the Bell
basis, and their composites. This is sufficient for entanglement swapping, but
not logic gate teleportation.

We extend the work of Kelly and Laplaza [KL80] by explicitly describing
the arrows of this category in terms of a system of proof-nets. We prove that
this syntax is a faithful and fully complete representation of FA.

In this system the axiom links represent the preparation of atomic states,
while cuts encode projections. The biproduct is used to represent the classical
branching structure. Hence proof-nets can encode physical networks of quantum
state preparations and measurements, and a compilation process to quantum
circuits is easily defined. Cut-elimination reduces each such network to one
without measurements and as such expresses the outcome of executing a quan-
tum protocol or algorithm. Cut-elimination preserves denotational equality and
hence can serve as a correctness proof for the protocol encoded by the proof-net.

The cut-elimination procedure provides an easily implemented method for
performing calculations about the structure of entangled states. Such a concrete
implementation promises to be a useful tool for reasoning qualitatively about
quantum protocols. For example, in [AC04], the correctness of several significant
quantum protocols is captured as the commutativity of a certain diagram, which
expresses the fact that the protocol meets its specification. Such reasoning
can be automated by representing the protocol as a proof-net containing Cuts,
and normalizing it to show its equality with the specification, which can be
represented as a Cut-free proof-net.

Furthermore, the system can be viewed as a step towards a quantum pro-
gramming language equipped with an entanglement-aware type system.

In order to give a flavour of how the proof-net syntax may be used to rep-
resent quantum systems we develop an example, the entanglement swapping
protocol, in the next section. In section 3 we reprise the requisite categorical
structures, and in sections 4 and 5 we develop the syntax and semantics of
our proof-net calculus, and prove strong normalisation. We sketch the proofs
of faithfulness and full completeness. More detailed proofs are given in the
Appendix.

Previous work Shirahata has studied a sequent calculus for compact closed
categories in [Shi96], while Soloviev has studied natural transformations of de-
finable functors on compact closed categories with biproducts in [Sol87]. In
[Abr05], the first author has given a comprehensive survey of free constructions
for various forms of monoidal category, including traced, compact closed and
strongly compact closed categories. Neither biproducts, nor an explicit logical
syntax of proof-nets, were considered in that paper.

2

2 An Example: Entanglement Swapping

Before proceeding to the details of the proof-calculus and its categorical model,
we present informally a simple example of a quantum protocol represented as
a proof-net. First proposed in [ZZHE93], entanglement swapping allows two
parties, Alice and Bob, to share an entangled state without directly interacting
with each other. Instead they each share a Bell pair with an intermediary,
Charlie, who performs a projective Bell-basis measurement on his part of the
two entangled states. After this measurement, the qubits retained by Alice and
Bob are jointly in a Bell state, and the outcome of Charlie’s measurement will
indicate which state it is.

For any finite dimensional vector spaces, A, and B there is an isomorphism
between A⊗B and the linear maps A→ B via

∑

ij

λijai ⊗ bj ∼= ai 7→
∑

ij

λijbj .

We label states by the maps which they are related to under this isomorphism.
For example the 4 elements of the Bell basis are related to the Pauli maps, up
to a global phase. Since 1√

2
(|00〉 + |11〉) ↔ 1Q, we represent a Bell state as a

proof-net as shown below.

— —

1Q

Q∗ Q

We view this as representing a 2-qubit state, but if read from top to bottom, it
can also been seen as the quantum process which produces the state. In general
proof-nets are understood as processes but if, as in this case, the proof-net is
normal then there is no danger in identifying the quantum state with the process
which prepares it.

The other component of this protocol is the measurement in the Bell basis.
Suppose that the measurement performed by Charlie yields the state X ; then
the effect of this measurement is to project his two qubits onto that state. This is
dual to preparing the state, and represented by the following diagram fragment

X

Q Q

Combining two Bell states and the projection we get the proof-net labelled (a)

3

below

— — — —X

1Q 1Q X

Q∗ Q Q∗ Q

(a) (b)

which represents the whole protocol: the preparation of two Bell states in par-
allel, and the projection of two of the qubits onto the state X . This is a process
which prepares a 2-qubit state — we view measurements as destructive — and
by normalising the proof-net we can compute which state is prepared. For a
proof-net as simple as this one, the result is simply the state which codes the
composition of the functions labelling the arcs. In this case the resulting state
is that coded by 1Q ◦X ◦ 1Q = X , labelled (b) above.

In reality, there four possible outcomes of a Bell measurement; these distinct
possibilities are represented as slices, which are in a sense different pages of the
diagram. In this case each slice represents a different element of the Bell basis.

— —

1Q 1Q

1Q
Q∗ Q

— —

1Q 1Q

X
Q∗ Q

— —

1Q 1Q

Y
Q∗ Q

— —

1Q 1Q

Z
Q∗ Q

Further, the party who performs the measurement knows which outcome actu-
ally occurred; we represent this classical information with a “gearstick”. In each
slice we use a different index to label each possible outcome. The final protocol
is shown below.

⋆

— —

⊕1

—
1Q

1Q 1Q

Q∗ Q
⊕

4

i=1
I

⋆

— —

⊕2

—
X

1Q 1Q

Q∗ Q
⊕

4

i=1
I

⋆

— —

⊕3

—
Y

1Q 1Q

Q∗ Q
⊕

4

i=1
I

⋆

— —

⊕4

—
Z

1Q 1Q

Q∗ Q
⊕

4

i=1
I

In the following sections we formalise the syntax and semantics of this proof

4

calculus, and prove that the diagrammatic reasoning employed is correct with
respect to any suitable category.

