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Abstract Compact closed categories provide a foundational formalism for a variety
of important domains, including quantum computation. These categories have a
natural visualisation as a form of graphs. We present a formalism for equational
reasoning about such graphs and develop this into a generic proof system with a
fixed logical kernel for reasoning about compact closed categories. A salient feature
of our system is that it provides a formal and declarative account of derived results
that can include ‘ellipses’-style notation. We illustrate the framework by instantiating
it for a graphical language of quantum computation and show how this can be used
to perform symbolic computation.
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1 Introduction

Recent work in quantum computation has emphasised the use of graphical languages
motivated by the underlying logical structure of quantum mechanics itself [1, 5, 7,
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24 L. Dixon, R. Duncan

8, 21]. These techniques have a number of advantages over the conventional matrix-
based approach to quantum mechanics:

— The matrix representation is sensitive to the basis chosen for the underlying
space; visual representation abstracts over the values in the matrices, removing
irrelevant detail that is difficult or tedious for a human to interpret.

— Many properties have a natural graphical representation. For example, disjoint-
ness of subgraphs implies separability of quantum states.

— The algebra of graphs generalises to domains other than vector spaces: it provides
a representation for compact closed categories [12].

A major problem with graphical calculi is the lack of machinery for automating
their manipulation. The main contribution of this paper is a graph-based formalism
that is suitable for representing and reasoning about compact closed categories
with additional equational structure. This has a wide variety applications including
reasoning about relations, stochastic processes, and synchronous processes [2, 8, 14].
In this paper we introduce the representation, develop it into a formal proof system,
and highlight its application for symbolic reasoning about quantum computation.

We begin by presenting a graphical model of quantum computation, which dis-
plays the typical features of a graphical calculus. Quantum processes are represented
by graphs built up from basic elements. We view vertices as operations which have
types corresponding to their incident edges, and hence our notion of subgraph
is different to that of standard texts on graph theory. A subgraph represents a
“subprocess” so the types of the basic operations must be preserved, and thus we do
not allow additional edges in a subgraph. Non-structural equivalences are captured
by equations between graphs. An important result in this calculus is the Spider
Theorem which takes the form of an equation between graphs involving informal
ellipses notation (see Section 2).

The formalisation, in a graphical form, of rules containing ellipses notation and
the corresponding reasoning with such rules requires an extension of the graphical
calculus that eventually forms graph patterns. We develop this by first defining a
formalism for graphs, their transformations, and an appropriate subgraph relation.
We introduce a general form of graph combination, called plugging, which includes
both parallel and sequential composition as special cases. Since redexes are pre-
served by plugging, this gives a compositional account of equational reasoning for
compact closed categories. Our graph-based formalism is a faithful representation
the of free compact closed category generated from its basic elements. We also
introduce a general formalism for ellipses notation in graphs which forms /-box
graphs. By combining /-box graphs with our compositional graph formalism, we
provide a suitable representation for graph patterns that can formally represent and
reason with rules derived from the Spider Theorem.

Using our graph-based formalism as the representational foundation, we develop
a simple logical framework for manipulating models of compact closed categories.
This has a suitable rewriting mechanism where the axioms of the underlying object-
formalism are expressed as equations between graphs. We then present a short
case study that illustrates the framework by instantiating it for the model of quan-
tum computation introduced earlier. This shows how the framework can be used
to symbolically perform simplifications of quantum programs as well as simulate
computations.
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Graphical reasoning in compact closed categories 25

2 Quantum computations as graphs

In this section we will describe a set of generators and equations used to reason about
quantum computation, and show how some of its formal properties lead to particular
issues for the development of reasoning machinery.

Initiated in [1], a substantial strand of work in quantum informatics has involved
the development of high-level models of quantum processes based on compact closed
categories. In these formalisms, quantum processes—such as quantum logic gates,
or the measurement of a qubit—correspond to arrows in the category, while the
different quantum data types, usually just arrays of qubits, are the objects.

A recent account of the graphical language is provided by Coecke and Dun-
can [6]. This is based on a graphical language for compact closed categories, as
described in Section 5, augmented with equations to describe the behaviour of
quantum systems. Edges represent qubits and, in particular, distinguished domain
and codomain edges represent the inputs and outputs respectively of a quantum
process.' Internally, several edges may represent the same physical qubit at different
times. An edge may even represent a “virtual” qubit which stands for a correlation
between different parts of the system. Nodes are shaded (coloured) with a lighter
shade (green) and a darker one (red) to denote two families of operations on qubits,
expressed graphically as the following generators:

R LAY W EL R S
w-d ek -9 - -6

where « € [0, 2rr). The §z and € represent quantum operations which respectively
copy and delete the eigenstates of the Pauli Z operator.> Notice that §, has one
edge in its domain for the qubit to be copied, and two edges in its codomain for
the two copies it produces. Similarly, €, has one qubit as input and no outputs. The
adjoints BTZ and e} correspond to an operation known as fusion, and to the operation
of preparing a fresh qubit in a certain state. The a7 corresponds to phase shift of
angle « in the Z direction. The family of maps indexed by X are defined in exactly

the same way, but relative to the Pauli X operator. In addition, we have E@ which
represents a Hadamard gate.

