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Abstract. We present a method for verifying measurement-based quan-
tum computations, by producing a quantum circuit equivalent to a given
deterministic measurement pattern. We define a diagrammatic presenta-
tion of the pattern, and produce a circuit via a rewriting strategy based
on the generalised flow of the pattern. Unlike other methods for translat-
ing measurement patterns with generalised flow to circuits, this method
uses neither ancilla qubits nor acausal loops. In addition this method
can detect errors in the correction strategy used to make the pattern
deterministic.

1 Introduction

The one-way quantum computer (1WQC) [1] is model of quantum computa-
tion which is a very promising candidate for physical implementation, and also
has many interesting theoretical properties (in complexity theory, for instance
[2, 3]). The basis of the 1WQC is an entangled resource state, which is gradu-
ally consumed by performing local measurements upon it. By careful choice of
measurements, any quantum computation can be performed. In this paper we
address the task of verifying properties of one-way computations by using rewrit-
ing strategies in a graphical framework, which originates in categorical analyses
of quantum mechanics [4].

The main task is to verify the correctness of a given one-way computation—
presented in the pattern syntax of the measurement calculus [5]—by producing
an equivalent quantum circuit. We will also verify that the pattern can be car-
ried out deterministically: that is, we check that the non-deterministic effects of
quantum measurement are properly corrected by the pattern.

The question of determinism in the one-way model has been previously ad-
dressed by flow techniques; see [6, 7]. These techniques examine the resource
state: if it has the correct geometry then any errors introduced by the non-deter-
ministic nature of quantum measurements can be corrected, and the resulting
computation will be deterministic. Both causal flow [6] and generalised flow [7]
? Supported by EPSRC postdoctoral fellowship EP/E045006/1.



do not address any concrete pattern, rather they simply assert the existence
of a deterministic computation using the given resource state. In fact, gener-
alised flow (gflow) characterises the notion of uniform determinism, where the
actual choice of the measurements is irrelevant. (Causal flow provides a sufficient
condition.)

Our work improves on these methods by verifying that a given pattern is
deterministic—i.e. that it is free of programming errors. By working directly with
the pattern we can also relax the uniformity restriction and derive correctness
proofs in cases where the choice of measurement is significant.

The problem of producing a circuit equivalent to a given measurement-based
quantum computation is of great importance. In [8], an automated translation
has been proposed for measurement-based computations which have a causal
flow. In [9], the author presents a similar technique based on causal flow and
notes that her method produces circuits with “time-like loops” if applied on
measurement-based computations which do not have a causal flow. In this work
we rely on the bialgebraic structure induced by quantum complementarity to pro-
duce equivalent circuits from measurement-based quantum computations which
do not have causal flow. Unlike other translations from 1WQC, the circuits we
generate do not make use of any ancilla qubits.

The diagrammatic calculus we employ draws from the long tradition of graph-
ical representations of monoidal categories. Aside from providing a very intu-
itive notation for reasoning about information flow, the categorical approach to
quantum computation (see for example [10–12]), provides a clearer view of the
structure of quantum informatic phenomena than conventional approaches. The
particular system of this paper is essentially that of [4], and the bialgebraic rela-
tions between complementary quantum observables exposed there form the core
of the main lemma of this paper3.

The structure of this paper is as follows: in Section 2, we introduce the di-
agrammatic syntax, and its semantics; in Section 3 we introduce the rewrite
system used to derive our results. This rewrite system has no particularly nice
properties—it is neither confluent nor terminating—but in the rest of the paper
we will define strategies to achieve our results. Section 4 introduces the measure-
ment calculus and its translation into diagrams, and Sections 5 and 6 show how
to derive the circuit form and correction strategies respectively. Due to space
restrictions, the proofs have been relegated to an appendix.

2 Diagrams

Definition 1. An open graph is a triple (G, I,O) consisting of an undirected
graph G = (V,E) and distinguished subsets I, O ⊆ V of input and output
vertices I and O. The set of vertices I ∪ O is called the boundary of G, and
V \ (I ∪O) is the interior of G.

3 The calculus has been implemented in a mechanised rewriting tool: see [13].



Definition 2. Let S be some set of variables. A formal diagram over S is an
open graph whose interior vertices are restricted to the following types:

– Z (or green) vertices, labelled by an angle α ∈ [0, 2π) and some collection of
variables S′ ⊆ S;

– X (or red) vertices, labelled by an angle α ∈ [0, 2π) and some collection of
variables S′ ⊆ S;

– H (or Hadamard) vertices, restricted to degree 2;

and whose boundary vertices are always of degree 1. The allowed vertices are
shown in Figure 1.

