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Abstract

The notion of a mesh pattern was introduced recently, but it has already proved to
be a useful tool for description purposes related to sets of permutations. In this paper
we study eight mesh patterns of small lengths. In particular, we link avoidance of
one of the patterns to the harmonic numbers, while for three other patterns we show
their distributions on 132-avoiding permutations are given by the Catalan triangle.
Also, we show that two specific mesh patterns are Wilf-equivalent. As a byproduct
of our studies, we define a new set of sequences counted by the Catalan numbers and
provide a relation on the Catalan triangle that seems to be new.

Keywords: mesh patterns, distribution, harmonic numbers, Catalan’s triangle, bi-
jection

1 Introduction

The notion of mesh patterns in permutations was introduced by Brändén and Claesson [2]
to provide explicit expansions for certain permutation statistics as possibly infinite linear
combinations of (classical) permutation patterns (see [4] for a comprehensive introduction
to the theory of permutation patterns). There is a line of papers [1, 3, 5, 6, 7, 8, 9, 11, 12]
related to studying various mesh patterns in sets of permutations or sometimes in restricted
sets of permutations, and this paper is a contribution to the study. In particular, we provide
links to the harmonic numbers and the Catalan triangle. Besides being interesting in their
own right, there are other motivations to analyze mesh patterns. For example, a certain
generalization of the notion of mesh patterns was used in [11] by Úlfarsson to simplify
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a description of Gorenstein Schubert varieties and to give a new description of Schubert
varieties that are defined by inclusions.

We will now provide some definitions that will be used throughout the paper. We
define an n-permutation to be a word without repeated elements over the set {1, 2, . . . , n}.
An element πi of a permutation π1π2 · · · πn is a right-to-left maximum if πi > πj for j ∈
{i+1, i+2, . . . , n}. For example, the set of right-to-left maxima of the permutation 264513
is {3, 5, 6}.

A mesh pattern is a generalization of several classes of patterns studied intensively in
the literature during the last decade (see [4]). However for this paper we do not need
the full definition of classical pattern avoidance. In fact, apart from the notion of a mesh
pattern, we only need the notion of a permutations avoiding the (classical) pattern 132, or
a 132-avoiding permutation. A permutation π = π1π2 · · · πn avoids the pattern 132, if there
are no numbers 1 ≤ i < j < k ≤ n such that πi < πk < πj. For example, the permutation
43512 avoids the pattern 132 while 24531 contains two occurrences of this pattern, namely
the subsequences 243 and 253. For two patterns (of any type) p and q we say that p and
q are Wilf-equivalent if for all n ≥ 0, the number of n-permutations avoiding p is equal to
that avoiding q.

The notion of a mesh pattern can be best described using permutation diagrams, which
are similar to permutation matrices (for a more detailed description, we refer to [2, 11]).
For example, the diagrams in Figure 1, after ignoring the shaded areas and paying atten-
tion to the height of the dots (points) while going through them from left to right, each
correspond to the permutation 213, while the diagram on the left in Figure 2 corresponds
to the permutation 82536174. A mesh pattern consists of the diagram corresponding to a
permutation where some subset of the squares determined by the grid are shaded. In fact,
three mesh patterns are depicted in Figure 1 and eight mesh patterns in Figure 3.

h1 = h2 = h3 =

Figure 1: Three mesh patterns.

We say that a mesh pattern p of length k occurs in a permutation π if the permutation
diagram of π contains k dots whose order is the same as that of the permutation diagram of
p, i.e. π contains a subsequence that is order-isomorphic to p, and additionally, no element
of π can be present in a shaded area determined by p and the corresponding elements of π
in this subsequence. For example, the three circled elements in the permutation 82536174
in Figure 2 are an occurrence of the mesh pattern h1 defined in Figure 1, as demonstrated
by the diagram on the right in Figure 2 (note that none of the permutation elements fall
into the shaded area determined by the mesh pattern). However, these circled elements are
not an occurrence of the pattern h2 in Figure 1 because of the element 6 in the permutation;
they also are not an occurrence of the pattern h3 in Figure 1 because of the element 2 in
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the permutation. One can verify using the diagram in Figure 1 that the subsequence 536
in the permutation 82536174 is an occurrence of the mesh patterns h1 and h2, but not h3.

Figure 2: An example of an occurrence of a mesh pattern.

The definitions of all mesh patterns of interest in this paper are given in Figure 3. In
particular, p is an instance of what we call border mesh patterns, which are defined by
shading all non-interior squares.

q1 = q2 =

s1 = s2 = s3 =

t1 = t2 =

p =

Figure 3: Definitions for all patterns of interest in this paper.

We also need to define a Catalan number and the Catalan triangle. The n-th Catalan
number Cn is defined by the recursion Cn+1 =

∑n
i=0 CiCn−i with C0 = 1. Catalan’s triangle

is defined by C(0, 0) = 1, C(0, k) = 0 for k > 0 and C(n, k) = C(n − 1, k) + C(n, k − 1).
An alternative recursion for the Catalan triangle, namely C(n, k) =

∑k
j=0 C(n− 1, j), will

also be useful. The beginning of Catalan’s triangle is shown below.

1
1 1

1 2 2
1 3 5 5

1 4 9 14 14
1 5 14 28 42 42
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The Catalan numbers can always be read from Catalan’s triangle by looking at the right-
most number in each row. The following two formulas for the Catalan numbers and the
entries in Catalan’s triangle are both well-known:

Cn =
1

n+ 1

(
2n

n

)
C(n, k) =

(n+ k)!(n− k + 1)

k!(n+ 1)!
.

If the number of n-permutations with k occurrences of a pattern τ is given by C(n, k) or a
shift of indices of this number, e.g. C(n− 1, k), we say that τ has Catalan’s distribution.

The paper is organized as follows. In Section 2 we not only link the distribution of the
pattern p to the harmonic numbers (see Theorems 2 and 3), but also study an exponential
generating function for this distribution (see Theorem 4). In Section 3 we show Wilf-
equivalence of the patterns q1 and q2. Section 4 is devoted to study of the patterns s1,
s2, s3, t1 and t2 on 132-avoiding permutations. More specifically, Subsections 4.1 and 4.2
show that both s1 and s2 have Catalan’s distribution on 132-avoiding permutations (see
Theorems 7 and 9), while Subsection 4.3 shows that s3 has the reverse Catalan distribution
on this class of permutations (see Theorem 13). We prove Theorem 13 combinatorially
by introducing an involution on the set of 132-avoiding permutations and using Theorem
7. This involution allows us to establish a joint equidistribution fact for four statistics on
132-avoiding permutations. We also provide an extra proof of Theorem 7 to establish a
bijective proof of the fact that s1 and s2 are equidistributed. As a byproduct to our research,
we define a new set of sequences counted by the Catalan numbers (see Proposition 8).
Additionally, we discover a relation for Catalan’s triangle that involves the Catalan numbers
which seems to be new (see Theorem 10). This relation led us to a combinatorial proof
of a binomial identity stated in Corollary 11. In Subsection 4.4 we discuss the minimum
and maximum number of occurrences of the pattern t1 on 132-avoiding permutations (see
beginning of the subsection and Theorem 18), while in Subsection 4.5 we find the number of
132-avoiding permutations with exactly zero, one, two or three occurrences of the pattern
t2 (see Theorems 21, 22, 24, 25); essentially all our results here are given in terms of the
Catalan numbers. Finally, in Section 5 we provide some concluding remarks.