3 Categorical Preliminaries

We recall the definitions and key properties of strongly compact closed cate-
gories with biproducts (SCCCBs). Considered separately, compact closure and
biproducts are standard structures, and may be found in [Mit65, ML97, KL80]
for example. Compact closed categories with biproducts have also been studied
by Soloviev [Sol87] and, with some strong additional assumptions, as Tannakian
categories [Del91]. They have also been studied in a Computer Science context
in the first author’s work on Interaction Categories [AGN96]. Strong compact
closure is introduced, and an axiomatic approach to quantum mechanics based
on strongly compact closed categories with biproducts is developed, in [AC04].

We will use FDHilb, the category of finite dimensional complex Hilbert
spaces and linear maps as a running example. Another example of an SCCCB
is Rel, the category of sets and relations.

Definition 1 (Symmetric Monoidal Category). A symmetric monoidal
category is a category C equipped with a bifunctor

−⊗− : C × C - C,

a monoidal unit object I and certain natural isomorphisms

λA : A ≃ I ⊗A ρA : A ≃ A⊗ I

αA,B,C : A⊗ (B ⊗ C) ≃ (A⊗B) ⊗ C

σA,B : A⊗B ≃ B ⊗A

which satisfy certain coherence conditions [ML97]. Without essential loss of
generality, we can assume that λ, ρ and α are all identities; that is, we can
assume a strict monoidal category.

In any symmetric monoidal category C, the endomorphisms C(I, I) form a
commutative monoid [KL80]. We call these endomorphisms the scalars of C.
For each scalar s : I → I we can define a natural transformation

sA : A = I ⊗A
s⊗ 1A- I ⊗A = A .

Hence, we can define scalar multiplication s•f := f ◦sA = sB ◦f for f : A→ B.
Then we have

(s • g) ◦ (r • f) = (s ◦ r) • (g ◦ f)

for r : I → I and g : B → C.

5

Definition 2 (Compact Closed Category). A symmetric monoidal category
is compact closed if to each object A there is an assigned left adjoint (A∗, ηA, ǫA)
such that the composites

A = A⊗ I
1A⊗ηA- A⊗A∗ ⊗A

ǫA⊗1A- I ⊗A = A

A∗ = I ⊗A∗ ηA⊗1A∗- A∗⊗A⊗A∗ 1A∗⊗ǫA- A∗⊗ I = A∗

are both identities.

In FDHilb the tensor product is just the usual Kronecker tensor product,
and I = C. Since any linear map from C to itself is fixed by its value at 1, the
formal scalars in FDHilb are indeed the complex numbers. If A is some finite
dimensional Hilbert space then, we can take A∗ to be the usual dual, the space
of linear maps A → C. Given a basis {ai}i for A, and its dual basis {ai}i, the
required maps are

ηA : 1 7→
∑

i

ai ⊗ ai;

ǫA : ai ⊗ aj 7→ δij .

A routine calculation verifies that the required equalities hold, FDHilb is indeed
compact closed.

For each morphism f : A→ B in a compact closed category we can construct
its name, pfq : I → A∗⊗B, coname, xfy : A⊗B∗ → I, and dual, f∗ : B∗ → A∗,
by

I
ηA- A∗ ⊗A

A∗ ⊗B

1A∗ ⊗ f

?

pf
q

-

A⊗B∗

B ⊗B∗

f ⊗ 1B∗

?

ǫA
- I

xf
y

-

B∗ = I ⊗B∗ ηA ⊗ 1B∗ - A∗ ⊗A⊗B∗

A∗

f∗

?
= A∗ ⊗ I � 1A∗ ⊗ ǫB

A∗ ⊗B ⊗B∗

1A∗ ⊗ f ⊗ 1B∗

?

In particular, the map f 7→ f∗ extends to a contravariant endofunctor with
A ∼= A∗∗.

Each compact closed category admits a categorical trace. That is, for every
morphism f : A⊗C → B⊗C certain axioms [JSV96] are satisfied by TrC

A,B(f) :
A→ B, defined as the composite:

A = A⊗ I
1A ⊗ ηC∗- A⊗ C ⊗ C∗ f ⊗ 1C∗- B ⊗ C ⊗ C∗ 1B ⊗ ǫC- B ⊗ I = B.

The following results are proved in [AC04].

6

Lemma 3. Suppose we have maps E
k- A

f- B
g- C

h- D. Then
we have the following equations.

(a). Absorption:
(1A∗⊗ g) ◦ pfq = pg ◦ fq

(b). Backward absorption:

(k∗ ⊗ 1A∗) ◦ pfq = pf ◦ kq

(c). Compositionality:

λ−1
C ◦ (xfy ⊗ 1C) ◦ (1A ⊗ pgq) ◦ ρA = g ◦ f

(d). Compositional cut:

(ρ−1
A ⊗ 1D∗) ◦ (1A∗⊗ xgy ⊗1D) ◦ (pfq ⊗ phq) ◦ ρI = ph ◦ g ◦ fq

The obvious analogues of Lemma 3(a) and 3(b) for conames also hold.

Definition 4 (Zero Object). A zero object in C is both initial and terminal.
If 0 is a zero object, there is an arrow 0A,B : A - 0 - B between any
pair of objects A and B.