The free compact closed category is then given by all graphs formed by composing
and tensoring these basic graphs. All quantum operations may be defined by combin-
ing these simple operations—which are essentially classical—on two complementary
observables.

We emphasise that this is a notation for representing quantum processes, not
just quantum states. In this setting a state is simply a process with no inputs; that

n this account, no interpretation of edge direction is needed as objects in the underlying categorical
model are self dual.

2Uniform copying operations are forbidden by the no-cloning theorem [25], but such operations are
possible if we demand only the eigenstates of some self-adjoint operator to be copied. Other states
will not not copied. The same remarks hold true for erasing [15].
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is, a graph with empty domain. Since our formalism is based on the underlying
mathematical structure rather than any particular model of quantum computation,
it is capable of representing quantum circuits, measurement-based quantum compu-
tations, as well as other models. Indeed, an important application of this work is to
show that states or computations implemented differently are equivalent.

The beauty of graphical calculi for compact closed categories is that equations
which hold for general algebraic reasons are absorbed into the notation. However
in order to represent quantum computation, generic structure will not suffice: we
need additional equations between graphs. In the system we present here, these
describe the interaction between complementary observables and allow equivalent
computations to be proved equivalent. The equations are discussed in detail in [6]
and are presented here graphically in Fig. 1.

Comonoid Laws

oRlr Sy

Isometry, Frobenius, and Compact Structure

Abelian Unitary Group and Bilinearity

o=9-1  $-@-3 %-§-¢

Bialgebra Laws Let & := 2 ; then:

o%:{ 62 - 00
ta 3o e 2o

H Property and Colour Duality

T PO T

Fig. 1 Graphical equations for quantum systems. In addition, we have a “colour duality”: each
equation shown here gives rise to second, which is obtained by exchanging the two colours (shades).
The colour duality is derivable from the equations involving H
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Graphical reasoning in compact closed categories 27

The equations from Fig. 1 which involve only one colour allow the remarkable
spider theorem, first noted in [8], to be proved:

Theorem 1 (Spider Theorem) Let G be a connected graph generated from 8z, €z, az
and their adjoints; then G is totally determined by the number of inputs, the number of
outputs, and the sum modulo 2m of the as which occur in it.

Remark 1 The theorem holds also for the X family of operations.

Hence any connected subgraph involving nodes of only one colour may be collapsed
to a single vertex, with a single value «, giving a “spider”. Conversely, a spider
may be arbitrarily divided into sub-spiders, provided the total in- and out-degree is
preserved, along with the sum of the as. Informally, this can be depicted graphically
as the equation:

From this one can derive n-fold versions of many of the other equations.

Spiders offer a very intuitive way to manipulate graphs, and are far more compact
and convenient in calculations than the graphs built up naively from the generators.
However, no finite set of equations suffices to formalise spiders: we must move from
finite graphs, where each vertex has bounded degree, and which are subject to a finite
number of equations, to a system where nodes may have arbitrarily many edges, and
there are infinitely many equations. The desire to retain intuitive reasoning methods
for these infinite families of equations motivates the extension of graphs to graph
patterns, the main subject developed in this paper.

3 Graphs

Definition 1 (Graph) A directed graph® consists of a 4-tuple (V, E, s, t) where V and
E are sets, respectively of vertices* and edges, and s and ¢ are maps which give the
source and target vertices of a an edge respectively:

N

E |4

t

We will assume throughout this paper that both V and E are finite.

3Equivalently: a directed graph is a functor G from ¢ — e to Set; a graph morphism is then a
natural transformation f: G = H.

4We will use the words “vertex” and “node” interchangeably.
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Remark 2 Note that any number of edges are allowed between vertices, including
from a vertex to itself.

Let in(v) := "' (v) and out(v) := s~ (v) denote the incoming and outgoing edges
at a vertex v. The degree of a vertex v is deg(v) := |in(v)| + |out(v)|. To distinguish
between elements of different graphs, we will use the subscript notation G =
Vg, Eg, 56, tG).

We say that a vertex v is a successor of u if the there exists an edge e such
that s(e) = u and t(e) = v. A pair of vertices are connected, written u ~ v, if they
lie in the reflexive, symmetric, transitive closure of the successor relation. The
equivalence classes V/~ are the connected components of G. We write |v| to denote
the equivalence class containing the vertex v; we write [v] to denote the subgraph
determined by |v|.