2 The pattern p and the harmonic numbers

We let Hn =
∑n

k=1
1
k
denote the n-th harmonic number. In this section, we will express

the distribution of the border mesh pattern p in terms of Hn.

Proposition 1. For n ≥ 4 and k ≥ 1, we have that

pn,k := (n− 2)!
n−2∑

i=k+1

1

i
= (n− 2)!(Hn−2 −Hk) (1)

satisfies the recursion
pn,k = (n− 2)pn−1,k + (n− 3)!. (2)
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Proof. Plugging in the formula into the RHS of (2) we obtain,

(n− 2)pn−1,k + (n− 3)! = (n− 2)

(
(n− 3)!

n−3∑
i=k+1

1

i

)
+ (n− 3)!

= (n− 2)!
n−3∑

i=k+1

1

i
+ (n− 3)!

= (n− 2)!
n−2∑

i=k+1

1

i

= pn,k.

We are done.

Theorem 2. The number of n-permutations with k occurrences of the border mesh pattern
p for k ≥ 1 is given by pn,k.

Proof. We prove this theorem by showing that the number of n-permutations with k oc-
currences of the border mesh pattern p also satisfies (2) and because of the matching initial
conditions, the result follows.

To show that the number of such permutations satisfies (2), it helps first to make a few
observations about the pattern p. Firstly, given any occurrence of p in an n-permutation,
1 and n must play the roles of 1 and 4 respectively in the pattern. Additionally, n must
be the last element of the permutation and the first element of the permutation must play
the role of 2 in the pattern. It is then easy to deduce that the number of elements between
1 and n in such a permutation is precisely the number of occurrences of p.

We will now count permutations having exactly k occurrences of p. Either the permu-
tation begins with a 2 or it does not. Suppose the permutation does begin with a 2. As
mentioned before it must also end with n and, by the above observations, in order for it
to have exactly k occurrences of the pattern, 1 must be fixed in position n − k − 1. We
are then free to permute the remaining elements in (n − 3)! ways. Thus, the number of
permutations beginning with a 2 and having k occurrences of the pattern is (n− 3)!.

Now suppose the permutation begins with a number other than 2. Notice that removing
the element 2 from the permutation and relabeling yields an (n−1)-permutation still having
k occurrences of the pattern. Also, 2 could have been in any position other than the first
and the last so in total there are (n − 2) possible positions for 2. Thus, the number of
permutations beginning with an element other than two and having k occurrences of the
pattern is (n− 2)pn−1,k and the theorem is proved.

It turns out that pn,0, the number of n-permutations avoiding p, does not satisfy (2).

However, from (1), it is clear that we get the following relation pn,k = pn,k−1− (n−2)!
k

, which
does mean that we can always get pn,k in terms of pn,1. Using this fact, one can get a
formula for pn,0, the number of n-permutations which avoid p.

Theorem 3. We have

pn,0 = n!− (n− 3)(n− 2)! + pn,1 = (n− 2)!(Hn−2 + n2 − 2n+ 2).

5



Proof. For any n-permutation, the maximum number of occurrences of the pattern p is
n− 3, so to compute the number of n-permutations avoiding the pattern we only need to
subtract the number of permutations having k occurrences for k from 1 to n − 3 from n!.
This gives

pn,0 = n!−
n−3∑
j=1

pn,j

= n!− (n− 2)!
n−3∑
j=1

n−2∑
i=j+1

1

i

= n!− (n− 2)!
n−2∑
i=2

1

i
(i− 1)

= n!− (n− 2)!

(
(n− 3)−

n−2∑
i=2

1

i

)
= n!− (n− 3)(n− 2)! + pn,1.

We are done.

Next we study exponential generating functions (e.g.f.s) for the numbers pn,k.

Theorem 4. Let
Pk(t) =

∑
n≥k+3

pn,k
(n− 2)!

tn−2.

Then, Pk(t) satisfies the following differential equation with initial condition Pk(0) = 0:

P ′
k(t) =

k!Pk(t) + tk

k!(1− t)
+

tk+1

(1− t)2
.

Proof. Note that pk+3,k = k! and pi,k = 0 for i ≤ k+2. We begin with the recursion proven
in Theorem 2. Namely,

pn,k = (n− 2)pn−1,k + (n− 3)!,

which we can write as

pn,k = (n− 3)pn−1,k + pn−1,k + (n− 3)!.

Multiply both sides by tn−3

(n−3)!
and sum over all n ≥ k + 4:

∑
n≥k+4

pn,kt
n−3

(n− 3)!
= t

∑
n≥k+4

pn−1,kt
n−4

(n− 4)!
+
∑

n≥k+4

pn−1,kt
n−3

(n− 3)!
+
∑

n≥k+4

tn−3

P ′
k(t)−

tk

k!
= tP ′

k(t) + Pk(t) +
tk+1

1− t
.
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k e.g.f. expansion

1 t+ln(1−t)
t−1

1 t2

2!
+ 5 t3

3!
+ 26 t4

4!
+ 154 t5

5!
+ 1044 t6

6!
+ . . .

2 2t+t2+2 ln(1−t)
2(t−1)

2 t3

3!
+ 14 t4

4!
+ 94 t5

5!
+ 684 t6

6!
+ 5508 t7

7!
+ . . .

3 6t+3t2+2t3+6 ln(1−t)
6(t−1)

6 t4

4!
+ 54 t5

5!
+ 444 t6

6!
+ 3828 t7

7!
+ 35664 t8

8!
+ . . .

4 12t+6t2+4t3+3t4+12 ln(1−t)
12(t−1)

24 t5

5!
+ 264 t6

6!
+ 2568 t7

7!
+ 25584 t8

8!
+ 270576 t9

9!
+ . . .

Table 1: The e.g.f.s defined in Theorem 4 for the number of permutations with k = 1, 2, 3, 4
occurrences of the pattern p.

And thus,

P ′
k(t) =

k!Pk(t) + tk

k!(1− t)
+

tk+1

(1− t)2
.

Corollary 5. Solving the differential equations in Theorem 4 for k = 1, 2, 3, 4 we get e.g.f.s
that we record in Table 1. Solving this equation for general k using Mathematica produces
the answer:

Pk(t) =
t1+k

2F1[1, 1 + k, 2 + k, t]

(1 + k)(1− t)
,

where the hypergeometric function is defined for |t| < 1 by the power series

2F1(a, b; c; t) =
∞∑
n=0

(a)n(b)n
(c)n

tn

n!

provided that c does not equal 0, −1, −2, . . .. Here (q)n is the Pochhammer symbol defined
by

(q)n =

{
1 if n = 0,

q(q + 1) · · · (q + n− 1) if n > 0.

3 Wilf-equivalence of q1 and q2

In this section we prove the Wilf-equivalence of the patterns q1 and q2 defined in Figure 3.
Suppose that 1 ≤ x1 < x2 < · · · < xk ≤ n and 1 ≤ y1 < y2 < · · · < yk ≤ n are

respective positions of two occurrences of a length k pattern in an n-permutation. Then
we say that the first occurrence is to the left of the second occurrence if (x1, x2, . . . , xk) is
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lexicographically smaller than (y1, y2, . . . , yk). Clearly, this relation defines a total order on
the set of all occurrences of the pattern in the permutation. Thus, unless a permutation
happens to avoid a pattern, there must be the smallest occurrence, namely the leftmost
one.