If an X or Z vertex is labelled by α = 0 then the label is omitted. In the
case where S′ is not empty then the corresponding vertex is called conditional ;
if no conditional vertices occur in a diagram it is unconditional. We only use
conditional vertices of degree 2. For each S the formal diagrams over S form a

...

...
α, S

...

...
α, S H

Fig. 1. Permitted vertices

symmetric monoidal category (in fact compact closed) in the evident way: the
objects of the category are sets and an arrow g : A → B is a diagram whose
underlying open graph is (G, A,B). The tensor product is disjoint union, and
composition g◦f is defined by identifying the output vertices of f with the input
vertices of g. For more details see [14, 15]. Denote this category D(S); we denote
the category D(∅) of unconditional diagrams by D. Note that the components
shown in Figure 1 are the generators of D(S).

Diagrams are oriented such that the inputs are at the top and the outputs are
at the bottom, and hence the implied temporal (partial) order of the components
is from top to bottom. If such an order exists it is usually partial.

Informally, the edges of a diagram are interpreted as qubits, though some
caution is required: different edges can represent the same physical qubit at dif-
ferent stages of the computation, and certain edges represent “virtual” qubits,
which are used to encode two qubit operations such as the controlled-Z gate—
see example 7. The vertices of the diagram are interpreted as local operations,
possibly conditioned on the variables, so that the entire diagram yields a super-
operator from its inputs to its outputs. We define an interpretation functor to
make this intuition precise.

Definition 3. Call v : S → {0, 1} a valuation of S; for each valuation v, we
define a functor v̂ : D(S) → D which simply instantiates the labels of Z and X
vertices occurring in each diagram. If a vertex z is labelled by α and S′, then
v̂(z) is labelled by α′ = 0 if

∏
s∈S′ v(s) = 0 and α′ = α otherwise.



Definition 4. Let J·K : D → FDHilb be a traced monoidal functor; define its
action on objects by JAK = C2n

whenever |A| = n; define its action on the
generators as:

J
...

...
α K =

{
|0〉⊗m 7→ |0〉⊗n

|1〉⊗m 7→ eiα |1〉⊗n J
...

...
α K =

{
|+〉⊗m 7→ |+〉⊗n

|−〉⊗m 7→ eiα |−〉⊗n

J H K =
1√
2

(
1 1
1 −1

)

where |0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
, |+〉 = 1√

2

(
1
1

)
, and |−〉 = 1√

2

(
1
−1

)
.

The value of J·K on all other arrows is then fixed by the requirement that it be a
traced monoidal functor4.

Definition 5. The denotation of a diagram D over variables S is a superoper-
ator constructed by summing over all the valuations of S:

ρ 7→
∑
v∈2S

Jv̂(D)KρJv̂(D)K† .

Example 6 (Pauli Matrices). The Pauli X and Z matrices can be defined by
degree 2 vertices:

J π K =
(

0 1
1 0

)
J π K =

(
1 0
0 −1

)

Example 7 (2-qubit gates). Composing an X with a Z vertex yields the 2-qubit
∧X (controlled-NOT) gate where the green vertex is the control qubit. The ∧Z
gate is defined similarly.

∧X = J K = J K =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ; ∧Z = J H K = J H K =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

In both cases, the edge connecting the two sides of the diagram is a “virtual”
qubit, representing the correlation of the two physical qubits represented by the
vertical edges.

Example 8 (Preparing and measuring qubits). The preparation of a fresh qubit
is represented by a single vertex with no input edges and one output edge:

J K =
(

1
0

)
= |0〉 ; J K =

1√
2

(
1
1

)
= |+〉 .

4 Again, the full details of this construction regarding cyclic graphs and traces can be
found in [14].



To encode a projection we use a dual diagram to preparation; the non-determinism
of measurement is represented using a conditional operation whose two possible
valuations correspond to the two possible outcomes:

π, {x} -

x 7→ 0 x 7→ 1

, π
- ρ 7→ 〈+| ρ |+〉+ 〈+|ZρZ |+〉

= 〈+| ρ |+〉+ 〈−| ρ |−〉

Deciding whether a given edge is representing a physical or a “virtual” qubit is
not obvious in general. This distinction can be made for circuit-like diagrams:

Definition 9. A diagram is called circuit-like if (1) all of its boundary, X, and
Z vertices can be covered by a set of disjoint paths, each of which ends in an
output; (2) every cycle in the diagram traverses at least one edge in the path
covering in the direction opposite to that induced by the path; and, (3) it weakly
3-coloured in the following sense: in every connected subgraph whose vertices are
all the same type, no two vertices are labelled by the same set S of variables.