Definition 2 (Graph morphism) Given graphs G and H, a graph morphism f : G —
H consists of functions fr : Eg — Ey and fy : Vg — Vy such that:

sgo fe= fvosa, 1)
tyo fg= fvotg. ()

These conditions ensure that the structure of the graph is preserved.

Definition 3 (Open graph, open graph morphism) An open graph I' = (G, 3G)
consists of a directed graph G, and a set of vertices dG C Vg, such that for each
v € G we have deg(v) = 1. The set G is called the boundary of I'; those vertices in
Vs \ 0G are called the interior of I', written Int G.

Given open graphs (G, dG) and (H, d H) a graph morphism f: G — H defines a
morphism of open graphs f: (G,0G) — (H,dH) if fy(v) €e 0H = v € G for all v
in VG.

We will refer to an open graph (G, dG) simply as G when it is unambiguous to
do so.

Definition 4 (Strict map) Let f: (G, 9G) — (H,dH) be an open graph morphism
say that fisstrictif Ve € Eg,ifsy(e) € fy(IntG) orty(e) € fy(IntG) then3e’ € Eg
such that fr(e') =e.

Strictness ensures that there are no additional edges connected to vertices in the
image of Int G.

We emphasise two points about the distinction between interior and boundary
nodes for open graphs. We view graphs as computational objects, built up by
connecting smaller objects together; we view the interior vertices as computational
primitives. Strict maps ensure that the interior structure—the types and connections
of the vertices—is preserved. The boundary of an open graph defines the interface
of the system; the boundary nodes indicate this interface, and do not carry computa-
tional meaning. Hence boundary nodes have degree one: they simply mark an edge
where something may be connected. Morphisms of open graphs preserve this view
by not allowing interior nodes to be mapped to the boundary.
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Graphical reasoning in compact closed categories 29

We can also view graphs as topological spaces. In this case the boundary nodes
can be seen as points which lie outside the space but are needed to define it, similar
to the end points of an open interval. From this point of view, morphisms of open
graphs are continuous. What then are the open sets of this space? Open subgraphs
arise via two graph operations: removing connected components from the graph, and
removing single points. We note that it suffices to consider removing points which lie
on edges, since vertex removal can be simulated by disconnecting the vertex and
then removing the resultant component. Since we are indifferent to which point on
the edge is removed, we introduce the notion of splitting an edge. The intuition is that
by removing a point from the middle of the edge e, we introduce two new boundary
points.

Definition 5 (Splitting an edge) Let G be an open graph, and suppose e € Eg; we
define G, the splitting of G on e, via the graph G’ = (Vg + {e1, e2}, (Eg \ {e}) +
{e1, ex}, 5, 1), where e;, e; do not occur in Vs or Eg, and s’ and ¢ are defined such
that

- S'(er) =sgle),r'(e)) =ey;
- S'(er) = e, t'(e) =tg(e);

and they otherwise agree with s and tg respectively. Then Gy, := (G',9G +
{e1, e2}).

We define a canonical morphism i embedding G, back into G as follows:

— iy(e)) =tg(e));iv(er) = sg(er); and iy (v) = v otherwise.
— ig(e1) = ip(er) = e;and ig(€') = ¢ otherwise.

Clearly, i is injective on the portion of G, excluding e; and e,, and it is strict.

Definition 6 (Removing a component) Let I" = (G,3dG) be an open graph, and
suppose that v € V. The graph obtained by removing the component [v] is denoted
I' — [v] :== (G —[v], 3G\ (Jv| N dG) where the underlying graph is given by:

-1
G—-[vl=Vg\ I, Eg \SG (lvD), SGl(E(;\sE'(M))V tG'(EG\SE](Iv\)) ).

Writing G + H for the disjoint union of open graphs, it is immediate that we have
the isomorphism G = [v] 4+ (G — [v]), and hence that the coproduct injection in; :
(G — [v]) = [v] + (G — [v]) provides a canonical map back into the original graph.
A further consequence is that every graph is equivalent to the disjoint union of its
connected components.

It is easy to show that the operations of splitting edges and removing components
generalise to sets of edges and vertices, and further that any sequence of such
operations can be standardised so that all the splittings come first.

Definition 7 (Open subgraph) Let G be an open graph; then each pair (F, U) with
F C Egand U C V defines an open subgraph G« r — [U].
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30 L. Dixon, R. Duncan

Every open subgraph of G has a canonical map embedding it back into G,
constructed from the canonical embeddings at each step; it is strict, and injective
everywhere except the new edges and boundary nodes introduced by splittings.

Definition 8 (Exact embedding) We call an open graph morphism f:
(G, 9G) — (H, dH) an exact embedding if:

1. fisstrict;

2. fgisinjective;

3. fy isinjective; and,

4. fy(v) e dH & vedG,forallve Vg..

Definition 9 (Matching) We say that G matches H if there exists an open subgraph
H' of H, and an exact embedding e : G —— H'. In this case we write G < H; we
write [[G]] for the set of all graphs which G matches.