Definition 5 (Biproduct). Let C be a category with a zero object and binary
products and coproducts. Any arrow

A1

∐

A2 → A1

∏

A2

can be written uniquely as a matrix (fij), where fij : Ai → Aj. If the arrow
(

1 0
0 1

)

is an isomorphism for all A1, A2, then we say that C has biproducts, and write
A⊕B for the biproduct of A and B.

If C has biproducts then we can define an operation of addition on each
hom-set C(A,B) by

f + g = ∇ ◦ (f ⊕ g) ◦ ∆

for f, g : A → B, where ∆ = 〈1A, 1A〉 and ∇ = [1B, 1B]. This operation is
associative and commutative, with 0AB as a unit. Moreover, composition is
bilinear with respect to this semi-additive structure.

In FDHilb the direct sum of Hilbert spaces gives a biproduct, with the
vector space {0} as the zero object; the addition on hom sets is normal addition
of maps. In Rel the biproduct is given by disjoint union of sets; addition of
relations is given by their union.

If C has biproducts, we can choose projections p1, p2 and injections q1, q2
for each A⊕B satisfying:

pi ◦ qj = δij q1 ◦ p1 + q2 ◦ p2 = 1A⊕B

where δii = 1, and δij = 0, i 6= j.

7

Remark 1. We note that if C is already equipped with a semiadditive structure
as above then one can define the biproduct directly as a diagram,

A
� p1

q1
- A⊕B

p2 -�
q2

B

satisfying
pi ◦ qj = δij q1 ◦ p1 + q2 ◦ p2 = 1A⊕B.

This fact will be used for the biproduct structure of the proof calculus.

Of course, the biproduct defines a monoidal structure, with unit object 0.
As before, we will take it to be strict:

(A⊕B) ⊕ C = A⊕ (B ⊕ C), 0⊕A = A = A⊕ 0.

Proposition 6 (Distributivity of ⊗ over ⊕). In monoidal closed categories
with biproducts there are natural isomorphisms

dA,B,C : A⊗ (B ⊕ C) ∼= (A⊗B) ⊕ (A⊗ C)

dA,·,·= 〈1A ⊗ p1, 1A ⊗ p2〉 d−1
A,·,·= [1A ⊗ q1, 1A ⊗ q2] .

A left distributivity isomorphism can be defined similarly.

Proposition 7. In a monoidal closed category with a 0 object there are natural
isomorphism A⊗ 0 ∼= 0 ∼= 0 ⊗A.

Proposition 8 (Self-duality for (·)∗). In a compact closed category with
biproducts the following natural isomorphisms exist.

A∗∗ ∼= A (A⊗B)∗ ∼= A∗ ⊗B∗ I∗ ∼= I

(A⊕B)∗ ∼= A∗ ⊕B∗ 0∗ ∼= 0

It will be notationally convenient to take all the canonical maps of Prop. 7 and
8 as equalities.

Definition 9 (Strong Compact Closure). A compact closed category C is
strongly compact closed if the assignment A 7→ A∗ extends to a covariant invo-
lutive compact closed functor. Write f∗ for the action of this functor on arrow
f . (See [AC05] for an alternative definition of strong compact closure).

Given f : A → B in a strongly compact closed category C we can define its
adjoint f † : B → A by f † = (f∗)∗ = (f∗)∗. The assignments A 7→ A on objects
and f 7→ f † on arrows define an involutive functor . If C has biproducts then
(·)† preserves them, and hence is additive.

If C is strongly compact closed and has biproducts we require a compatibility
condition, namely that the coproduct injections

qi : Ai →

k=n
⊕

k=1

Ak

8

satisfy q†j ◦ qi = δij . It then follows that the projections and injections addition-

ally satisfy (pi)
† = qi.

In FDHilb the (·)† is the usual adjoint of a linear map, given by

〈ψ | fφ〉 = 〈f †ψ | φ〉.

The functorial action f∗ is defined by

f∗(φ)(v) = φ ◦ f †(v).

Remark 2. In [AC04], A∗ is defined to be the conjugate space of A, which has
the advantage of being strictly involutive.

4 The Logic of SCCCBs

The purpose of this paper is to present a logic whose syntax captures the struc-
ture of the free strongly compact closed category with biproducts generated by
a category with an involution. The formulae of the logic represent the objects
of the free category, while the proofs represent the arrows1.

Let F be the functor which takes a category with involution to the free
strongly compact closed category with biproducts generated upon it.

InvCat

F -
⊥�
U

SCCCB

Here InvCat is the category of categories with involutions, i.e. identity-on-
objects, contravariant, involutive functors, and functors preserving the given
involutions. We will define a logic relative to a ground category A (standing for
“axioms” or “atoms” according to taste) with involution (·)†. The objects of A
will form the atomic formulas of the syntax, and its arrows will give non-logical
axioms. The formulas of the resulting logic will represent the objects of the
generated category FA, while the proofs will represent its arrows.

We can simplify our task, following [Abr05]. It is shown there that FCC,
the functor that constructs the free compact closed category generated by a
category, lifts to InvCat to yield the free strongly compact closed category
over a category with involution. This amounts to the observation that, given
an involution on the base category, it lifts to one on the freely generated com-
pact closed category, and moreover this lifted involution is compatible with the
compact closed structure in the required fashion—so that, in particular,

ǫA = σA∗,A ◦ η†A.