Remark 10. The paths mentioned in the condition (1) represent the physical
qubits of a quantum circuit, and condition (2) prevents information being fed
from a later part of the circuit to an earlier part. Notice that condition (1) allows,
but does not require, H vertices to be covered by the path; hence the ∧Z example
above is circuit-like. Condition (3) is a requirement that circuit-like diagrams are
normal with respect to certain rewrite rules introduced in Section 3.

Proposition 11. If D is unconditional and circuit-like then JDK is a unitary
embedding.

3 Rewrites

The map J·K gives an interpretation of diagrams as linear maps. This interpre-
tation, however, is not injective: there are numerous diagrams which denote the
same linear map. To address this difficulty, an equational theory on D is required.
We will now introduce such a theory via a set of rewriting rules.

Definition 12. Let R be least transitive and reflexive relation on D generated
by the local rewrite rules shown in Figure 2.

The diagrammatic syntax, and the equations of the rewrite rules are derived
from those introduced in [4]. Space does not permit a more thorough justification
of these particular operations and rules, beyond the following:

Proposition 13. The rewrite system R is sound with respect to the interpreta-
tion map J·K.



...

...

α, S

β, S

-
...

...
α + β, S

...
α, S -

...
α, S

0, S -

(spider) (anti-loop) (identity)

...
β, T

α, S - ...
β, T

α, S
...

α, S

π, S -

...

π, S

−α, S

π, S

(α-commute) (π-commute)

-

...
α, S

-
...

...

...

α, S

β, T

-

...

...

α, S

β, T

(bialgebra) (copying) (hopf)

H

...
α, S

-

H H

...

α, S H

H

-

(H-commute) (H-cancel)

We present the rules for the “green” subsystem; to obtain the complete set of rules
exchange red and green in the rules shown above.

Fig. 2. Rewrite rules for system R

Despite its soundness, this rewrite system does not have many good properties:
it is manifestly not terminating since several of the rules are reversible. The
subsystem without H is known to be neither confluent nor terminating [16].
Rather than attempt to remedy these defects by tinkering with the system,
in this paper we will use particular rewrite strategies to produce circuit-like
diagrams.

Proposition 11 implies that any unconditional circuit-like diagram has a nat-
ural interpretation as a quantum circuit, hence the existence of such a reduct
for a given diagram shows that the diagram is equivalent to the derived circuit.
In the following sections we will see how to apply this idea to the verification of
one-way quantum computations.

Lemma 14 (Main Lemma). Given a diagram D, any subset U = {u0, . . . uk}
of red vertices of D and any subset V = {v0, . . . , v`} of green vertices of D, the
subdiagram G induced by U ∪ V is equivalent to a diagram G′:



v0 v1 v`

u0 u1 uk

...

...

...

←→∗

v0 v1 v`

u0 u1 uk

v′1 v′2 v′`

v′′1 v′′2 v′′`

...

...

...

such that for any 0 ≤ i ≤ k and 1 ≤ j ≤ `,

– there is an edge (ui, v0) ∈ G′ iff ui ∈ OddG(V )
– there is an edge (ui, v

′′
j ) ∈ G′ iff ui ∈ OddG({vj , . . . v`})

where OddG(K) = {v , |NG(v) ∩ K| = 1 mod 2} the odd neighbourhood of K,
i.e. the set of vertices which have an odd number of neighbours in K.

Remark 15. A direct proof of the lemma is given in the appendix, although we
note that it is a consequence of a theorem of Lack [17]. Note that there is an
edge between a red vertex u and a green vertex v in G if and only if there is an
odd number of paths between u and v in G′.

We augment the rewrite system R with the rule G - G′ (with the notation of
Lemma 14). The main lemma ensures that the new system is sound with respect
to the interpretation map J·K.

Example 16. The new rule in action:

-

4 The Measurement Calculus

The measurement calculus, introduced by Danos, Kashefi and Panangaden [5],
is a formal calculus for one-way quantum computations [1, 18]. We review here
the basic features of the calculus; for a complete exposition see [5].