We establish Wilf-equivalence of q1 and q2 by providing a well-defined bijective map g
that turns q1-avoiding permutations into q2-avoiding permutations.

Given a q1-avoiding permutation π that also avoids q2, we let g(π) = π, which is trivially
bijective and well-defined on the set of (q1, q2)-avoiding permutations.

On the other hand, if a q1-avoiding permutation π contains an occurrence of q2, we
apply the following procedure. Take the leftmost (lexicographically smallest) occurrence of
q2 and swap the second and third elements of this particular occurrence as shown schemat-
ically in Figure 4 below. It is easy to see that an occurrence of q2 will be turned into an
occurrence of q1. Now repeat the procedure until there are no longer any occurrences of q2
in the permutation to obtain g(π).

g is well-defined. First, we must justify that the process described above terminates,
thus resulting in a q2-avoiding permutation. To this end, suppose that xyz is the leftmost
occurrence of q2 in π (occurring in the positions a < b < c) as shown in the left half of
Figure 4. We will now verify that exchanging y and z does not create an occurrence of
q2 which is lexicographically smaller than the smallest occurrence of q2 in π. Thus at any
point in the process, turning the leftmost occurrence of q2 into an occurrence of q1 in the
prescribed way will never introduce an occurrence of q2 which is lexicographically smaller
than the occurrence we have just removed. This ensures that the process will eventually
terminate. In the following discussion we refer to Figure 4.

!" #" $"

!" %" $"

!" !"
&"

'"

("

)"

*" +"

!" #" $"

!" %" $"

!" !"
&"

'"

)"

("

*" +"

Figure 4: Turning an occurrence of q2 into an occurrence of q1.

Indeed, the areas marked by A in π must be empty because xyz is an occurrence of q2
(we indicate this by shading the area). The area marked by B must be empty because xyz
is the lexicographically smallest occurrence (otherwise any element y′ ∈ B would give an
occurrence of q2, xy

′z, which is lexicographically smaller than xyz). By a similar reason the
areas marked by C must be empty (otherwise, any element z′ ∈ C would give an occurrence
of q2, xyz

′, which is lexicographically smaller than xyz). Also note that at the first step of
the algorithm, the area marked by D must be empty, because otherwise any element t ∈ D
would give an occurrence of q1 in π, namely xty, but π is q1-avoiding. However, after some
number of occurrences of q2 have been turned into occurrences of q1, D is not guaranteed
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to be empty. Therefore, we do not shade D as we can make an argument that applies to
an arbitrary step of the algorithm described. Note that we can say something about the
elements inside D, namely that if D contains two or more elements, these elements must
be increasing (otherwise, xyz would not be the smallest occurrence of q2).

Suppose now that turning xyz into xzy creates an occurrence x′y′z′ of q2 that is lexi-
cographically smaller than xyz. It must be the case that x′ = x. To justify this, note that
if x′ ̸= x, then one of y′ or z′ must be y or z, because if this weren’t so, x′y′z′ would have
been a preexisting occurrence of q2 that was to the left of xyz, a contradiction. Since one
of y′ or z′ must be y or z, x′ could not possibly be located in the top left unshaded area.
Thus, x′ < x, and like before x′yz would have been a preexisting occurrence of q2 to the
left of xyz, again a contradiction. This fully justifies that x = x′, which then implies that
z′ = z or z′ = y. This is simply because as mentioned before, one of y′ or z′ must be y or
z, but y′ ̸= y and y′ ̸= z as if y′ were either y or z this would force xy′z′ to be to the right
of xyz, another contradiction. Thus it must be the case that z′ = z or z′ = y.

So, either xy′z or xy′y is an occurrence of q2 to the left of xyz. In the first case, y′

is above the B area, and thus xy′y would be an occurrence of q2 in π which is to the left
of xyz, a contradiction. In the second case, y′ is again above the B area, because if it
were above the C areas, xy′y would not be to the left of xyz, and we get exactly the same
contradiction. Thus we do not create an occurrence of q2 to the left of xyz at any particular
step of the algorithm. Therefore, the process is well-defined and it eventually terminates
when all of occurrences of q2 have been removed.

Note that the number of occurrences of q2 in π is not necessarily equal to the number
of occurrences of q1 in g(π). For example, the permutation 1432 has 3 occurrences of q2,
while g(1432) = 1234 has 4 occurrences of q1.

g is reversible. In order to show that g is reversible, and thus is bijective, we need to
analyze sequences of consecutive steps of the algorithm which leads us to considering a more
refined structure presented in Figure 5. Like in Figure 4, suppose that x is the smallest
element of the leftmost occurrence of q2.

!" #" #" #"" #"

$" %"

$" %"

$" %"

!" $" $" $" &"

'"

'"!"

'"#"

'"($!"

'"("

!" #" #" #" #"

$" %"

$" %"

$" %"

!" $" $" $" &"

'"

'"!"

'"#"

'"($!"

'"("

!"

!"

!"

#" #"%" !" )$!" )"

!" !"

#"#"

)"

)"

)"

!"%" )$!"

Figure 5: A sequence of steps in turning a cluster of occurrences of q2 into occurrences of
q1.
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Define Mx = {x, x1, x2, . . . , xk} be the set of all elements involved in any occurrence of
q2 having x as the smallest element. We shall refer to the set Mx of elements as a cluster of
occurrences of q2 and it can be readily seen that this cluster contains

(
k
2

)
occurrences of q2.

By the definition of Mx, the squares marked with A in Figure 5 must be empty. Also, note
that the elements x1, x2, . . . , xk must be in decreasing order from left to right as shown
in Figure 5. This is because if xi > xj for i < j then xxixj would be an occurrence of
q1, which is a contradiction on the first step because the permutation is q1-avoiding. It is
also a contradiction at any other step because we will soon show that when performing the
steps of the algorithm we never introduce an occurrence of q1 that doesn’t have x as the
smallest element, i.e. we never introduce q1 into any other cluster. By a similar argument,
the elements inside the square defined by the elements x, x1 and xk all belong to the set
Mx.

We will now make three important observations. First, the elements in Mx cannot be
involved in occurrences of q2 involving elements outside of Mx. For x it follows by definition
of Mx, while if xi is the smallest element of an occurrence xiab of q2 then xab would also
be an occurrence of q2 and thus a, b must belong to Mx. If xi is the largest or second
largest element of an occurrence axib or abxi, then a must lie inside the square labeled B1,
contradicting the fact that x is involved as the smallest element in the leftmost occurrence
of q2. In short, clusters are disjoint.

Second, note that any other cluster of occurrences of q2 must be entirely contained inside
a single square labeled with Ci or Dj. This is true because if there were an occurrence of
q2 that involved two of these squares, one can show that at least one of the elements in
Mx would be present in a shaded area for the pattern q2. Thus when performing the steps
of the algorithm, we are guaranteed to never introduce an occurrence of q1 whose smallest
element also happens to be the smallest element of some other cluster.

After performing
(
k
2

)
steps of our algorithm to the cluster of occurrences of q2 pictured

on the left in Figure 5, we find ourselves in the situation pictured on the right in that
figure. We now make our third observation, namely that the elements in Mx now cannot
be involved in any occurrences of q1 involving elements outside of Mx. To justify this, note
that any element in the square labeled B1 could not have been the smallest element of an
occurrence of q2 before the switch, therefore such elements can not be the smallest element
of an occurrence of q1 after the switch. Therefore the elements in Mx could only possibly be
the smallest elements of occurrences of q1 outside of this cluster. This is also not possible.
Suppose that some element z of Mx exists such that zab is an occurrence of q1 with b ̸∈ Mx

(certainly if b ∈ Mx, then a ∈ Mx). If b lies in any square labeled with Di, then xx1z
was an occurrence of q2 before the switch, a contradiction. If b were in the square labeled
with Ci for 1 ≤ i ≤ k, then xx1b was an occurrence of q1 before the switch which is also a
contradiction by our first observation; a similar argument holds if b ∈ C0.