Lemma 27 in the Appendix recalls how the involution is lifted.
Henceforth we will assume that A has an adjoint f † assigned to every arrow

f .
1See the remarks at the end of [KL80] which explain why a description of the free compact

closed category is the strongest available form of coherence theorem for such categories.

9

Definition 10. The formulae of the logic are built from the following grammar:

F ::= 0 | I | A | A∗ | F ⊗ F | F ⊕ F,

where A ranges over the objects of A, which we shall refer to as atoms. In order
to capture the strictness of the connectives with respect to their units, the use of
the units is restricted: 0 may not occur as a subformula of any formula other
than itself; while I may only occur immediately under a biproduct, i.e. I ⊗A is
banned, but (I⊕A)⊗B is permitted. While it is technically convenient to admit
I as a valid formula, a correctness condition for proof-nets will guarantee that I
never occurs in a conclusion of a correct proof without an accompanying ⊕. We
define (·)∗ on arbitrary formulae by the following equations:

X∗∗ = X

(X ⊗ Y)∗ = X∗ ⊗ Y ∗

(X ⊕ Y)∗ = X∗ ⊕ Y ∗

I∗ = I
0∗ = 0.

We use the notation convention that upper case letters A,B,C from the
start of the latin alphabet are atoms and those from the end of the alphabet
X,Y, Z are arbitrary formulae. Upper case Greek letters Γ,∆,Σ signify lists of
formulae.

Definition 11. We shall use axiom synonymously with arrow of A .

Cyclic structures play an important role in the theory of compact closed
categories and we shall have need of them in the syntax. Define the set of
endomorphisms E(A) by the disjoint union

E(A) =
∑

A∈|A|
A(A,A),

and let the set of loops [A] be the quotient of E(A) generated by the relation

f ◦ g ∼ g ◦ f whenever A
f- B

g- A.

5 Proof-nets

We present a graphical proof notation which captures precisely the structure of
strongly compact closed categories with biproducts; in fact we offer a faithful
and fully complete representation of FA.

5.1 Syntax

Definition 12 (slice). A slice is a finite oriented graph with edges labelled by
formulae. The graph is constructed by composing the following nodes, which we
call links, while respecting the labelling on the incoming and outgoing edges.

10

Axiom : No incoming edges; two out-going edges. The link itself is labelled
by an axiom f : A→ B . One outgoing edge is labelled A∗, the other, B.

Cut : Two incoming edges; no outgoing edges. Each cut is labelled either by
an axiom f : A→ B with incoming edges are labelled by atoms A and B∗,
or else it is labelled by an identity with the incoming edges labelled by X
and X∗ for an arbitrary formula X.

Times : Two incoming edges labelled A and B; one outgoing edge labelled
A⊗B.

Plus 1 : One incoming edge labelled A; one outgoing edge labelled A⊕B.

Plus 2 : One incoming edge labelled B; one outgoing edge labelled A⊕B.

I : No incoming edges; one outgoing edge labelled by I.

The orientation is such that edges enter the node from the top, and exit from the
bottom. The conclusions of the slice are those labels on outgoing edges of links
which are left unconnected. The order of the conclusions is significant. There
is one correctness criterion: every I-link must be connected to either a Plus-link
or a cut labelled with 1I.

Definition 13 (net). A net (or proof-net) is a finite multiset of slices where
each slice has the same conclusions. The conclusions of the net are the same as
those of its slices.

We emphasise that empty slice is a valid slice, having no conclusions, and the
empty set of slices is a valid net. In particular the empty net may be considered
as having any conclusions; since there is no rule for introducing it otherwise,
the additive unit 0 can only occur among the conclusions of an empty net.

Example 14. This net represents the distribution of ⊗ over ⊕.

⊕1

1X

⊗

—

⊗

⊕1

—

1Y

Y ∗

X∗

Y ∗⊕Z∗

X Y

X⊗Y

X∗⊗(Y ∗⊕Z∗)

(X⊗Y)⊕(X⊗Z)

⊕2

1X

⊗

—

⊗

⊕2

—

1Z

Z∗

X∗

Y ∗⊕Z∗

X Z

X⊗Z

X∗⊗(Y ∗⊕Z∗)

(X⊗Y)⊕(X⊗Z)

Definition 15 (Normal Forms). A slice is normal if every connected com-
ponent either has no cut links, or is a closed loop formed by an axiom link and
an identity cut. We identify loops if their labels are related by the equivalence
relation on endomorphisms give in section 4. A net is normal if every slice is
normal.

11

Definition 16 (β-Reduction). Let →β be the reflexive transitive closure of
the relation defined on slices by the following set of rewrites on cut links.

1. A cut between atomic formulae. Atomic formulae are only introduced by
axiom links, so there are two subcases.

(a) If both formulae belong to the same axiom (say f):

g 1A

f g ◦ f

A∗ B A∗ A

(b) If the cut formulae are conclusions of different axioms, say f and h:

g

f h h ◦ g ◦ f

B C∗A∗ D DA∗

2. Cut between two tensor products:

⊗ ⊗

1X⊗Y

1X 1YX Y X∗ Y ∗

X X∗ Y Y ∗

3. Cut between two biproducts:

i = j i 6= j
[delete Slice]

⊕i ⊕j
1Xi

1Xi⊕Xj

Xi X∗

j

Xi X∗

i

4. Cut between two I-links:

I I [nothing]

⋆ ⋆

1I

12

g k

gk

f h l

f l ◦ k ◦ hh ◦ g ◦ f l

l ◦ k ◦ h ◦ g ◦ f

Figure 1: Confluence of cut elimination step 1(b)

Extend →β to proof-nets by π →β π′ iff there is an injective map p from the
slices of π′ to those of π, such that if p(s′) = s then s→β s

′, and for every slice
s of π not in the image of p, there is a →β sequence ending in “Delete Slice”.
Let =β be the symmetric closure of →β.