Proposition 1 Let G, H, and K be open graphs. Then

G <G;
G<Hand H < K; then G < K;
If G < Hand H < Gthen G = H.
G < Hiff [[H] < [[G].

L=

Proof The first property follows from the fact that the identity map is an exact
embedding; the second and fourth hold because exact embeddings are closed under
composition. For the third property: since we can exactly embed G into a subgraph of
H, and vice versa, we must have that these subgraphs are isomorphic to the original
graphs; from here the isomorphism between G and H is easily constructed. ]

4 Graphs with exterior nodes

We now present a generalisation of the open graphs described in the previous section.
The purpose of this generalisation is to offer more precise control over matching: a
graph G will match H when it can be exactly embedded in a given configuration.

Definition 10 (Extended open graph) An extended open graph, henceforth abbrevi-
ated e-graph, is pair (G, X) where G is a graph and X C V is a distinguished set
of vertices. The elements of X are called the exterior nodes of G; those vertices in
Vs \ X are called the interior.

An e-graph morphism f : (G, X) — (H, Y) is a graph morphism such that fy (v) €
Y implies v € X forallv € V.

The exterior nodes of an e-graph generalise the boundary nodes of an open graph
and are viewed in the same way: as points outside the graph. As well as marking the
edge of the graph, exterior points also constrain how the edges incident at them may
be embedded into a larger graph: they must meet at the same point. This will be made
explicit below.
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Graphical reasoning in compact closed categories 31

Definition 11 (Splitting a vertex) Let (G, X) be an e-graph with x € V; we define a
new e-graph G, by splitting the vertex x as Gy, := (G', (X \ {x}) + in(x) + out(x))
where G’ := ((X \ {x}) + in(x) + out(x)), Eg, s, ) and

s'(e) =e if e € out(x),
f(e) =e ifecin(x),

s'(e) =sg(e), t(e) =tg(e) otherwise.

We can define a canonical map i: Gy, — G by ip =id, and iy(v) =x if v e
in(x) + out(x) and iy(v) = v otherwise. Evidently, the splitting operation can be
lifted to sets of vertices, so we may write Gy when U C V. We define a relation ©
over the vertices of Gy by v;Qu; iff iy (v)) = iy (v2).

Definition 12 (Relaxation of an extended graph) Let (G, X) be an e-graph; define
its relaxation, relax(G) := G x.

Essentially, relax(G) is the closest approximation of G as an open graph. Note
that if G is an open graph itself—i.e., all its exterior points are of degree one—then
relax(G) = G.

Definition 13 (Matching an extended graph) We say that (G, X) matches (H, Y)
when there exists H’, an open subgraph of relax(H), and an exact embedding
f : relax(G) — H’ such that if vQu in relax(G) then f(v)Q f(u) in H'. In this case
we write G <, H. As before we define [[G]l, := {H|G <. H}. Matching is illustrated
graphically in Fig. 2.

Proposition 2 G <, H < [[G]l, 2 [ H]l..

4.1 Composing graphs

We now introduce a general method for composing graphs which we call plugging;
it works equally well for graphs, open graphs, and e-graphs. We will give here the
definition for the case of e-graphs, but the reader will have no difficulty in modifying
the definitions for the other cases.

G relax(G) H' an open-subgraph relax(H) H
of relax(H)

Fig. 2 An illustrative example showing the steps involved in the e-graph matching G <. H. This
involves operations on G and H, and finally finding an exact embedding between relax(G) and H’
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Fig. 3 The plugging of G and
H via the two-sided e-graph =
with embeddings p; and p»

G (G,H)

Let (G, X) be an e-graph, and suppose that we have a partition of its vertices
Vs = F + B into a front set and a back set; in this case call (G, X, F, B) a two-sided
e-graph.

Definition 14 (Plugging) Let (7, V., F, B) be two-sided e-graph, with a pair of
embeddings p; : (7, V) — (G, X) and p; : (7, V;) — (H,Y) such that p;(F) € X
and p»(B) C Y. Then we define the plugging, 7} (G, H), via the pushout:

Pi

7———G
n

P2

H xh(G, H)

2

The result of the plugging is the minimal graph matched by both G and H such the
two copies of 7 are identified. We will simply write 7 (G, H) for the plugging, taking
the embeddings p; and p, as given. An example illustrating plugging is given in Fig. 3.