All of these observations together lead to the fact that after the algorithm will be
implemented, the resulting permutation will contain at least one maximal increasing sub-
sequence consisting of at least three elements so that choosing any three of them yields a
q1 pattern, like the sequence (x, xk, xk−1, . . . , x1) shown on the right in Figure 5. Such a
subsequence had to be introduced by performing the algorithm to a cluster shown on the

10



left in Figure 5. It is then straightforward to reverse g by turning subsequences of the form
x < xk < xk−1 < · · · < x2 < x1 any three elements of which form an occurrence of the mesh
pattern q1 into xx1x2 · · · xk where k ≥ 3 without changing the positions of x, x1, x2, . . . , xk.

4 Mesh patterns over 132-avoiding permutations

In this section, we consider the mesh patterns s1, s2, s3, t1 and t2 defined in Figure 3.
Throughout the section, we will be using the following fact that is well-known and is easy
to see: If a permutation π avoids the (classical) pattern 132, then π = π1nπ2 where every
element of π1, if any, is larger than every element of π2, if any, and π1 and π2 are any
132-avoiding permutations on their respective elements. It is well-known (see, e.g. [4]) that
there are Cn n-permutations avoiding 132.

4.1 The pattern s1 has Catalan’s distribution

For a permutation π, we let Nτ (π) denote the number of occurrences of a pattern τ in π.

Lemma 6. For a 132-avoiding n-permutation π, Ns1(π) plus the number of right-to-left
maxima in π is equal to n.

Proof. We can proceed by induction on the length of the permutation. The case n = 1
is clear. If n > 1, then π = π1nπ2 where every element of π1, if any, is larger than every
element of π2, if any. Because of this fact, there cannot be any occurrence of s1 in π having
one element in π1 and the other one in π2. We can now apply the induction hypothesis to
π1n and π2 to get the desired result:

rmax(π) = rmax(π1n) + rmax(π2)

= Ns1(π1n) +Ns1(π2)

= Ns1(π),

and thus the lemma holds.

Let T (n, k) denote the number of 132-avoiding n-permutations with k occurrences of
the pattern s1. In particular, clearly, T (1, 0) = 1 and T (1, k) = 0 for k > 0.

Theorem 7. We have T (n, k) = C(n − 1, k), where C(n, k) is the (n, k)-th entry of the
Catalan triangle defined in the introduction. Thus,

T (n, k) =
(n− k)

(
n−1+k
n−1

)
n

.

We supply two proofs of the theorem. The second proof is essentially the exact argument
used in the proof of Theorem 9; however, the main reason that we state it here is that it
allows us to provide a combinatorial explanation for the fact that the patterns s1 and s2
are equidistributed.
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First proof of Theorem 7. We use the following recurrence for the Catalan triangle:

C(n, k) =
k∑

j=0

C(n− 1, j), (3)

with C(0, 0) = 1 and C(0, k) = 0 for k > 0. Since we already know that T (1, 0) = 1 and
that T (1, k) = 0 for k > 0, we need only show that T (n+ 1, k) satisfies (3).

Consider creating a 132-avoiding (n+1)-permutation from a 132-avoiding n-permutation
by inserting n + 1. The only valid positions to insert n + 1 is either in front of the n-
permutation, or right after a right-to-left maximum, otherwise an occurrence of the pattern
132 will be introduced. Also, inserting n+1 never eliminates an occurrence of s1. Moreover,
inserting n+ 1 in front of an n-permutation does not introduce an occurrence of s1, while
inserting it immediately to the right of the i-th right-to-left maximum (counted from left
to right) increases the number of occurrences of s1 by i. This is simply because each
right-to-left maximum to the left of n, together with n, will contribute new occurrences of
s1.

We are now able to provide a combinatorial proof of T (n+1, k) =
k∑

j=0

T (n, j). Take all

132-avoiding n-permutations having exactly j occurrences of s1, where 0 ≤ j ≤ k. Now for
each permutation, insert n+1 in the unique place to make the total number of occurrences
of s1 equal k. Lemma 6 states for a 132-avoiding n-permutation the number of occurrences
of s1 plus the number of right-to-left maxima is equal to n. This lemma coupled with
the fact that k ≤ n guarantees that we always can insert n into the proper place in a
permutation counted by T (n, j) to obtain a permutation counted by T (n + 1, k) and thus
the recursion is verified.

Second proof of Theorem 7. We will prove combinatorially that T (n, k) satisfies T (n, k) =
T (n− 1, k) + T (n, k − 1) for k < n, a known recursion for the Catalan triangle.

Again, suppose that π = π1nπ2. It is not difficult to see that every element in π1 is
the bottom element of exactly one occurrence of p; the top element of this occurrence is
either n or the next element larger than itself. The permutations that correspond to π1

being empty are counted by the term T (n − 1, k). We will now show that T (n, k − 1) is
responsible for counting those permutations where π1 is not empty. We accomplish this by
providing a general method to take a permutation τ = τ1nτ2 counted by T (n, k − 1) and
move some number of consecutive elements from τ2 to τ1 to obtain π = π1nπ2. This move
will ensure that π has exactly one more occurrence of s1 than τ and will also guarantee
that π1 is not empty. Note here that τ2 is guaranteed to be non-empty so this move can
always be made. If τ2 were to be empty, there would be n − 1 occurrences of s1, which
couldn’t possibly be counted by T (n, k − 1) as k < n.

A more refined structure of a 132-avoiding n-permutation τ is

τ = X1x1X2x2 . . . XixinY1y1Y2y2 . . . Yjyj

where each Xs and Yt are possibly empty 132-avoiding permutations on their respective
elements, {xs}is=1 is the sequence of right-to-left maxima in τ1, and {yt}jt=1 is the sequence
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of right-to-left maxima in τ2. Also whenever s < t, each element of Xs, if any, is larger than
every element of Xt, if any, and each element of Ys, if any, is larger than every element of
Yt, if any. Again recall that in this case y1 exists, i.e. there is at least one element to the
right of n.

Now consider the permutation

π = X1x1X2x2 . . . XixiY1y1nY2y2 . . . Yjyj

obtained from τ by moving the largest element y1 to the right of n, together with the
preceding block Y1, to the other side of n. We claim that the 132-avoiding n-permutation
π has exactly one more occurrence of the pattern s1 as desired and that this operation is
clearly reversible. Using reasoning described at the beginning of the proof, every element
in Y1, if any, was the bottom element of exactly one occurrence of s1 in τ . After the move,
it continues to be the bottom element of such an occurrence in π. On the other hand,
y1 was not the bottom element of an occurrence of s1 in τ . However, after the move, it
becomes the bottom element of exactly one occurrence of s1 in π, namely y1n. Thus, each
permutation counted by T (n, k − 1) can be transformed using the move described above
to a permutation counted by T (n, k). Because this process is reversible, there are no other
permutations counted by T (n, k) apart from those counted by T (n−1, k)+T (n, k−1).

As a byproduct to our research, we define the following set of sequences counted by the
Catalan numbers.