Definition 17. A measurement pattern consists of a set V of qubits, with dis-
tinguished subsets I and O of inputs and outputs respectively, and, in addition,
a sequence of commands chosen from the following operations.

– 1-qubit preparations, Ni, which prepare the qubit i 6∈ I to the state |+〉.
– 2-qubit entangling operations, Eij, which applies a ∧Z to qubits i and j.



– 1-qubit measurements, s[Mα
i ]t, which act as destructive measurements on the

qubit i 6∈ O, in the basis |0〉 ± e(−1)siα+tπ |1〉, where s, t ∈ {0, 1} are boolean
values called signals.

– 1-qubit corrections Xs
i and Zt

j , which act as the Pauli X and Z operators on
qubits i and j, if the signals s and t, respectively, are equal to 1; otherwise
the corrections have no effect.

A qubit is measured if and only if it is not an output. The set of signals is
in bijection with the set V \ O of measured qubits: signal s is set to 0 if the
corresponding measurement yields the +1 eigenstate, and 1 otherwise.

Each pattern can be interpreted as a superoperator C2|I| → C2|O|
via a linear

map, called the branch map, for each possible vector of measurement outcomes,
much as in Def. 5. Indeed each pattern can be translated into diagram with the
same semantics.

Remark 18. The measurement operation s[Mα
i ]t is equivalent to the sequence

Mα
i Xs

i Zt
i . The following assumes that all measurements have been so decom-

posed.

Definition 19. Let P be a pattern. Define a diagram DP over V \O by translat-
ing the command sequence according to table 1, and composing in these elements
in the the evident way.

Ni Eij Mα
i Xs

i Zs
i

H π, {i}

−α

π, {s} π, {s}

Table 1. Translation from pattern to diagram.

Example 20. The ubiquitous CNOT operation can be computed by the pattern
P = X3

4Z2
4Z2

1M0
3 M0

2 E13E23E34N3N4 [5]. This yields the diagram,

DP =
H

H

H

π, {3}

π, {2}

π, {2}

π, {3}π, {2}

,

where each qubit is represented by a vertical “path” from top to bottom, with
qubit 1 the leftmost, and qubit 4 is the rightmost.

By virtue of the soundness of R and Proposition 11, if DP can be rewritten
to a circuit-like diagram without any conditional operations, then the rewrite
sequence constitutes a proof that the pattern computes the same operation as
the derived circuit.



Example 21. Returning to the CNOT pattern of Example 20, there is a rewrite
sequence, the key steps of which are shown below, which reduces the DP to
the unconditional circuit-like pattern for CNOT introduced in Example 7. This
proves two things: firstly that P indeed computes the CNOT unitary, and that
the pattern P is deterministic.

H

H

H

π, {3}

π, {2}

π, {2}

π, {3}π, {2}

∗-
H

H

H

π, {3}

π, {2}

π, {2}
π, {2} π, {3}

∗- H

H

H

π, {3}
π, {3}

π, {2}

π, {2}

π, {2}

∗-
π, {2}

π, {2}
π, {2}

∗-

π, {2}π, {2}
π, {2} π, {2}

∗-

One can clearly see in this example how the non-determinism introduced by
measurements is corrected by conditional operations later in the pattern5. The
possibility of performing such corrections depends on the geometry of the pat-
tern, the entanglement graph implicitly defined by the pattern.

Definition 22. Let P be a pattern; the geometry of P is an open graph γ(P) =
(G, I,O) whose vertices are the qubits of P and where i ∼ j iff Eij occurs in the
command sequence of P.

Definition 23. Given a geometry Γ = ((V,E), I, O) we can define a diagram
DΓ = ((VD, ED), ID, OD) as follows:

– VD = V + E + I + O, coloured such that:
• v ∈ V is an unconditional Z (green) vertex in DΓ , labelled by α = 0;
• e ∈ E is an H vertex;
• b ∈ I + O is a boundary vertex.

– The edge relation is as follows:
• if v ∈ I, or v ∈ O, in Γ then vI ∼ vV , respectively vO ∼ vV , in DΓ ;
• if e = (v, v′) in Γ , then eE ∼ vV and eE ∼ v′V in DΓ ;
• vI ∈ ID and vO ∈ OD.

The Z vertices of Dγ(P) are in bijective correspondence with the qubits of P.