Theorem 17 (Cut Elimination). The relation →β is confluent and termi-
nating; further the β-normal forms are normal in the sense of Def. 15 above.

Proof. It suffices to consider →β on slices alone.
In the case of 1(b) pairs of rewrites may interfere as shown in figure 1.

However associativity in the underlying category A prevents any conflict.
Case 1(a) may also conflict with 1(b) as shown in figure 2; in this case the

two resulting components are identified by the equivalence on loops.
With these exceptions, each reduction step is purely local — no rewrite can

affect any other — hence the process is confluent. Since each step reduces the
complexity of the net, there is no infinite reduction sequence, and hence every
net is strongly normalising.

The only situation where a cut will not be eliminated are those in case 1(a);
hence when no more rewrites can be done the slice is normal, as required.

5.2 Semantics

Definition 18 (Semantics of proof-nets). Let ν be a proof-net with conclu-
sions Γ. Define an arrow of FA, JνK : I →

⊗

Γ, by recursion on the structure
of ν. Consider each slice s of ν.

• If s is just an axiom link corresponding to the arrow f : A → B, then let
JsK = pfq : I → A∗ ⊗B.

13

g k

kg

1 1

f h

hgffkh

gfkh khgf

=

Figure 2: Confluence of cut elimination step 1(a)/1(b)

• If s has several disconnected components s1, . . . , sn then define

JsK =

n
⊗

i=1

JsiK.

• If s is built by applying a cut labelled by f : A→ B between conclusions A
and B∗ of s′, suppose that we have constructed Js′K : I → Γ⊗A⊗B∗⊗∆.
Then define JsK by the composition

I
Js′K - Γ ⊗A⊗B∗ ⊗ ∆

1Γ ⊗ xgy ⊗ 1∆ - Γ ⊗ ∆.

• If s is built by applying a ⊗-link between conclusions A and B of s′ then
let JsK = Js′K.

• If s is built by applying a ⊕i link to conclusion Aj of s′, construct Js′K :
I → Γ ⊗Aj ⊗ ∆ then define JsK by the composition

I
Js′K - Γ ⊗Aj ⊗ ∆

1Γ ⊗ qi ⊗ 1∆- Γ ⊗ (A1 ⊕A2) ⊗ ∆.

• If s is an I-link, then JsK = 1I .

• If s is the empty slice JsK = 1I .

All these constructions commute wherever the required compositions are defined
due to the functoriality of the tensor, hence JsK is well defined. Let ν be the net
composed of the slices s1, . . . , sn. We define

JνK =

n
∑

i=1

JsiK.

If ν is the empty proof-net (i.e. it has no slices) JνK = 0I,Γ.

14

Theorem 19 (Soundness). If a net ν →β ν
′ then JνK = Jν′K.

Proof. Each of the one step rewrite rules preserves denotation. For each rewrite
rule we show the corresponding equation.

1. Suppose we have arrows B
e- A

f- B
g- C

h- D in A; then

(a) We have

xey ◦ pfq = ǫA∗ ◦ (1A∗ ⊗ e) ◦ (1A∗ ⊗ f) ◦ ηA

= ǫA∗ ◦ (1A∗ ⊗ (e ◦ f) ◦ ηA

= ǫA∗ ◦ pe ◦ fq

directly from the definition of the name and coname.

(b) The required equation

(1A∗ ⊗ xgy ⊗ 1D) ◦ (pfq ⊗ phq) = ph ◦ g ◦ fq

is lemma 3.(d) verbatim.

2. The case for tensor follows from ǫA⊗B = σ ◦ (ǫA ⊗ ǫB).

3. By using forwards and backwards absorption (lemmas 3.(a),3.(b)) we have

ǫAi⊕Aj
◦ (qi ⊗ qj) = xpj ◦ 1Ai⊕Aj

◦ qiy =

{

ǫAi
if i = j

x0Ai,Aj
y if i 6= j

Consider the case where i 6= j. We note that x0Ai,Aj
y = 0Ai⊗A∗

j
,I , and

since any arrow composed with, or tensored with, a zero map is itself a
zero map the denotation of the entire slice must be zero. Hence we may
delete it without altering the denotation of the net.

4. Since FA is strict, we have that ǫI ◦ (1I ⊗ 1I) = 1I as required.

The result follows by the functoriality of the tensor.

Now we show that the proof-net syntax is a faithful representation of the
category FA. For the purposes of the following proof, by involution on a set X
we will mean a category consisting of a finite coproduct of copies of the category
2 (with objects 0, 1, and one non-identity arrow 0 → 1), whose objects are in
bijective correspondence with the elements of X .