Proposition 8. Let An denote the number of sequences {a1, a2, . . . , an} satisfying a1 = 0

and 0 ≤ ai ≤ i− 1−
i−1∑
j=1

aj for i ∈ {2, . . . , n}. Then, An is given by Cn, the n-th Catalan

number.

Proof. We will prove that the sequences of length n in question are in one-to-one corre-
spondence with 132-avoiding n-permutations, which are known to be counted by Cn.

Consider creating all 132-avoiding n-permutations by inserting n in every allowable
position in every 132-avoiding (n − 1)-permutation. It is easily shown, and was already
used above, that the only allowable positions to insert n without introducing an occurrence
of 132 is either at the beginning, or immediately after a right-to-left maximum. If at every
step we label these possible positions to insert n into an (n−1)-permutation having k right-
to-left maxima from left to right with 0, 1, 2, . . . , k, then we can encode any 132-avoiding
permutation as a sequence of choices of where we inserted the current largest element.
Any such sequence must begin with a 0, as the first step always begins with inserting 1
at the beginning of the empty permutation. For example, the 132-avoiding permutation
π = 785346291 is encoded by the sequence 000102013.

We claim that the set of all sequences {a1, a2, . . . an} in question are precisely the se-
quences that encode all 132-avoiding permutations using the method described in the pre-
vious paragraph. This will follow if we can show that for such a sequence the number of
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right-to-left maxima in the corresponding 132-avoiding n-permutation is given by n−
n∑

j=1

aj.

We prove this statement by induction on n.
The case n = 1 is straightforward as the only sequence is 0 and has corresponding

permutation 1, which has exactly 1− 0 = 1 right-to-left maximum.
Suppose now that {a1, a2, . . . , an} is a sequence describing insertion of the maximum

elements satisfying the conditions specified on the ai’s (that is 0 ≤ ai ≤ i− 1−
i−1∑
j=1

aj for

2 ≤ i ≤ n), and the number of right-to-left maxima in the corresponding n-permutation

σ is n −
n∑

j=1

aj. Suppose that an+1 = k, where 0 ≤ k ≤ n −
∑n

j=1 aj. In this situation,

we chose to insert (n + 1) into σ at the position labeled k. It is easy to see that inserting
n + 1 at position k will force each right-to-left maxima preceding this position to become
non-right-to-left maxima, but will always create one as (n+ 1) is a right-to-left maximum.
Thus the number of right-to-left maxima in the obtained permutation will be decreased by
k − 1 when k ≥ 1 or increased by 1 if k = 0. Thus the number of right-to-left maxima in

the resulting permutation is n−
n∑

j=1

aj − (an+1 − 1) = n+ 1−
n+1∑
j=1

aj and the statement is

verified.

4.2 The pattern s2 has Catalan’s distribution

Let M(n, k) denote the number of 132-avoiding n-permutations with k occurrences of s2.
Clearly, M(1, 0) = 1 and M(1, k) = 0 for k > 0. The goal of this section is to prove the
following theorem.

Theorem 9. We have M(n, k) = C(n − 1, k), where C(n, k) is the (n, k)-th entry of the
Catalan triangle. Thus,

M(n, k) =
(n− k)

(
n−1+k
n−1

)
n

.

Proof. We will prove combinatorially that M(n, k) satisfies M(n, k) = M(n − 1, k) +
M(n, k − 1) for k < n, a known recursion for the Catalan triangle.

Again, if π = π1nπ2 is an n-permutation avoiding the pattern 132, then each element
of π1, if any, is larger than every element of π2, and π1 and π2 are any 132-avoiding
permutations on their respective elements. Moreover, each element of π1, if any, is the
bottom element of a unique occurrence of the pattern s2, namely the one involving the
top element n. It could not be the bottom element of another occurrence of s2 because n
would always be present in the shaded area of s2. The permutations that correspond to π1

being empty are counted by the term M(n, k − 1). We will now show that M(n, k − 1) is
responsible for counting those permutations where π1 is not empty. We accomplish this by
providing a general method to take a permutation τ = τ1nτ2 counted by M(n, k − 1) and
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move some number of consecutive elements from τ2 to τ1 to obtain π = π1nπ2. This move
will ensure that π has exactly one more occurrence of s2 than τ and will also guarantee
that π1 is not empty. Note here that τ2 is guaranteed to be non-empty so this move can
always be made. If τ2 were to be empty, there would be n − 1 occurrences of s2, which
could not possibly be counted by M(n, k − 1) as k < n.

A more refined structure of a 132-avoiding n-permutation τ is

τ = X1x1X2x2 . . . XixinY1y1Y2y2 . . . Yjyj

where each Xs and Yt are possibly empty 132-avoiding permutations on their respective
elements, {xs}is=1 is the sequence of right-to-left maxima in τ1, and {yt}jt=1 is the sequence
of right-to-left maxima in τ2. Also whenever s < t, each element of Xs, if any, is larger than
every element of Xt, if any, and each element of Ys, if any, is larger than every element of
Yt, if any. Again recall that in this case y1 exists, i.e. there is at least one element to the
right of n.

Now consider the permutation

π = X1x1X2x2 . . . XixiY1y1nY2y2 . . . Yjyj

obtained from τ by moving the largest element y1 to the right of n, together with the
preceding block Y1, to the other side of n. We claim that the 132-avoiding n-permutation
π has exactly one more occurrence of the pattern s2 as desired and that this operation is
clearly reversible. Using reasoning described at the beginning of the proof, every element
in Y1, if any, was the bottom element of exactly one occurrence of the pattern s2 in τ . After
the move, it continues to be the bottom element of such an occurrence in π, however the
top element of the occurrence changes from y1 to n. On the other hand, y1 was not the
bottom element of an occurrence of s2 in τ . However, after the move, it becomes the bottom
element of exactly one occurrence of s2, namely y1n. Thus, each permutation counted by
M(n, k− 1) can be transformed using the move described above to a permutation counted
by M(n, k). Because this process is reversible, there are no other permutations counted by
M(n, k) apart from those counted by M(n− 1, k) +M(n, k − 1).

Thus, we obtain a new combinatorial interpretation of C(n − 1, k), namely the num-
ber of 132-avoiding n-permutations having exactly k occurrences of s2. Using this new
interpretation, we were able to provide a relation which seems to be new on the Catalan
triangle, and we record it as the following theorem.

Theorem 10. For the Catalan triangle,

C(n, k) =
k∑

i=0

CiC(n− i− 1, k − i).

Proof. As reasoned in the proof of Theorem 9, if π = π1nπ2 is an n-permutation avoiding
the pattern 132, then each element of π1, if any, is larger than every element of π2, and
π1 and π2 are any 132-avoiding permutations on their respective elements. Moreover, each
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element of π1, if any, is the bottom element of a unique occurrence of the pattern s2, namely
the one involving the top element n.

Additionally, π1n has no affect on occurrences of s2 inside π2. Since there are Cn

132-avoiding n-permutations, we get the following recursion for M(n, k):

M(n, k) =
k∑

i=0

CiM(n− i− 1, k − i) (4)

with initial conditions M(n, 0) = 1 and M(n, n) = 0 for all n ≥ 1. Theorem 9 verifies that
equation (4) is equivalent to the statement of the theorem.

Using known formulas for both Ci and C(n, k), Theorem 10 gives rise to the following
binomial identity.