Proposition 3 Let nr, G, and H be as above, and let K be some e-graph; then

- 7n(G, H)y=n(H, G);
- G <.7(G, H)and H <, n(G, H);
- K <. Gimplies K <, n(G, H);

5 Compact closed categories

Definition 15 (Compact closed category) A strict symmetric monoidal category [3]
is called compact closed [12] when each object A has a chosen dual object A*, and
morphisms

dy: I — A*Q A ea: AQA =T

where [ is the tensor identity of the compact closed category, such that

AZART %Y A A @A X2 1o A= A=id, ?3)
A= @A L gt A AT Y Ar@ = AT = idy )

Every arrow f: A — B in a compact closed category C has a name and coname:

Tf1:1—- A*Q® B, Lfi:AQ B* —> 1,

@ Springer



Graphical reasoning in compact closed categories 33

Fig. 4 Compact closed

A AB*
B*
structure as graphs id . = dy = U
grap A® B I l " N [‘\VA

B
e =
A AB*
A B*
B A B A¥

which are constructed as " f'= (ida« ® f)od4 and L fu=ep o (f ®idp:). Hence
there are natural isomorphisms C(A, B) = C(I, A* ® B) = C(A ® B*, I) making C
monoidally closed.’ Furthermore, f has a dual, f* : B* — A*, defined by

ff=(da ®ep)o(idg ® f®idp:) o (d4 ®idp-)

By virtue of equations (3) and (4), f** = f. Thus (-)* lifts to an involutive functor
C°? — C, making C equivalent to its opposite.

5.1 Graph representations for compact closed categories

Open graphs with certain additional structure give a representation for compact
closed categories; we now give an overview of this construction. The details omitted
here can be found in [9]. Pictorial representations are in Fig. 4. We make the
convention that the domain of an arrow is at the top of the picture, and its codomain
is at the bottom.

A concrete graph I' is 5-tuple (G, dom I', cod I, <in(), <out() Where:

- G=(V,E,s,t)is a graph;

— dom I and codI" are totally ordered disjoint sets of degree one vertices of G.
Therefore the union of these sets is the boundary of the open graph (G, dom I" +
codI);

—  <in() Is a family of maps, indexed by V such that <jy): in(v) = Ny where
k = |in(v)|. B

—  <out() is a family of maps, indexed by V such that <oui): out(v) — Ny where
k' = |out(v)|.

Since the sets dom I” and cod I" consist of vertices of degree one, we can assign a
polarity to each one: v — + if the edge incident at v is an incoming edge; v > —
otherwise. Hence cod I" and dom I" are ordered signed sets. Given any ordered signed
set S we write S* for the same ordered set with the opposite signing. Given two such
sets we can define their disjoint union R + S as the disjoint union of the underlying
sets, inheriting the signing and the order from R and S, with the convention thatr < s
forallr € R,s € S.

Proposition 4 Concrete graphs form a compact closed category whose objects are
ordered signed sets and whose arrows f : A — B are concrete graphs with cod f = B
and dom f = A*.

SCompact closed categories are models of multiplicative linear logic where A —o B is defined as
At ® B.
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34 L. Dixon, R. Duncan

For each ordered signed set A, the identity map id4 has domid4 = A* and
codid4 = A; its underlying graph has £ = A and V = A* + A with t(a) = a and
s(a) = a*. Given a pair of concrete graphs f: A — B and g: B — C their composi-
tion go f: A — Cis constructed by merging the two graphs, erasing the vertices of
cod f and dom g (called the boundary vertices), and identifying the edges previously
incident at the deleted vertices. (Due to the opposite polarity of the domain and
codomain the edges have compatible direction.) The tensor product on objects A, B
is simply A+ B; given f: A — B, g: C — D, the graph of f® g is the disjoint
union of the graphs of f and g. The unit for the tensor is the empty set. The
morphisms dy4 : [ - A*® A,eq : A® A* — [ have the same underlying graph as
id4, butdomd = @, codd = A* + A,dome = A + A* and code = @.

Remark 3 Although we have not written it explicitly, both composition and tensor
can both be expressed as plugging. The tensor is the plugging along the empty graph,
while composition is plugging along an identity graph. In fact, one can define another
compact closed category whose objects are two-sided graphs and whose arrows are
e-graphs; sadly, space does not allow it to be described here.

This category captures exactly the axioms for compact closed structure, in the
sense that any freely generated compact closed category can be represented by
concrete graphs. We will consider a collection of basic terms® F whose types are
vectors of some set of basic types 7. Then:

Definition 16 (Labelling) A T, F-labelling 0 for a concrete graph I is a pair of maps
Or : E— TandOp: (V —codI” —domI') — F such that for each vertex v, if in(v) =
(ai,...,a,) and out(v) = (by, ..., b,,) then

Ov: (Pay,...,0a,) — 6by,...,0b,,)

We say a concrete graph I" is T, F-labellable if there exists an T, F-labelling for it;
and if 6 is a labelling for I", then the pair (I, ) is called a T, F-labelled graph.

The T, F-labelled graphs form a compact closed category in the same way as the
concrete graphs, subject to the further restriction that arrows are composable only
when their labellings agree.

Theorem 2 Let C be a compact closed category, freely generated by some set of arrows
F and ground types T; then C is equivalent to the category of T, F-labelled graphs.