Example 24. Let P = E12E13E23N1N2N3. This pattern has no inputs or mea-
surements: it simply prepares a triangular graph state. Notice that Dγ(P) is a
reduct of DP.

5 Obviously, is is possible to write patterns with operations conditioned on measure-
ments which have not yet been performed, but these do not correspond to any
runnable computation.



H

HH �∗
H

H

H

γ(P) Dγ(P) DP

Definition 25. Let P be a pattern in EMC form6 and construct a diagram Dm
P

from Dγ(P) as follows.

– If t[Mα
i ]s occurs in P adjoin the diagram Dt[Mα

i ]s at iV as shown in Fig. 3
(a).

– if Xs
i (Zs

i ) appears in P then compose the diagram DXs
i

(DZs
i
) to the output

vertex iO of Dγ(P) as shown in Fig. 3 (b).

...

...
iV

- ...

...
iV

π, {t}

π, {s}

π, {i}

α

...

...
iViO

- ...

...
iV

iO

π, {s}

(a) (b)

Fig. 3. Constructing Dm
P from Dγ(P)

Proposition 26. Let P and Dm
P be as above; then DP

∗- Dm
P .

Justified by Prop. 26, we shall use Dγ(P) in place of DP, to allow properties based
on the geometry to be imported directly. The most important such property is
the generalised flow, or gflow.

Definition 27. Let (G, I,O) be an open graph; a generalised flow (or gflow) is
a pair (g,≺), with ≺ a partial order and g a function g : Oc → P(Ic) which
associates with every non output vertex a set of non input vertices such that:

(G1). if j ∈ g(i) then i ≺ j;
(G2). if j ∈ Odd(g(i)) then j = i or i ≺ j;
(G3). i ∈ Odd(g(i))

where Odd(K) = {u , |N(u) ∩K| = 1 mod 2} is the odd neighbourhood of K,
i.e. the set of vertices which have an odd number of neighbours in K.

In the special case that |g(v)| = 1 for all vertices v, the gflow is called a
causal flow, or simply a flow.
6 Every pattern is equivalent to a pattern where the commands occurs in a specific

order: first the initialisations, then the entangling gates, then the measurements,
and finally the X and Z corrections. See [5] for details. The rewrite rules of the
measurement calculus used to prove the EMC theorem in are derivable in R. The
requirement that P be in EMC form is therefore not essential, but it allows a simpler
statement of the proposition.



Theorem 28 ([7]). If (G, I,O) has a gflow, then there exists a pattern P0

such that γ(P0) = (G, I,O) and P0 is deterministic, in the sense that all of its
branch maps are equal. Further, this property does not depend on the angle of
any measurement in P0.

Since different patterns may have the same geometry, it may be that γ(P) =
γ(P′) but one is deterministic and the other is not. In the next section we
describe how to produce a circuit-like diagram from Dγ(P) using the a rewrite
strategy based on the existence of a gflow.

5 Rewriting to circuits

Notice that Def. 27 can be readily adapted to define a gflow over an unconditional
diagram: simply replace the vertices of the geometry with the non-H vertices
of the diagram, and replace “adjacent” with “reachable via a path of zero or
more H vertices”. It is easy to see that the original definition on γ(P) and the
modified version on Dγ(P) exactly coincide.

Lemma 29. P has a causal flow if and only if Dγ(P) is circuit like.

Now we demonstrate a rewriting strategy that will perform two tasks at once.
If the open graph has a gflow, we will discover it. And, we will, in the process,
transform the graph into a new graph which has a casual flow.

Lemma 30. There is a normalising rewriting strategy such that if P has a gflow
then Dγ(P) ↓ is circuit like.

By combining Lemmas 29 and 30 we arrive at the conclusion of this section.

Theorem 31. A geometry Γ has a gflow if and only if DΓ can be rewritten to
a circuit like diagram.

The existence of a gflow is a sufficient condition for a pattern P to be circuit-
like, but not necessary. For instance, although the pattern P = M0

3 Mα
2 E23E12N2N3

has no gflow, it can be rewritten to a circuit-like diagram:

H H

π, {i}
−α

π, {j}
0

∗-
H

π, {i}
−α

π, {j} ∗-
π, {j}

This example shows that the verification using our rewriting technique is more
powerful than the static gflow condition. Contrary to gflow, the rewriting tech-
niques can verify non-uniform properties, i.e. properties which depend on the
actual measurement angles.