Corollary 11. We have

(n− k)
(
n−1+k
n−1

)
n

=
k∑

i=0

(
2i
i

)
i+ 1

(n− k − 1)
(
n−2i−2+k
n−i−2

)
n− i− 1

.

Remark 12. We have used the same recursion for the Catalan triangle in the proof of
Theorem 9 and in the second proof of Theorem 7, which induces a bijective proof of the
equidistribution of the mesh patterns s1 and s2 on 132-avoiding permutations.

4.3 The patten s3 has the reverse Catalan distribution

We let N(n, k) denote the number of 132-avoiding n-permutations with k occurrences of
the pattern s3. Clearly, N(1, 0) = 1 and N(1, k) = 0 for k > 0.

Theorem 13. N(n, k) = C(n − 1, n − 1 − k), where C(n, k) is the (n, k)-th entry of the
Catalan triangle. Thus,

N(n, k) =
(k + 1)

(
2(n−1)−k

n−1

)
n

.

Proof. We explain this fact by establishing a bijection f which we will show is actually an
involution between 132-avoiding n-permutations having k occurrences (0 ≤ k ≤ n − 1) of
the pattern s3 and 132-avoiding n-permutations having n−1−k occurrences of the pattern
s1 (of which there are C(n− 1, n− 1− k) many by Theorem 7).

It is easy to see that the bottom elements of occurrences of s3 in a 132-avoiding permuta-
tion π are precisely those elements that are both a left-to-right minimum and a right-to-left
maximum in the permutation obtained from π by removing all right-to-left maxima. At
the same time, the only elements in π that are not the bottom elements of an occurrence
of s1 are precisely the right-to-left maxima of π.

We will provide a map that will turn the position of a bottom element of an occurrence
of s3, as well as the rightmost element of an n-permutation, into the position of a right-to-
left maximum (which as mentioned before can not be the bottom element of an occurrence
of s1) and vice-versa.
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Let π = π1π2 · · · πn be a 132-avoiding permutation with right-to-left maxima in positions
1 ≤ i1 < i2 < · · · < im = n and let Iπ = {i1, . . . , im}. Note that πi1 must be n. Also, let the
bottom elements of occurrences of s3 in π be in positions 1 ≤ a1 < a2 < · · · < as−1 < n,
as := n and let Aπ = {a1, . . . , as}. Note that the sets Iπ and Aπ are both guaranteed to
contain n and this is the only element they share in common.

We will first build an auxiliary permutation π′ = π′
1π

′
2 · · · π′

n by cyclically shifting the
elements having positions in Iπ to the left. Formally,

• π′
i := πi if i ̸∈ Iπ

• π′
ij
:= πij+1

for j = 1, 2, . . . ,m− 1 and

• π′
im := πi1 = n.

We now build the image of π, σ = σ1σ2 · · ·σn = f(π) from π′ by cyclically shifting the
elements having positions in Aπ to the right. Formally,

• σi := π′
i if i ̸∈ Aπ

• σai := π′
ai−1

for 2 ≤ i ≤ s and

• σa1 = π′
as .

To demonstrate the map, we will show how it acts on the 132-avoiding permutation

π = (23)(24)(22)(20)(21)(25)(18)(17)(16)(19)(15)(11)(12)(13)9(10)(14)65741238.

It is easy to verify that for π, Iπ = {6, 10, 11, 17, 25} and Aπ = {3, 7, 8, 9, 21, 25}. We first
perform the cyclic shift among the elements having positions in Iπ to the left to obtain

π′ = (23)(24)(22)(20)(21)(19)(18)(17)(16)(15)(14)(11)(12)(13)9(10)86574123(25).

Now we perform the cyclic shift among the elements having positions in Aπ to the right to
obtain the image of the map

σ = (23)(24)(25)(20)(21)(19)(22)(18)(17)(15)(14)(11)(12)(13)9(10)8657(16)1234.

Note that while in the image permutation σ,

Iσ = {3, 7, 8, 9, 21, 25} and Aσ = {6, 10, 11, 17, 25}

so that If(π) = Aπ and Af(π) = Iπ. In fact, we will show that this is always the case and
with this fact, f is easily seen to be an involution.
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Figure 6: (23)(24)(22)(20)(21)(25)(18)(17)(16)(19)(15)(11)(12)(13)9(10)(14)65741238 and
its image under the involution f .

The permutation matrix for π and f(π) are shown in Figure 6. In this figure, the
elements in smaller boxes without arrows are unchanged in value/position, while the other
solid circles belong to the original permutation and the open circles belong to its image;
for each unfixed position, there is a vertical arrow from the value of π to the value of f(π)
and the horizontal lines were included to show the levels on which elements are moved.

To check understanding, the reader can verify that image of

τ = (15)(14)(12)(13)(16)89(10)(11)5643127

under f is
(16)(15)(12)(13)(11)89(10)756(14)4123.

It was mentioned earlier that If(π) = Aπ and Af(π) = Iπ. This is a direct consequence
of the definition of the map and is most easily understood visually with help of Figure 6.
However, for those who appreciate technical detail, we shall provide rigorous arguments in
the following two paragraphs, for those who don’t, feel free to skip over them.

Suppose we have a 132-avoiding permutation π having corresponding sets Aπ and Iπ
with ij ∈ Iπ and ij ̸= n. There is no need to consider the case when ij = n as n ∈ Af(π)

by definition. Let us examine what happens at position ij throughout the map f . After
the first cyclic shift, we have that π′

ij
has only one element larger than it located to its

right, namely n, and has no elements smaller than it located to its left. The latter fact is
simply because if a smaller element did exist to its left then it would have been the bottom
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element of a 132 pattern in π along with the elements at positions ij and ij+1 (which exists
since ij ̸= n). Consider the first position, ak, to the right of ij that is in Aπ. After the
second cyclic shift, we claim that the value at position ak in f(π) is greater than π′

ij
and

is thus a right-to-left maximum, ensuring that there is an occurrence of s3 having bottom
element at position ij and top element at position ak. To see this, realize that if there is no
element of Aπ less than ij, the claim is immediate as the element at position ak will be n in
this situation. Otherwise, we know that the value of π at position ak−1 (which is precisely
the value of the f(π) at position ak) is larger than π′

ij
because if not, then the elements

at positions ak−1, ij and ij+1 in π would have been an occurrence of 132. Also, in this
case, the element n must now precede f(π)ak , which ensures that it is also a right-to-left
maximum. This verifies that ij belongs to the set Af(π).

Now suppose we have a 132-avoiding permutation π having corresponding sets Aπ =
{a1, . . . , as} and Iπ with ak ∈ Aπ and ak ̸= n. Again, we will examine what happens at
position ak throughout the map f . To begin, there is only one element of π to the right of
position ak that is larger than πak and this element ij ∈ Iπ must be a right-to-left maximum
of π. After the first cyclic shift, π′

ij
is either smaller than π′

ak
or π′

ij
= n. If π′

ij
̸= n and

was larger than π′
ak
, then the elements at positions ak, ij and ij+1 in π would have been

an occurrence of 132. In either case, we have that π′
n = n is the only element following

position ak that is larger than π′
ak
. Additionally, we have that π′

ak
< π′

ak−1
for 2 ≤ k ≤ s and

that πa1 < π′
as = n. These facts guarantee that after the second cyclic shift, the element

of f(π) at position ak will be a right-to-left maximum as n will now be forced to either
precede f(π)ak or actually be equal to the value of f(π) at this position. This verifies that
ak belongs to the set If(π).