Given a compact closed category C generated by some basic set of operations, the
arrows of C have a canonical representation as labelled graphs. A consequence of
the theorem is then that two arrows are equal by the equations of the compact closed
structure if and only if their graph representations are equal.

As a final remark before moving on, note that the external structure of a vertex in
a concrete graph is essentially the same as that of a complete graph; hence one can
consistently view subgraphs as vertices, and abstract over the their internal structure.

%See [9] for a more thorough description of the nature of the terms.
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6 !-boxes

To support reasoning with spiders we introduce the operation /-boxing (pronounced
bang-boxing), on graph representations. Given a graph representation, this intro-
duces a new notation, that of outlining a set of nodes (!-boxing them). We then
introduce matching which formalises the idea that a !-box graph can have an arbitrary
number of copies of the !-boxed nodes where every copy connects in the same way
to the nodes outside the !-box.

Definition 17 (!-box graph) A /-box graph is a pair (G, Bg) where G is a graph and
Bg is a set of disjoint subsets of Vg, called the /-boxes of G.”

Definition 18 (!-box matching) We say that (G, Bg) matches (H, By), written
(G, Bg) <1 (H,C), when (H, By) can be obtained from (G, Bg) by the following
operations on graphs, performed in order:

copy(C,(G, Bg)): C is a set of functions where each member, ¢, is mapping
from B to natural numbers. Each bang box, b, is copied
c(b) times. Any edges between a node, 7, inside a !-box b,
and a node, m, outside it, get copied so that there is a new
edge from m to the new copy of n. When ¢(b) = 0, we call it
killing as all nodes in the !-box get removed with any incident
edges.

drop(K,(G, Bg)): removes the subset, K of the !-boxes, but leaves their con-
tents in the graph.

merging(M,(G, Bg)): given a set of disjoint subsets of unconnected !-boxes, M,
merging simply unions the members of each subset of !-
boxes into a single !-box.

An illustration of matching with these operations is given in Fig. 5.
Proposition S /-box matching is partial order.

Reflexivity comes from the trivial matching (no copying, no dropping and no
merging). Transitivity can be proved by constructing combined matching from two
existing matches: killing a !-box that was constructed from a copy simply avoids
copying the !-box in the first place, copying after merging simply involves additional
copying beforehand and merging at the end. Antisymmetry can be proved by
constructing from arbitrary matches G <, H and H <, G the trivial matching. The
construction involves cancelling extra copying with killing until there is no copying.

We give a formal semantics to !-box graphs in terms of a set of graphs in the
underlying representation. In particular, we denote the interpretation of a !-box
graph (G, B) by [[(G, B)]], and say that its members are instances.

Definition 19 (!-box semantics) [(G, B)]], is the set of graphs matched by the !-box
graph that have no !-boxes: [(G, B)Il = {H | (G, B) <, (H, 9)}

"More expressive notions of !-boxes with nested and overlapping node sets provide interesting
additional expressivity, but are not required for the system we formalise here.
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6 b -

Gy G2 = copy({io = 2}, G1) Gz = drop({i2},G2) merge({{io,i1}},G3)

IN
IN

Fig.5 Anillustration of !-box graph matching using the !-box operations. This involves first copying
I-box i( twice, then dropping i3, and finally merging iy and i;

Observe that every instance of a !-box graph can be defined by pairing each !-box
with the natural number that defines how many copies are made of it. Thus [G]],
is isomorphic to the set of k-tuples of natural numbers, where k is the number of
I-boxes. The need for the !-box matching operation, rather than using a direct k-
tuple interpretation, is to allow matching between !-box graphs, and thus to provide
a mechanism for derived rules.

Proposition 6 !-Matching respects !-box semantics: G <, H < [[G]], 2 [[H]l,. The
proof is a simple consequence from the <, being a partial order and the definition
of [[G1l, being a subset of the graphs that match G.

Because !-box graphs correspond to a countably infinite number of concrete
graphs, matching cannot be implemented by simply unfolding all interpretations. We
now prove that matching is still decidable.

Theorem 3 /-box graph Matching is decidable.

The key observation is that a graph, G, will never match a graph with fewer nodes
except by killing. Thus the copying(and killing) operations on G can be bounded
by the number of nodes in the graph it is being matched against. While this gives
a generate and test style algorithm, it is not efficient. The intuition for an efficient
algorithm is to search through G incrementally increasing the matched part.

7 Reasoning with graph patterns

The representation formed by adding !-boxes to e-graphs, which we call graph
patterns, allows us to express, in a finite way, certain infinite families of equations
between e-graphs. In particular, the Spider Theorem can now be represented as
shown in Fig. 6. We now define graph patterns and then describe how they can be
used to develop a formal system for reasoning about compact closed categories.

Definition 20 (Graph pattern) A graph pattern is a !-boxed e-graph, i.e., a pair
(G, Bi), where G is an e-graph and B is a set of !-boxes for G.