Lemma 20. In order to specify a normal slice uniquely the following data are
required:

1. The list of conclusions Γ;

2. A list of booleans B, indicating, for each occurrence of the connective ⊕ in
Γ, whether the left or right subformula was the premise of the link which
introduced it;

15

3. An involution θ on those atoms of Γ which are not introduced by the ⊕
rules such that each atom is paired with a copy of 0 iff it is negative,
together with a functor p : θ → A;

4. A multiset L of loops in A.

Proof. Clearly every normal slice will define the four data above, and do so
uniquely. We show how to reconstruct the the slice from the data. For each
formula X of Γ, the syntax of X combined with B fix a unique set of logical
(⊗, ⊕, I) links which derive the formula from its constituent atoms. Necessar-
ily, there are an equal number of positive and negative atoms; θ specifies an
arrangement of axiom links between them labelled by p. This doesn’t totally fix
the slice, since we may have additional disconnected components. Since they
have no conclusions, and the slice is normal, any remaining components must
be loops, which are specified by L.

Theorem 21 (Faithfulness). If nets ν, ν′ have the same conclusions Γ then
JνK = Jν′K implies ν =β ν

′.

Proof. Let s be a normal slice. By Def. 18 JsK = c • f , where c is a scalar and
f has the following structure:

I
pf1q⊗···⊗pfnq-

n
⊗

i=1

(A∗
2i−1 ⊗A2i)

σ-
2n
⊗

i=1

Aσ(i)
κ- Γ

upto a scalar multiple, where σ is a permutation, and κ is a tensor product
of identities and injections. This structure suffices to define the data of the
preceding lemma.

Every ⊕ in Γ must be introduced by the injections κ, which serve to de-
fine B. Given σ and any ordering on the names pfiq the pair (θ, p) is easily
reconstructed.

If c 6= 1I then the free construction of FA guarantees that it is product of
arrows of the form

I
plq- A∗ ⊗A

ǫA∗- I.

Each automorphism l defines a loop, so c defines L. It is easy to verify that the
slice reconstructed from c and f will be the original slice s.

Since the addition is freely constructed, JνK = Jν′K implies that both are
equal to the same formal sum

∑

i fi, where each fi is the denotation of a slice.
Since each fi determines a unique normal slice, we have that the normal forms
of ν and ν′ comprise the same multiset of slices, hence ν =β ν

′.

It should be noted that the faithfulness result required the conclusions of
the nets to be specified. In fact the syntax is not truly injective onto the arrows

16

of FA. For example, the proof-nets

— —

1A

A∗ A

and
⊗

—

1A

A∗ A

A∗⊗A

both denote the map ηA.
Let FSCC : Cat → ComClCat be the functor which takes a category to the

free compact closed category generated by it. This functor has been described
in detail in [KL80]. We note that FSCCA is a subcategory of FA.

Theorem 22 (Full Completeness). Let f be an arrow of FA, the free com-
pact closed category with biproducts on A; then there exists a net ν such that
pfq = JνK.

Sketch proof. We note that each object of FA is canonically isomorphic to an
object in additive normal form; that is where no occurrence of ⊕ occurs in the
scope of any occurrence of ⊗. Hence given an arrow f : A→ B in FA one can
construct the three other sides of following square

A
f - B

⊕

i

⊗

ji

Aji

∼=

?
⊕

i fi

-
⊕

i

⊗

ki

Bki

∼=

6

such that each fi is a (possibly empty) sum of arrows of FSCCA. The theorem
of Kelly-Laplaza [KL80] gives an explicit description the arrows in FSCCA and
hence immediately a proof-net for each one. Then each fi yields a collection of
slices. From here it is straightforward to construct the proof-net of

⊕

i fi.

The appendix contains a more detailed proof of the theorem.

6 Further Work

In the present paper, we have focused on freely generating the structure over a
category with no additional structure. If the category in question has an object
for the type of qubits, then the resulting free structure will not contain, for
example, the controlled not gate, nor any other multi-qubit operation. Without
such maps the expressivity of the system is limited. Therefore an important

17

further step is to consider the structure of the freely generated strongly com-
pact closed category with biproducts over a category with a given symmetric
monoidal structure. This is carried out in the forthcoming thesis [Dun] of the
second author.

Furthermore, although it has not been discussed here, the model may be
further tuned by the choice of the semiring of scalars I → I. These represent
the “amplitudes” of the different terms of a state, and hence give rise to the
probabilities of different outcomes of a quantum process. The equational struc-
ture of the scalars constrains the representable quantum processes. For example
it is known that the category Rel does not have enough scalars to represent the
teleportation protocol. It is possible to specify a desired semiring R of scalars
as a separate parameter to a free construction, together with a map from the
loops of A to R [Abr05]. Given a suitable rewriting theory for R, this can be
combined with the proof-net calculus to yield a system in which it should be
possible to extract concrete probabilities and other quantitative information.
These ideas will be developed in future work.

References

[Abr05] S. Abramsky. Abstract scalars, loops, and free traced and strongly
compact closed categories. In J. Fiadeiro, editor, Proceedings of
CALCO 2005, volume 3629 of Springer Lecture Notes in Computer
Science, pages 1–31, 2005.

[AC04] S. Abramsky and B. Coecke. A categorical semantics of quantum pro-
tocols. In Proceedings of the 19th Annual IEEE Symposium on Logic
in Computer Science: LICS 2004, pages 415–425. IEEE Computer
Society, 2004.

[AC05] S. Abramsky and B. Coecke. Abstract physical traces. Theory and
Applications of Categories, 14(6):111–124, 2005.

[AGN96] S. Abramsky, S. Gay, and R. Nagarajan. Interaction categories and
the foundations of typed concurrent programming. In M Broy, editor,
Proceedings of the 1994 Marktoberdorf Summer School on Deductive
Program Design, pages 35–113. Springer-Verlag, 1996.