6 Dealing with corrections

Now we address the question of verifying a given pattern rather than a geometry.
We demonstrate a rewriting strategy which propagates errors induced by mea-
surements forward to annihilate their correctors, leaving behind an unconditional
diagram. The strategy terminates for circuit-like diagrams.

If a diagram has a causal flow (f,≺), we annotate the path connecting i to
f(i) with a direction i→ f(i).

Definition 32. Let D be a diagram with a causal flow. Let C be the least tran-
sitive, reflexive relation on D(S) generated by the local rewrite rules shown in
Figure 4, and the rewrites (spider), (anti-loop) and (id) of system R.

...

π, S
- ...

π, S ...

π, S
-

...
π, S π, S H

π, S
-

H

π, S

(C1) (C2) (C3)

H

π, S
-

H

π, S

...
H

...

π, S

-
...

H

...

π, S
π, S

-

(C4) (C5) (C6)

Fig. 4. Rewrite rules for system C. The signal S is required to be non-empty

System C is a restriction of R, so the interpretation map is preserved.

Proposition 33. If Dγ(P) has a causal flow, then every C-rewrite sequence
beginning from Dm

P is finite and terminates in a unique normal form.

Proposition 34. Suppose that Dγ(P) can be rewritten to a circuit-like diagram;
then the C-normal form of Dm

P is unconditional if and only P is deterministic.

Remark 35. If this strategy fails to eliminate all the conditional operations then
P is not deterministic, but it can be made so. If we annotate the vertices to
indicate to which qubit in the original pattern they correspond, then the position
where the remaining conditional vertices get “stuck” shows where a correction
must be added to the pattern. Alternatively, one could write the pattern omitting
the corrections and use this method to determine where they should go.



7 Conclusion

We have shown how to represent the measurement calculus in a diagrammatic
form, and demonstrated how rewriting of these diagrams can prove the equiva-
lence of computations. In particular we have been able to determine if a given
pattern is deterministic, and produce an equivalent quantum circuit which uses
no ancilla qubits. These results can be extended to debug measurement patterns
which are not deterministic.
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Appendix

We include proofs which the could not be accommodated in the main text due
to length restrictions.

Proofs from Section 3

The following derived rules will be useful; proofs are found in [19].

Lemma 36 (Generalised Bialgebra).

-

Lemma 37 (Hexagon Rule). For n, an even cycle of size 2n, of alternating
colours, can be rewritten into hexagons. Graphically:

-

Main Lemma. Given a diagram D, any subset U = {u0, . . . um} of red vertices
of D and any subset V = {v0, . . . , v`} of green vertices of D, the subdiagram G
induced by U ∪ V is equivalent to a diagram G′:

v0 v1 v`

u0 u1 uk

...

...

...

←→∗

v0 v1 v`

u0 u1 uk

v′1 v′2 v′`

v′′1 v′′2 v′′`

...

...

...

such that for any 0 ≤ i ≤ k and 1 ≤ j ≤ `,

– there is an edge (ui, v0) ∈ G′ iff ui ∈ OddG(V )
– there is an edge (ui, v

′′
j ) ∈ G′ iff ui ∈ OddG({vj , . . . v`})



where OddG(K) = {v , |NG(v) ∩ K| = 1 mod 2} the odd neighbourhood of K,
i.e. the set of vertices which have an odd number of neighbours in K.

Proof (of Main Lemma). The proof in by induction on the size of V . If V is of size
0 or 1 then G and G′ are the same. Otherwise, by induction on U ×{v1, . . . , v`},
G can be rewritten in G1 as follows:

v0 v1 v`

u0 u1 uk

...

...

...

-

v0 v1 v`

u0 u1 uk

v′2 v′`

v′′2 v′′`

...

...

...

Notice that NG1(v0)∩U = NG(v0)∩U , NG1(v1)∩U = OddG({v1, . . . v`}∩U ,
and for any i > 1, NG1(v

′′
i ) = NG′(v′′i ). Now we focus on the subgraph {v0, v1}×

(U ∩ (NG1(v0) ∪NG1(v0)).
The neighbours of v0 and v1 in G1 can be partitioned in three parts: the

common neighbours A = NG1(v0)∩NG1(v1)∩U , the exclusive neighbours of v1

B = (NG1(v1)\A)∩U , and the exclusive neighbours of v0 C = (NG1(v0)\A)∩U .