Definition 21 (Graph pattern interpretation) A graph pattern G represents the set
of open concrete graphs: [G1l, = U{[G'1l. . G' € [G1I}

This definition allows us to lift matching and plugging from e-graphs through !-
boxes to develop analogous definitions for graph patterns.
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Fig. 6 The Spider Theorem, from Section 2, expressed formally using graph patterns. The !-boxes
are named 7 and j. The variable nodes are white and named a and b. The non-variable node data
(the angle) is written inside the node when non-zero

Definition 22 (Graph pattern matching) Given graph patterns G and H we define
the matching relation G <, H as

G<,H=3G.G< G AG <. H

Plugging together of two graph patterns is an extension of e-graph plugging where
I-box membership is respected. It restricts identification of nodes in a plugging to
cases when their !-boxes are also be identified.

Definition 23 (Graph pattern plugging) Let (G, Bg) and (H, By) be graph patterns;
then given a plugging n,f(G, H), we have a valid graph pattern (mf(G, H), Bg UBpg)
if and only if Vb € Bg if v € V,, such that p(v) € b then Yw € b, Fv' € V,, such that
p() =wand 3b’ € By such that g(v') € b’.

These definitions allow the properties of plugging for e-graphs to lift naturally to
graph patterns.

The language of graph patterns forms a meta-level framework for reasoning about
compact closed categories. The meta-level provides generic machinery to manipulate
graphs and derive new rules. Following the terminology of logical frameworks, such
as Isabelle [16], we call specification of additional structure, beyond the meta-level,
the object-level. In our setting, this involves providing a set of equations between
graphs. These equations are the axioms for the object system. For example, in
Section 8 we define an object level theory for reasoning about quantum computation
based on the graphical calculus introduced in Section 2. In addition to the axioms,
the object level can also provides an appropriate matching or unification operation
for data in the nodes and edges.

We now describe the meta-level framework, noting the conditions for a rule to be
valid, and prove the system’s adequacy. The resulting system forms the basis for an
interactive proof assistant that supports reasoning in compact closed categories.

7.1 Equational rules

In our framework, the axioms defined by an object-level model, as well as derived
rules, are pairs of graph patterns. The elements of the pair represent the left and
right hand sides of an equation. Rules are declarative in that they denote a set of
equations between the underlying formalism of concrete graphs.
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The intuitive idea of substitution with a rule is to replace a subgraph that matches
the left hand side with the rule’s right hand side. However, not all pairs of graphs
make a valid rule with respect to the underlying semantics. For an equation to be
well defined with respect to the compact closed structure it must not be possible to
change the type (the boundary nodes in the domain and co-domain) of an concrete
graph graph by rewriting. Mapping this restriction back to rules on graph patterns
results in the following conditions:

— There must be a isomorphism between exterior nodes in the left and right hand
sides.

— Rules must also define a partial mapping between !-boxes on the left and right
hand sides. The intuition for this mapping is that the unfolding used when
matching a !-box on the left, is applied to the mapped !-box on the right before
replacement.

— When an exterior node appears within a !-box on one side of a rule, it must also
appear under a mapped !-box on the other side.

For notational convenience, we annotate !-boxes and exterior nodes in a graph with
unique names. For example, see Fig. 6 which shows the Spider Theorem, where the
mapping between !-boxes is represented by !-boxes having the same name. Similarly,
the isomorphism between exterior nodes is captured by the set of exterior node
names being equal.

7.2 Meta-level logic and derived rules

Having defined what makes a valid rule, we now present the meta-logic of the
framework. This is quite simple as it only involves dealing with equations:

A=B€Ftr' ial refl FFA:Bsm
277 = trivi - =7
rcFAa=8B" rFA=A rrB=a"
I'-A=B I'tC=D I'-A=B I'C=D

subst plug
'+ (C= D[A/B])f I'F7(A,C)=nr(B, D)

where I” is the set of object-level axioms, D[A/B] is the graph D with a matching
of A replaced by B, and 6 is a matching or unification result defined by object level
matching for the node and edge data.

For the reflexivity rule (refl), we assume that A is a well-formed pattern graph.
This rule allows a new graph to be introduced. The plug rule allows graphs to be
put together to form larger graphs by plugging in an analogous way to composition
in functional programming. By then applying the subst rule, intermediate results
are derived which can themselves be used to rewrite other rules and conjectures.
Given that the axioms in I meet the validity conditions described earlier, the rules
all preserve the validity of equations and thus the system as a whole ensures only
valid rules are derived.

Given an object-level formalism, a set of equations can be applied automatically to
simplify a graph or simulate computation. For such rewriting to terminate, a suitable
left-to-right ordering on rules needs to be observed, such as a decrease in the size of
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the graph. An initial study into this issue has been investigated by Kissinger [13]. An
example of simulating a quantum computation is given in Section 8.