We will now show that f is actually an involution by showing that the image of f is
actually a 132-avoiding permutation. To this end, for any permutation π, note that we do
not change values of elements whose positions do not belong to Iπ ∪ Aπ = If(π) ∪ Af(π).
Thus, if an occurrence of the pattern 132 did exist in f(π), it must involve three elements,
one of which must be in Iπ ∪ Aπ. Suppose i ∈ Iπ ∪ Aπ. If i ∈ Iπ, then i ∈ Af(π) and
therefore only one element to the right of position i can be larger than f(π)i. If i ∈ Aπ,
then i ∈ If(π) and therefore no element to the right of position i can be larger than f(π)i.
These facts guarantee that the element at position i can not play the role of 1 in a 132
pattern. Similarly, one can show that i can not play the role of 3 in an occurrence of the
pattern 132, since either there are no elements smaller than πi to the left of it, or everything
to the left of πi is larger than everything to the right of it. Finally, i ̸= n can not play the
role of 2 in an occurrence of 132 because again, since either there are no elements smaller
than πi to the left of it, or there are no elements smaller than πi to the left of the nearest
right-to-left maximum preceding πi.

Remark 14. The fact that the map f in the proof of Theorem 13 is actually an involution
proves a more general fact, namely that the pairs of statistics (s3, n− 1− s1) and (n− 1−
s1, s3) are equidistributed on 132-avoiding permutations. In fact, the involution f actually
gives a more general fact on joint equidistribution of quadruples of statistics (s3, v(s3), n−
1−s1, v(nons1)) and (n−1−s1, v(nons1), s3, v(s3)) where v(p3) is a binary vector showing
positions in which the bottom elements of occurrences of s3 occur; e.g., for s3 0010011 would
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mean that the bottom elements of s3 are in the 3rd and 6th positions, and we can assume
that the rightmost element is always 1 by definition. The meaning of v(nons1) should be
clear: this is a binary vector recording positions of elements which are not bottom elements
in occurrences of s1.

4.4 On the pattern t1

In this subsection, we discuss the minimum and the maximum number of occurrences of
the pattern t1 on 132-avoiding permutations. Suppose πi < πj for i < j in a permutation
π = π1π2 · · · πn. By the box between πi and πj we mean the rectangle in the permutation
matrix of π defined by i, j, πi and πj.

It is easy to see, and first was observed in [1, Theorem 4], that on 132-avoiding permu-
tations, avoidance of t1 is equivalent to avoidance of the classical pattern 123. Indeed, if we
avoid 123 we clearly avoid t1. On the other hand, if we contain 123, then there must exist
an occurrence of 123 which is also an occurrence of t1. Indeed, for any occurrence xyz of
123, if it is not an occurrence of t1, select the smallest element greater than y positioned
strictly to the right of y but to the left of z (possibly including z), and the largest element
less than y positioned strictly to the left of y but to the right of x (possibly including x).
These two chosen elements together with y will form an occurrence of t1. Thus, simultane-
ous avoidance of 132 and t1 is equivalent to simultaneous avoidance of 132 and 123, which
is known to give cardinalities 2n−1 for n-permutations.

In what follows, we will explain our observation that the number of 132-avoiding per-
mutations with the maximum number of occurrences of t1 is given by the Catalan numbers.

Lemma 15. In a 132-avoiding n-permutation, each element is the bottom element of at
most one occurrence or t1 and thus taking into account that n and n− 1 cannot be bottom
elements of such occurrences, the maximum number of occurrences of t1 is no more than
n− 2 (which is attainable by, e.g. 12 · · ·n).

Proof. Let xyz be an occurrence of t1, where x is the bottom element. Suppose xy′z′ is
another occurrence of t1. If y

′ is to the left of y then y′ must be larger than y (because xyz
is an occurrence of t1 and y′ must be outside of the box between x and y), but then xy′y
is an occurrence of the pattern 132, which is a contradiction. On the other hand, if y′ is to
the right of y, then either y will be in the prohibited area between x and y′ (if y′ > y), or
xyy′ is an occurrence of the pattern 132 which is also a contradiction. Thus y = y′.

Similarly, if z′ is to the left of z, then z′ must be larger than z (not to be in the box
between y and z), and we get that yz′z is an occurrence of the pattern 132. On the other
hand, if z′ is to the right of z, then either z is in the prohibited area between z′ and y, or
yzz′ is an occurrence of the pattern 132. Thus z = z′, and xyz is the only occurrence of t1
having x as bottom element.

Lemma 16. In a 132-avoiding n-permutation with maximum number of occurrences of t1,
n must be the rightmost element and it must be preceded by n− 1.
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Proof. Clearly, a right-to-left maximum cannot be the bottom element of an occurrence of
t1, and thus, by Lemma 15, an optimal permutation has at most two right-to-left maxima.

Any 132-avoiding permutation π has the structure π1nπ2, where each element of π1, if
any, is larger than every element of π2, if any. Assume π has two right-to-left maxima,
which makes π2 non-empty. One of the two must be n and the other we will call x (the
rightmost element of π). We see that the maximum element to the left of n and the
maximum element between n and x (at least one of them exists assuming the length of π
is at most 3), cannot be the bottom element of an occurrence of t1. Thus, π has at most
n− 3 occurrences of t1 and cannot be optimal. This tells us that n must be the rightmost
element (the single right-to-left maximum). Therefore, we can assume π = π′n. However,
a right-to-left maximum in π′ cannot be the bottom element of an occurrence of t1, and
thus, having more than one right-to-left maxima in π′ would mean having at most n − 3
occurrences of t1 in π. Thus, we must have π = π′′(n− 1)n for some permutation π′′

Lemma 17. Suppose π = π′′(n − 1)n is a 132-avoiding permutation. Then the number
of occurrences of t1 in π is (n − 2), and thus, by Lemma 15, π has the maximum possible
number of occurrences of t1.

Proof. Let x be an element of π′′. Our goal is to show that x is the bottom element of an
occurrence of t1 in π. Indeed, x(n − 1)n is an occurrence of the mesh pattern r1 shown
in Figure 7. If there are no elements in the box defined by x and (n − 1), we are done.
Otherwise, let y be the smallest element in that box. Clearly xy(n− 1) is an occurrence of
the mesh pattern r2 shown in Figure 7. If this is actually an occurrence of t1, we are done.
Otherwise, let z be the minimum element in the box defined by y and (n− 1). Then xyz
is an occurrence of t1.

r2 =r1 =

Figure 7: Two auxiliary mesh patterns.

Theorem 18. There are Cn−2 132-avoiding n-permutations that contain the maximum
number of occurrences of t1.

Proof. The result follows from Lemmas 16 and 17 since the permutation π′′ in Lemma 17
is an arbitrary 132-avoiding permutation known to be counted by Cn−2.

4.5 On the pattern t2

In this subsection, we will prove a number of observations regarding the distribution of t2
on 132-avoiding permutations.
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Lemma 19. If a 132-avoiding n-permutation π contains at least one occurrence of t2, then
it ends with n and contains an occurrence of t2 that involves n.

Proof. Suppose that n is not at the end of π and π = π1nπ2 with π2 non-empty. Clearly,
because of an element in π2, t2 cannot occur in π1n, and because of n, t2 cannot occur in
π2. No other occurrence of t2 could exist in π because each element in π1n is larger than
every element in π2, which is a contradiction. Thus π must end with n.