C B A

v0 v1

Let G2 be the graph in which two edges are added between (u, v0) for every
u ∈ B:

C B A

v0 v1

Notice that G2
∗- G1 using the rewriting rule

-



Now the generalised bialgebra (Lemma 36) is applied on the complete bipar-
tite graph {v0, v1} × (B ∪A) in G2, leading to G3:

C B A

v0 v1

v′1

v′′1

NG3(v0) = B ∪ C

= {u ∈ U | u /∈ NG(v0) ∧ u ∈ OddG(V \ v0)} ∪ {u ∈ U | u ∈ NG(v0) ∧ u /∈ OddG(V \ v0)}
= (NG(v0) ∩OddG(V \ v0))) ∪ (NG(v0) ∩OddG(V \ v0)))
= OddG(V )

NG3(v
′′
1 ) = B ∪A

= NG1(v1)
= OddG(V \ v0)
= OddG(v1, . . . , v`)

2

Proofs from Section 5

Proof (Proof of Lemma 30). (sketch) We use the rewriting rule induced by the
main Lemma 14. Notice that in the main lemma the rewriting rule is H-free,
in this proof we consider a red-free version of this rule (indeed a red vertex is a
green vertex conjugated with H):

v0 v1 v`

w0 w1 wk

...

...

...

-

v0 v1 v`

w0 w1 wk

v′1 v′2 v′`

v′′1 v′′2 v′′`

...

...

...

We construct the gflow of the diagram (like the efficient algorithm for finding
gflow in an open graph of [20]) and simultaneously transform the diagram into
a circuit-like diagram using the rewriting rule.



More precisely, the strategy is to apply the rewriting rule of the main lemma
when {v0, . . . v`} are all output vertices and Odd({v0, . . . v`}) = {u}:

v0 v1 v`

u w1 wk

...

...

...

-

v0 v1 v`

u w1 wk

v′1 v′2 v′`

v′′1 v′′2 v′′`

...

...

...

The existence of the gflow guarantees that such a configuration exists (see
[20]). We construct the causal flow in the resulting diagram as follows: g(u) :=
{v0}, g(v′i) := {vi}, and g′(v′′i ) := {v′i}; the partial order is such that v′` ≺
min(v0, . . . v`), u ≺ v′1, and for all i , v′i ≺ v′i+1, and v′′i ≺ v′i. At the end of that
stage, the vertices u, v′i and v′′i are all considered as outputs (except u if u is
an input), then the same rewriting strategy is applied until g is defined for all
non-output vertices. 2

Proofs from Section 6

Proof (Proof of Prop 33). The system is terminating since each rule either de-
creases the graph complexity (spider, anti-loop, identity, C6) or increases the
position of a conditional vertex in the finite partial order given by the flow.
Confluence follows from the acyclicity of the flow.

Proof (Proof of Prop 34). Note that P and DP have the same semantics; by

Lemma 26 DP
∗- Dm

P , hence if Dm
P can rewrite to an unconditional diagram

then P is deterministic.
Conversely suppose that P is deterministic. Let D be the circuit-like reduct

of Dγ(P); by Lemma 29 it has a causal flow (f,≺). Let Dm be the corresponding
diagram with the measurements attached per Def 25.

Let s be a minimal (with respect to ≺) signal occurring as label on a con-
ditional vertex of Dm. Let a be the least vertex (with respect to ≺) such that
c is adjacent to a. We will procede by induction on a. By construction, initially
a = s and both c and a are green. We will preserve this invariant as we go.

– If a is an output qubit, then then c propagates past a via (C1); since P is
deterministic there must be a corrector at this output, indexed by s. This
conditional vertex annihilates c via the spider and identity rules.

– Otherwise, a propagates to f(a) via (C1) and (C3), and on to the neigh-
bourhood of f(a) via (C2). There are two subcases:
• If f(a) is adjacent to an output then a red correction is required here by

determinism of P; c will annihilate this as above.



• If is not an output, it has a measurement. Determinism requires one of
the following: either the measurement is conditional on s, in which case
c will annihilate this corrector; or the measurement has α = 0, in which
the c can be discarded via a rewrite of type (C6).

Any other vertex b adjacent to f(a) necessarily has a ≺ b by the flow con-
dition. By (C5), we can rewrite each remaining copy of c to green vertex
adjacent to b.

Since ≺ is a finite partial order this process will eventually terminate, leaving
no vertex conditional on s in the diagram. By induction on s we can remove all
conditional vertices this way, hence the C-normal form of Dm is unconditional.