7.3 Lifting axioms and adequacy

The axioms of an object formalism come from the semantics of the underlying
system. For instance, the equations given in Fig. 1 can be proved by matrix calcu-
lations in the underlying model. When such rules are expressed as graph patterns,
we replace the concrete representation’s boundary nodes with exterior nodes. This
operation is called lifting. When a rule contains exterior nodes, the equation on graph
patterns corresponds to an infinite family of equations between concrete graphs.
Thus we might worry that the lifted equations express too much: they may allow
rewrites which are not true. We call the property that the lifted representation is a
conservative extension of the initial theory adequacy. For models of compact closed
categories, the proof of adequacy is quite simple: given an equation between concrete
graphs, G = H, we observe that every instance of the lifted equation has a subgraph
matching the original equation such that the instance can be derived by plugging.

8 A case study in quantum computation

The model of quantum computation introduced in Section 2 provides an object
formalism for our meta-level framework. In particular, the object level axioms come
from lifting the equations in Fig. 1 and from the formalisation of the Spider Theorem
in Fig. 6. Our model of quantum computation requires no data for the edges. The
nodes on the other hand are either H (a Hadamard gate) with no additional data, or
a Pauli operator which has an angle and a colour. The colour is darker red for the
X basis operations and a lighter green for those the Z basis. For their part, angles
are expressed as rational numbers which correspond to the coefficient of = in the
underlying matrix.

To allow composition of rules to compute the resulting angles we give the X
and Z nodes an angle expression. When a node is within a !-box, the expression
is a single angle-variable which gets instantiated to a new angle-variable in each
of the unfoldings of the !-box. When a node is not within a !-box, the angle-
expression is a mapping from a set of angle-variables to the corresponding rational
coefficient. When an angle-expression contains an angle-variable within a !-box, this
is interpreted as a sum of the variables that result from its unfolding.

This rather simple expression language has a normal form by ordering the
angle-variable by name. Matching then results in angle-variables being instantiated
and the expressions in all affected nodes are then (re)normalised. An additional
implementation detail must also be observed for the substitution rule: it must ensure
that angle-variables in the rule being applied are distinct from those in the expression
being rewritten.

The quantum Fourier transform is among the most important quantum algo-
rithms, forming an essential part of Shor’s algorithm [23], famous for providing
polynomial factoring. In our graph pattern calculus this circuit becomes the top-left
graph in Fig. 7. This figure shows how computation can be symbolically performed
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Fig. 7 An example computation of the quantum fourier transform with inputs 1 and 0, performed
symbolically by rewriting

by rewriting with the lifted equations from Fig. 1 and the graph pattern version of the
Spider Theorem.

9 Related work

There are several foundational approaches to graph transformation, including alge-
braic approaches [10], node-label controlled [11], matrix based [24], and programmed
graph replacement [20]. These provide general ways of understanding graph trans-
formations which can then be implemented to provide machinery for a specific
application. However, systems based on these theories do not provide machinery
for the semantics of compact closed categories. The distinctive feature of our form of
graph rewriting is that the graphs capture the structural properties of compact closed
categories and this is respected by rewriting: rewriting is compositional and preserves
the type of the rewritten subgraph. This allows us to define a plugging operation over
which rewriting distributes.

Bundy and Richardson have described an account of ellipses notation for lists [4].
Various authors have also considered ellipses representations for matrices [17, 22],
and more recently, Prince, Ghani and McBride have developed a general formalism
for ellipses notation using Containers [18]. Providing machinery for rewriting of
graphs with ellipses notation, which is needed to represent the Spider Theorem, is
a novel contribution of our approach to graph rewriting.

We note that our graphical notation has little connection to graph states as used
in various approaches to measurement-based quantum computation [19]. In that
approach the graph structure is used to provide a description of the entanglement
in a state: it does not provide a complete description of a computation.

10 Conclusions and further work
We extended the representation of compact closed categories as graphs to provide

a more expressive account of the interface offered by an open graph. This repre-
sentation enjoys a plugging operation that has sequential and parallel composition
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as special cases. We also described a formalism for ellipses notations on graphs and
showed that matching is decidable. These representations, together, provide a rich
language of graph patterns. This language then forms the foundation for a simple
meta-logic for reasoning about models of compact closed categories.

We use the graphical language to extend existing graphical calculi for quantum
computation. In particular, informal reasoning with graphical equations that contain
ellipses notation, such as the Spider Theorem, now have a formal graphical represen-
tation. We illustrate this by showing how computation can be performed by symbolic
graphical rewriting.

We are left with several exciting avenues for further research. These include
considering confluence results for sets of rewrite rules, complexity results for
matching, increasing the expressiveness of the representation for graph-patterns,
and finding a complete set of rewrite rules for graphical models of quan-
tum computation. Finally, details of an implementation can be found online at
http://dream.inf.ed.ac.uk/projects/quantomatic.
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