Now, suppose that xy is an occurrence of t2 in a permutation π and y ̸= n. Assume
that there is at least one element in the box defined by y and n. If not, yn is the desired
occurrence of t2. Otherwise, one can take the topmost element in that box together with
n to get the desired occurrence of t2. This completes the proof.

Remark 20. Note that in the box defined by y and n in Lemma 19, all elements, if any,
must be in increasing order to avoid the pattern 132.

Theorem 21. For n ≥ 3, there are no 132-avoiding permutations with exactly one occur-
rence of the pattern t2.

Proof. Suppose there exists a 132-avoiding permutation π of length n that has exactly one
occurrence of t2. By Lemma 19, π ends with n and the only occurrence of t2 in π involves
n. Suppose that π = π1n and the single occurrence of t2 is xn for some x in π1. In the
permutation matrix of π, the element x subdivides π1 into four quadrants (using usual way
to label quadrants in counterclockwise direction), where quadrant I is empty. If quadrant
II is not empty, then its largest element together with n would be a different occurrence of
t2. Similarly, if quadrant IV is not empty, then its largest element together with n would
also be a different occurrence of t2. Lastly, if quadrant III is not empty, then its topmost
element together with x would be another occurrence of t2. Thus all four quadrants are
empty, which contradicts the assumption that n ≥ 3. Therefore, no such π can exist.

As a direct corollary to the proof of Theorem 21, we have the following theorem.

Theorem 22. The number of 132-avoiding n-permutations that avoid t2 is given by Cn −
Cn−1.

Proof. The number of n-permutations avoiding the pattern 132 is Cn. Again, by Lemma
19, if such a permutation contains t2 then n must be the rightmost element, and therefore
could not be part of a 132 pattern in the permutation. Thus, the number of 132-avoiding
n-permutations with n at the end is given by Cn−1.

A Dyck path of length 2n is a lattice path from (0, 0) to (2n, 0) with steps U = (1, 1)
and D = (1,−1) that never goes below the x-axis. In the standard bijection between 132-
avoiding permutations and Dyck paths, the position of the largest element corresponds to
the leftmost return of a path to the x-axis (see [4] for details). Using Theorem 22, we
can easily map bijectively such permutations to, e.g., Dyck paths that do not start with
UU . Indeed, Dyck paths that begin with UD can be mapped to 132-avoiding permutations
ending with the largest element through the standard bijection composed with applying
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reverse to Dyck paths. The same map will then send (132,t2)-avoiding permutations to
Dyck paths beginning with UU .

The following lemma is straightforward to prove.

Lemma 23. Let π = π′n be a 132-avoiding n-permutation. We have that x is a right-to-left
maximum in π′ if and only if xn is an occurrence of t2.

Theorem 24. For n ≥ 4, there are Cn−2 132-avoiding n-permutations that contain exactly
two occurrences of t2. There are two such permutations of length 3 and none of smaller
lengths.

Proof. To contain occurrences of t2, Lemma 19 forces the structure of n-permutations in
question to be π′n. By Lemma 23, π′ has either one or two right-to-left maxima.

If π′ has one right-to-left maximum, then π = π′′(n − 1)n. We see that (n − 1)n is an
occurrence of t2, and unless π = 123, Theorem 21 verifies that it is not possible to have
exactly one occurrence of t2 in π′′ which is equivalent to having exactly two occurrences of
t2 in π.

Suppose that π′ has two right-to-left maxima, n − 1 and x. Note that x must be the
rightmost element of π′. Clearly, (n − 1)n and xn are both occurrences of t2. Also there
are no elements to the right of n − 1 that are larger than x. On the other hand since π
must avoid the pattern 132, no element to the left of n − 1 is smaller than x. Further,
because of x, no element to the left of (n − 1) (all of which are larger than x) can be
the bottom element of an occurrence of t2, and such elements can form any 132-avoiding
permutation. Similarly, no element to the right of (n − 1) that is smaller than x can be
the bottom element of an occurrence of t2 because of n − 1 and these elements can form
any 132-avoiding permutation. Thus, assuming A2,n denotes the number of 132-avoiding n-
permutations with exactly two occurrences of t2, we have, for n ≥ 4, the following recursion,
where i stands for the number of elements to the left of (n− 1):

A2,n =
n−3∑
i=0

CiCn−3−i = Cn−2.

The case n = 3 is A2,3 = 2, which is given by the permutations 123 and 213.

Theorem 25. For n ≥ 5, there are Cn−2 132-avoiding n-permutations that contain exactly
three occurrences of t2. There are three such permutations of length 4 and none of smaller
lengths.

Proof. Let n ≥ 4 (clearly for smaller lengths we have no “good” permutations). By Lemma
19, to contain occurrences of t2, the structure of an n-permutation π in question must be
π′n. By Lemma 23, π′ has either one or two or three right-to-left maxima.

If π′ has one right-to-left maximum, then either π ends with (n− 2)(n− 1)n or it ends
with (n − 1)n and there are two right-to-left maxima in the permutation obtained from
π by removing (n − 1)n. In the former case, unless π = 1234, by Theorem 21, we have
no “good” permutations, while in the later case we can apply Theorem 24 to obtain Cn−3
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permutations containing exactly three occurrence of t2 (note, that (n−1)n is an occurrence
of t2).

If π′ has two right-to-left maxima, then they, together with n, will form two occurrences
of t2, and following the arguments in Theorem 24 we will see that there are no other
occurrences of t2. Thus, there are no “good” permutations in this case.

Finally, if π′ has three right-to-left maxima, say (n− 1) > x > y, then we can argue in
a similar way as in the proof of Theorem 24 to see that π = π′

1(n− 1)π′
2xπ

′
3yn where each

element of π′
1, if any, is larger than any element in π′

2 and π′
3, and each element of π′

2, if
any, is larger than any element in π′

3. Moreover, π′
1 (resp., π′

2 and π′
3) is any 132-avoiding

permutation not contributing to extra occurrences of t2. Thus, if n ≥ 5 and A3,n is the
number of 132-avoiding n-permutations with exactly three occurrences of t2, we have the
following recursion (here i is the number of elements to the left of (n − 1) and j is the
number of elements between (n− 1) and x):

A3,n = Cn−3 +
n−4∑
i=0

Ci

n−4−i∑
j=0

CjCn−4−i−j = Cn−3 +
n−4∑
i=0

CiCn−3−i =
n−3∑
i=0

CiCn−3−i = Cn−2.

The case n = 4 is A3,4 = 3, which is given by the permutations 1234, 2134 and 3214.

Remark 26. Note that by Theorems 24 and 25, for n ≥ 4, the numbers of 132-avoiding n-
permutations containing exactly two and exactly three occurrences of t2 coincide. A natural
question here is to provide a combinatorial proof of this fact.

5 Concluding remarks

Studying the distribution of occurrences of a given pattern on various sets of permutations
is typically a very hard problem, but in this paper we were able to solve this problem
explicitly for four patterns, namely p, s1, s2 and s3, providing links to two well-known
objects – the harmonic numbers and Catalan’s triangle. A natural research direction here
is to continue this study for other patterns. If determining the complete distribution seems
difficult, one could attempt to provide formulas for particular cases like we have done for
the patterns t1 and t2 on 132-avoiding permutations. Also, the patterns we have studied
on 132-avoiding permutations (s1, s2, s3, t1 and t2) can be studied over all permutations
or other sets of restricted permutations. Likely, such studies will bring bijective questions,
like the one mentioned in Remark 26.
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