[Del91] P. Deligne. Catégories tannakiennes. In Grothendieck Festschrift,
volume 2, pages 111–194. Birkhauser, 1991.

[Dun] R Duncan. Types for Quantum Computation. PhD thesis, Oxford
University. Forthcoming.

[JSV96] A. Joyal, R. Street, and D. Verity. Traced monoidal categories. Math.
Proc. Camb. Phil. Soc., 119:447–468, 1996.

[KL80] G.M. Kelly and M.L. Laplaza. Coherence for compact closed cate-
gories. Journal of Pure and Applied Algebra, 19:193–213, 1980.

18

[Mit65] B. Mitchell. Theory of Categories. Academic Press, 1965.

[ML97] S. Mac Lane. Categories for the Working Mathematician (2nd Ed.).
Springer-Verlag, 1997.

[Shi96] M. Shirahata. A sequent calculus for compact closed categories, 1996.

[Sol87] S. V. Soloviev. On natural transformations of distinguished functors
and their superpositions in certain closed categories. Journal of Pure
and Applied Algebra, 47, 1987.

[ZZHE93] M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert. Event
ready detectors bell experiment via entanglement swapping. Phys.
Rev. Lett., 71(26):4287, 4290 1993.

A Proof of full completeness

Firstly, we remark that there is a well-known description of the free construction
BC of a category with finite biproducts generated by a category C (for which
see e.g. [ML97]). The objects of BC are finite tuples of objects of C, written
⊕n

i=1 Ai; morphisms
⊕n

i=1 Ai →
⊕m

j=1 Bj are n × m matrices whose compo-
nents are finite multisets of arrows Ai → Bj , i.e. elements of the free Abelian
monoid generated by C(Ai, Bj). Composition is by “matrix multiplication”,
with the composition of C bilinearly extended to multisets. This construction,
as is also well-known, extends to the construction of free distributive biproducts
over monoidal categories, with the tensor defined on BC by distributivity:

(

n
⊕

i=1

Ai) ⊗ (

m
⊕

j=1

Bj) =
⊕

i,j

Ai ⊗Bj .

The following is a straightforward extension of this standard result:

Proposition 23. The matrix construction lifts to strongly compact closed cat-
egories.

Proof. The adjoint of a matrix (mij) is (m†
ji), where the adjoint of the generating

strongly compact closed category is applied pointwise to the multiset mji. The
unit for

⊕n
i=1 Ai is the diagonal matrix with diagonal elements {ηAi

}.

This yields a factorization of the adjunction

InvCat

F -
⊥�
U

SCCCB

as F = B ◦ FSCC:

InvCat

FSCC -
⊥�

USCC

SCCC

B -
⊥�

USCCB

SCCCB.

19

This factorization underlies the structure of the following argument. One par-
ticular consequence we shall use is the following:

Proposition 24. FSCC(C) embeds faithfully in F (C).

We will refer to the objects of A, their images under (·)∗ and the constants 0
and I as the literals of FA. Since FA is freely generated, its objects are formed
from the literals by repeated application of the functors (− ⊗−) and (− ⊕−).
Hence any object may be described by such a functor and a vector of literals.
For the rest of the section, it will be understood that by functor we refer only to
those constructed from tensors and biproducts2. Let ⊗n : FA×· · ·×FA → FA
be the n-fold tensor; similarly let ⊕n be the n-fold biproduct. Call N a normal
functor if it is has the form

N = ⊕n(⊗m1
(−), . . . ,⊗mn

(−)).

Lemma 25. Every functor G is naturally isomorphic to a normal functor NG.

Sketch proof. Use induction on the structure of G; the required isomorphism is
constructed from the distributivity A⊗ (B ⊕ C) ∼= (A⊗B) ⊕ (A⊗ C).

Long proof. We construct NG and a natural isomorphism dG simultaneously, by
recursion on the structure of G. There are two principal cases.

If G = G1(−) ⊕ G2(−) then, by induction, we have natural isomorphisms
d1 : G1 ⇒ NG1

and d2 : G2 ⇒ NG2
. Then NG1

⊕NG2
is a normal functor, and

d1 ⊕ d2 is the required natural isomorphism.
If G = G1(−) ⊗ G2(−) then we have natural isomorphisms d1 : G1 ⇒ NG1

and d2 : G2 ⇒ NG2
. Since NG1

is normal it has the form
⊕

iAi, where each Ai

is multi-ary tensor product; similarly NG2
=

⊕

j Bj . Hence we have a natural
isomorphism

d = 〈〈πi ⊗ 1〉i ⊗ πj〉j : NG1
⊗NG2

⇒
⊕

ij

Ai ⊗Bj

to a normal functor, which we take to be NG. The composition d ◦ (d1 ⊗ d2) is
the required map G⇒ NG.

Lemma 26. Let NF , NG be normal functors. For each arrow f : NFA→ NGB

there exist maps g, h, f1, . . . , fn such that

NFA
f - NGB

⊕

i

Ai

g

?

⊕

i fi

-
⊕

i

Bj

h

6

2Soloviev has treated the natural transformations of such functors in detail [Sol87], but
here we are only interested in one particular case.

20

commutes, where the Ai, Bj are multi-ary tensors of literals.

Proof. We will construct the required maps by recursion on the structure of f .
There are three cases.

Case 1. Suppose A = A1 ⊕ A2, and B = B1 ⊕ B2. Then f has a matrix

representation

(

f1 f2
f3 f4

)

. We reconstruct f as

A1 ⊕A2
f - B1 ⊕B2

A1 ⊕A1 ⊕A2 ⊕A2

∆A1
⊕ ∆A2

?

f1 ⊕ f2 ⊕ f3 ⊕ f4
- B1 ⊕B2 ⊕B1 ⊕B2

∇B1⊕B2

6

and recurse on each fi.
Case 2. Suppose that A = A1 ⊕A2, but B is not a biproduct of two other

objects. Since the biproduct structure is freely constructed it is guaranteed that
f = [f1, f2] : A1 ⊕A2 → B. This is reconstructed as

A1 ⊕A2
f1 ⊕ f2- B ⊕B

∇B - B.

Case 3. If B = B1 ⊕B2 but A is not a biproduct the treatment is dual to
that of case 2.

Now consider the fi constructed above. Each one has the form

fi : ⊗nA→ ⊗mB.

Suppose that 0 is a component of A. In that case ⊗nA = 0 and hence fi is
completely determined; a similar situation applies to B. Let us suppose then,
that 0 does not occur in either A or B.

Since the hom sets of FA form a (freely generated) commutative monoid, f
is a finite sum of non-zero arrows, fi =

∑

j fij , or else is zero itself. Furthermore,
every fij must be an arrow of the subcategory FSCCA, that is the free strongly
compact closed category upon A. (Here we are relying on Proposition 24). At
this point we appeal to a theorem of [KL80, Abr05]:

Theorem. Each arrow f : A→ B of the free (strongly) compact closed category
on a category A is completely described by the following data:

1. An involution θ on the atoms of A∗ ⊗B;

2. A functor p : θ → A agreeing with θ on objects (i.e. a labelling of θ with
arrows of A.);

3. A multiset L of loops from A.

21

Lemma 27. Suppose that A has an identity on objects, contravariant, involutive
functor ()†. Then FSCCA is strongly compact closed.

Proof. It suffices to show how to extend ()† to FSCCA. Using the description of
morphisms in FSCCA given in the previous theorem, we define

(θ, p, L)† = (θ−1, ()† ◦ p ◦ ()−1, L†).

Lemma 28. For each arrow f in FSCCA there is a proof-net ν such that JνK =
pfq.

Proof. By Kelly-Laplaza f ≈ (θ, p, L). The involution θ specifies the axiom
links, labelled as per the functor p. We add tensor links to join up all the
conclusions which are subformulae ofA, and likewiseB. For each loop h : A→ A

in L, an h-axiom link is added; the loop is closed up with an identity cut. Since
ps • fq = s • pfq this suffices.

Lemma 29. Given f1 : X1 → Y1 and f2 : X2 → Y2, if there exist proof-nets
π1, π2 such that JπK = pfq and Jπ2K then there exists π such that JπK = pf1⊕f2q.

Proof. First note that

f1 ⊕ f2 = (q1 ◦ f1 ◦ p1) + (q2 ◦ f2 ◦ p2),

where pi, qj are the biproduct projections and injections. Hence

pf1 ⊕ f2q = (1X∗

1
⊕X∗

2
⊗ ((q1 ◦ f1 ◦ p1) + (q2 ◦ f2 ◦ p2))) ◦ ηX1⊕X2

= ((1X∗

1
⊕X∗

2
⊗ (q1 ◦ f1 ◦ p1)) ◦ ηX1⊕X2

) + ((1X∗

1
⊕X∗

2
⊗ (q1 ◦ f1 ◦ p2)) ◦ ηX1⊕X2

)

= ((p∗1 ⊗ (q1 ◦ f1)) ◦ ηX1
) + ((p∗2 ⊗ (q2 ◦ f2)) ◦ ηX2

)

= ((p∗1 ⊗ (q1 ◦ f1)) ◦ ηX1
) + ((p∗2 ⊗ (q2 ◦ f2)) ◦ ηX2

)

= ((q1 ⊗ q1) ◦ (1X∗

1
⊗ f1) ◦ ηX1

) + ((q2 ⊗ q2) ◦ (1X∗

2
⊗ f2) ◦ ηX2

)

= ((q1 ⊗ q1) ◦ pf1q) + ((q2 ⊗ q2) ◦ pf2q).

= ((q1 ⊗ q1) ◦ Jπ1K) + ((q2 ⊗ q2) ◦ Jπ2K).

If π1 has slices si then

(q1 ⊗ q1) ◦ Jπ1K = (q1 ⊗ q1) ◦
∑

i

JsiK =
∑

i

(q1 ⊗ q1) ◦ JsiK.

hence we require a slice s′i such that Js′iK = (q1 ⊗ q1) ◦ JsiK. We assume that si

has conclusions X∗
1 and Y1; if it does not, then necessarily its conclusions differ

from this only by the arrangement of the tensor links, and since these have no
impact on the denotation we can rearrange them as needed. Then the required
slice is shown in Fig. 3. The required proof-net π is formed by combining all
the s′i into a single proof-net, along with similarly constructed slices for f2. By
its construction we have JπK = pf1 ⊕ f2q.

22

X∗

1

si

Y1

⊕1

— —

⊕1

X∗

1
⊕X∗

2
Y1⊕Y2

Figure 3: Proof-net for lemma 29

23

	Introduction
	An Example: Entanglement Swapping
	Categorical Preliminaries
	The Logic of SCCCBs
	Proof-nets
	Syntax
	Semantics

	Further Work
	Proof of full completeness

